1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Intel Keem Bay OCS HCU Crypto Driver.
4 *
5 * Copyright (C) 2018-2020 Intel Corporation
6 */
7
8#include <crypto/engine.h>
9#include <crypto/hmac.h>
10#include <crypto/internal/hash.h>
11#include <crypto/scatterwalk.h>
12#include <crypto/sha2.h>
13#include <crypto/sm3.h>
14#include <linux/completion.h>
15#include <linux/dma-mapping.h>
16#include <linux/err.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/mod_devicetable.h>
20#include <linux/module.h>
21#include <linux/platform_device.h>
22#include <linux/string.h>
23
24#include "ocs-hcu.h"
25
26#define DRV_NAME	"keembay-ocs-hcu"
27
28/* Flag marking a final request. */
29#define REQ_FINAL			BIT(0)
30/* Flag marking a HMAC request. */
31#define REQ_FLAGS_HMAC			BIT(1)
32/* Flag set when HW HMAC is being used. */
33#define REQ_FLAGS_HMAC_HW		BIT(2)
34/* Flag set when SW HMAC is being used. */
35#define REQ_FLAGS_HMAC_SW		BIT(3)
36
37/**
38 * struct ocs_hcu_ctx: OCS HCU Transform context.
39 * @hcu_dev:	 The OCS HCU device used by the transformation.
40 * @key:	 The key (used only for HMAC transformations).
41 * @key_len:	 The length of the key.
42 * @is_sm3_tfm:  Whether or not this is an SM3 transformation.
43 * @is_hmac_tfm: Whether or not this is a HMAC transformation.
44 */
45struct ocs_hcu_ctx {
46	struct ocs_hcu_dev *hcu_dev;
47	u8 key[SHA512_BLOCK_SIZE];
48	size_t key_len;
49	bool is_sm3_tfm;
50	bool is_hmac_tfm;
51};
52
53/**
54 * struct ocs_hcu_rctx - Context for the request.
55 * @hcu_dev:	    OCS HCU device to be used to service the request.
56 * @flags:	    Flags tracking request status.
57 * @algo:	    Algorithm to use for the request.
58 * @blk_sz:	    Block size of the transformation / request.
59 * @dig_sz:	    Digest size of the transformation / request.
60 * @dma_list:	    OCS DMA linked list.
61 * @hash_ctx:	    OCS HCU hashing context.
62 * @buffer:	    Buffer to store: partial block of data and SW HMAC
63 *		    artifacts (ipad, opad, etc.).
64 * @buf_cnt:	    Number of bytes currently stored in the buffer.
65 * @buf_dma_addr:   The DMA address of @buffer (when mapped).
66 * @buf_dma_count:  The number of bytes in @buffer currently DMA-mapped.
67 * @sg:		    Head of the scatterlist entries containing data.
68 * @sg_data_total:  Total data in the SG list at any time.
69 * @sg_data_offset: Offset into the data of the current individual SG node.
70 * @sg_dma_nents:   Number of sg entries mapped in dma_list.
71 */
72struct ocs_hcu_rctx {
73	struct ocs_hcu_dev	*hcu_dev;
74	u32			flags;
75	enum ocs_hcu_algo	algo;
76	size_t			blk_sz;
77	size_t			dig_sz;
78	struct ocs_hcu_dma_list	*dma_list;
79	struct ocs_hcu_hash_ctx	hash_ctx;
80	/*
81	 * Buffer is double the block size because we need space for SW HMAC
82	 * artifacts, i.e:
83	 * - ipad (1 block) + a possible partial block of data.
84	 * - opad (1 block) + digest of H(k ^ ipad || m)
85	 */
86	u8			buffer[2 * SHA512_BLOCK_SIZE];
87	size_t			buf_cnt;
88	dma_addr_t		buf_dma_addr;
89	size_t			buf_dma_count;
90	struct scatterlist	*sg;
91	unsigned int		sg_data_total;
92	unsigned int		sg_data_offset;
93	unsigned int		sg_dma_nents;
94};
95
96/**
97 * struct ocs_hcu_drv - Driver data
98 * @dev_list:	The list of HCU devices.
99 * @lock:	The lock protecting dev_list.
100 */
101struct ocs_hcu_drv {
102	struct list_head dev_list;
103	spinlock_t lock; /* Protects dev_list. */
104};
105
106static struct ocs_hcu_drv ocs_hcu = {
107	.dev_list = LIST_HEAD_INIT(ocs_hcu.dev_list),
108	.lock = __SPIN_LOCK_UNLOCKED(ocs_hcu.lock),
109};
110
111/*
112 * Return the total amount of data in the request; that is: the data in the
113 * request buffer + the data in the sg list.
114 */
115static inline unsigned int kmb_get_total_data(struct ocs_hcu_rctx *rctx)
116{
117	return rctx->sg_data_total + rctx->buf_cnt;
118}
119
120/* Move remaining content of scatter-gather list to context buffer. */
121static int flush_sg_to_ocs_buffer(struct ocs_hcu_rctx *rctx)
122{
123	size_t count;
124
125	if (rctx->sg_data_total > (sizeof(rctx->buffer) - rctx->buf_cnt)) {
126		WARN(1, "%s: sg data does not fit in buffer\n", __func__);
127		return -EINVAL;
128	}
129
130	while (rctx->sg_data_total) {
131		if (!rctx->sg) {
132			WARN(1, "%s: unexpected NULL sg\n", __func__);
133			return -EINVAL;
134		}
135		/*
136		 * If current sg has been fully processed, skip to the next
137		 * one.
138		 */
139		if (rctx->sg_data_offset == rctx->sg->length) {
140			rctx->sg = sg_next(rctx->sg);
141			rctx->sg_data_offset = 0;
142			continue;
143		}
144		/*
145		 * Determine the maximum data available to copy from the node.
146		 * Minimum of the length left in the sg node, or the total data
147		 * in the request.
148		 */
149		count = min(rctx->sg->length - rctx->sg_data_offset,
150			    rctx->sg_data_total);
151		/* Copy from scatter-list entry to context buffer. */
152		scatterwalk_map_and_copy(&rctx->buffer[rctx->buf_cnt],
153					 rctx->sg, rctx->sg_data_offset,
154					 count, 0);
155
156		rctx->sg_data_offset += count;
157		rctx->sg_data_total -= count;
158		rctx->buf_cnt += count;
159	}
160
161	return 0;
162}
163
164static struct ocs_hcu_dev *kmb_ocs_hcu_find_dev(struct ahash_request *req)
165{
166	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
167	struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm);
168
169	/* If the HCU device for the request was previously set, return it. */
170	if (tctx->hcu_dev)
171		return tctx->hcu_dev;
172
173	/*
174	 * Otherwise, get the first HCU device available (there should be one
175	 * and only one device).
176	 */
177	spin_lock_bh(&ocs_hcu.lock);
178	tctx->hcu_dev = list_first_entry_or_null(&ocs_hcu.dev_list,
179						 struct ocs_hcu_dev,
180						 list);
181	spin_unlock_bh(&ocs_hcu.lock);
182
183	return tctx->hcu_dev;
184}
185
186/* Free OCS DMA linked list and DMA-able context buffer. */
187static void kmb_ocs_hcu_dma_cleanup(struct ahash_request *req,
188				    struct ocs_hcu_rctx *rctx)
189{
190	struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev;
191	struct device *dev = hcu_dev->dev;
192
193	/* Unmap rctx->buffer (if mapped). */
194	if (rctx->buf_dma_count) {
195		dma_unmap_single(dev, rctx->buf_dma_addr, rctx->buf_dma_count,
196				 DMA_TO_DEVICE);
197		rctx->buf_dma_count = 0;
198	}
199
200	/* Unmap req->src (if mapped). */
201	if (rctx->sg_dma_nents) {
202		dma_unmap_sg(dev, req->src, rctx->sg_dma_nents, DMA_TO_DEVICE);
203		rctx->sg_dma_nents = 0;
204	}
205
206	/* Free dma_list (if allocated). */
207	if (rctx->dma_list) {
208		ocs_hcu_dma_list_free(hcu_dev, rctx->dma_list);
209		rctx->dma_list = NULL;
210	}
211}
212
213/*
214 * Prepare for DMA operation:
215 * - DMA-map request context buffer (if needed)
216 * - DMA-map SG list (only the entries to be processed, see note below)
217 * - Allocate OCS HCU DMA linked list (number of elements =  SG entries to
218 *   process + context buffer (if not empty)).
219 * - Add DMA-mapped request context buffer to OCS HCU DMA list.
220 * - Add SG entries to DMA list.
221 *
222 * Note: if this is a final request, we process all the data in the SG list,
223 * otherwise we can only process up to the maximum amount of block-aligned data
224 * (the remainder will be put into the context buffer and processed in the next
225 * request).
226 */
227static int kmb_ocs_dma_prepare(struct ahash_request *req)
228{
229	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
230	struct device *dev = rctx->hcu_dev->dev;
231	unsigned int remainder = 0;
232	unsigned int total;
233	size_t nents;
234	size_t count;
235	int rc;
236	int i;
237
238	/* This function should be called only when there is data to process. */
239	total = kmb_get_total_data(rctx);
240	if (!total)
241		return -EINVAL;
242
243	/*
244	 * If this is not a final DMA (terminated DMA), the data passed to the
245	 * HCU must be aligned to the block size; compute the remainder data to
246	 * be processed in the next request.
247	 */
248	if (!(rctx->flags & REQ_FINAL))
249		remainder = total % rctx->blk_sz;
250
251	/* Determine the number of scatter gather list entries to process. */
252	nents = sg_nents_for_len(req->src, rctx->sg_data_total - remainder);
253
254	/* If there are entries to process, map them. */
255	if (nents) {
256		rctx->sg_dma_nents = dma_map_sg(dev, req->src, nents,
257						DMA_TO_DEVICE);
258		if (!rctx->sg_dma_nents) {
259			dev_err(dev, "Failed to MAP SG\n");
260			rc = -ENOMEM;
261			goto cleanup;
262		}
263		/*
264		 * The value returned by dma_map_sg() can be < nents; so update
265		 * nents accordingly.
266		 */
267		nents = rctx->sg_dma_nents;
268	}
269
270	/*
271	 * If context buffer is not empty, map it and add extra DMA entry for
272	 * it.
273	 */
274	if (rctx->buf_cnt) {
275		rctx->buf_dma_addr = dma_map_single(dev, rctx->buffer,
276						    rctx->buf_cnt,
277						    DMA_TO_DEVICE);
278		if (dma_mapping_error(dev, rctx->buf_dma_addr)) {
279			dev_err(dev, "Failed to map request context buffer\n");
280			rc = -ENOMEM;
281			goto cleanup;
282		}
283		rctx->buf_dma_count = rctx->buf_cnt;
284		/* Increase number of dma entries. */
285		nents++;
286	}
287
288	/* Allocate OCS HCU DMA list. */
289	rctx->dma_list = ocs_hcu_dma_list_alloc(rctx->hcu_dev, nents);
290	if (!rctx->dma_list) {
291		rc = -ENOMEM;
292		goto cleanup;
293	}
294
295	/* Add request context buffer (if previously DMA-mapped) */
296	if (rctx->buf_dma_count) {
297		rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list,
298					       rctx->buf_dma_addr,
299					       rctx->buf_dma_count);
300		if (rc)
301			goto cleanup;
302	}
303
304	/* Add the SG nodes to be processed to the DMA linked list. */
305	for_each_sg(req->src, rctx->sg, rctx->sg_dma_nents, i) {
306		/*
307		 * The number of bytes to add to the list entry is the minimum
308		 * between:
309		 * - The DMA length of the SG entry.
310		 * - The data left to be processed.
311		 */
312		count = min(rctx->sg_data_total - remainder,
313			    sg_dma_len(rctx->sg) - rctx->sg_data_offset);
314		/*
315		 * Do not create a zero length DMA descriptor. Check in case of
316		 * zero length SG node.
317		 */
318		if (count == 0)
319			continue;
320		/* Add sg to HCU DMA list. */
321		rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev,
322					       rctx->dma_list,
323					       rctx->sg->dma_address,
324					       count);
325		if (rc)
326			goto cleanup;
327
328		/* Update amount of data remaining in SG list. */
329		rctx->sg_data_total -= count;
330
331		/*
332		 * If  remaining data is equal to remainder (note: 'less than'
333		 * case should never happen in practice), we are done: update
334		 * offset and exit the loop.
335		 */
336		if (rctx->sg_data_total <= remainder) {
337			WARN_ON(rctx->sg_data_total < remainder);
338			rctx->sg_data_offset += count;
339			break;
340		}
341
342		/*
343		 * If we get here is because we need to process the next sg in
344		 * the list; set offset within the sg to 0.
345		 */
346		rctx->sg_data_offset = 0;
347	}
348
349	return 0;
350cleanup:
351	dev_err(dev, "Failed to prepare DMA.\n");
352	kmb_ocs_hcu_dma_cleanup(req, rctx);
353
354	return rc;
355}
356
357static void kmb_ocs_hcu_secure_cleanup(struct ahash_request *req)
358{
359	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
360
361	/* Clear buffer of any data. */
362	memzero_explicit(rctx->buffer, sizeof(rctx->buffer));
363}
364
365static int kmb_ocs_hcu_handle_queue(struct ahash_request *req)
366{
367	struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
368
369	if (!hcu_dev)
370		return -ENOENT;
371
372	return crypto_transfer_hash_request_to_engine(hcu_dev->engine, req);
373}
374
375static int prepare_ipad(struct ahash_request *req)
376{
377	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
378	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
379	struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
380	int i;
381
382	WARN(rctx->buf_cnt, "%s: Context buffer is not empty\n", __func__);
383	WARN(!(rctx->flags & REQ_FLAGS_HMAC_SW),
384	     "%s: HMAC_SW flag is not set\n", __func__);
385	/*
386	 * Key length must be equal to block size. If key is shorter,
387	 * we pad it with zero (note: key cannot be longer, since
388	 * longer keys are hashed by kmb_ocs_hcu_setkey()).
389	 */
390	if (ctx->key_len > rctx->blk_sz) {
391		WARN(1, "%s: Invalid key length in tfm context\n", __func__);
392		return -EINVAL;
393	}
394	memzero_explicit(&ctx->key[ctx->key_len],
395			 rctx->blk_sz - ctx->key_len);
396	ctx->key_len = rctx->blk_sz;
397	/*
398	 * Prepare IPAD for HMAC. Only done for first block.
399	 * HMAC(k,m) = H(k ^ opad || H(k ^ ipad || m))
400	 * k ^ ipad will be first hashed block.
401	 * k ^ opad will be calculated in the final request.
402	 * Only needed if not using HW HMAC.
403	 */
404	for (i = 0; i < rctx->blk_sz; i++)
405		rctx->buffer[i] = ctx->key[i] ^ HMAC_IPAD_VALUE;
406	rctx->buf_cnt = rctx->blk_sz;
407
408	return 0;
409}
410
411static int kmb_ocs_hcu_do_one_request(struct crypto_engine *engine, void *areq)
412{
413	struct ahash_request *req = container_of(areq, struct ahash_request,
414						 base);
415	struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
416	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
417	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
418	struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm);
419	int rc;
420	int i;
421
422	if (!hcu_dev) {
423		rc = -ENOENT;
424		goto error;
425	}
426
427	/*
428	 * If hardware HMAC flag is set, perform HMAC in hardware.
429	 *
430	 * NOTE: this flag implies REQ_FINAL && kmb_get_total_data(rctx)
431	 */
432	if (rctx->flags & REQ_FLAGS_HMAC_HW) {
433		/* Map input data into the HCU DMA linked list. */
434		rc = kmb_ocs_dma_prepare(req);
435		if (rc)
436			goto error;
437
438		rc = ocs_hcu_hmac(hcu_dev, rctx->algo, tctx->key, tctx->key_len,
439				  rctx->dma_list, req->result, rctx->dig_sz);
440
441		/* Unmap data and free DMA list regardless of return code. */
442		kmb_ocs_hcu_dma_cleanup(req, rctx);
443
444		/* Process previous return code. */
445		if (rc)
446			goto error;
447
448		goto done;
449	}
450
451	/* Handle update request case. */
452	if (!(rctx->flags & REQ_FINAL)) {
453		/* Update should always have input data. */
454		if (!kmb_get_total_data(rctx))
455			return -EINVAL;
456
457		/* Map input data into the HCU DMA linked list. */
458		rc = kmb_ocs_dma_prepare(req);
459		if (rc)
460			goto error;
461
462		/* Do hashing step. */
463		rc = ocs_hcu_hash_update(hcu_dev, &rctx->hash_ctx,
464					 rctx->dma_list);
465
466		/* Unmap data and free DMA list regardless of return code. */
467		kmb_ocs_hcu_dma_cleanup(req, rctx);
468
469		/* Process previous return code. */
470		if (rc)
471			goto error;
472
473		/*
474		 * Reset request buffer count (data in the buffer was just
475		 * processed).
476		 */
477		rctx->buf_cnt = 0;
478		/*
479		 * Move remaining sg data into the request buffer, so that it
480		 * will be processed during the next request.
481		 *
482		 * NOTE: we have remaining data if kmb_get_total_data() was not
483		 * a multiple of block size.
484		 */
485		rc = flush_sg_to_ocs_buffer(rctx);
486		if (rc)
487			goto error;
488
489		goto done;
490	}
491
492	/* If we get here, this is a final request. */
493
494	/* If there is data to process, use finup. */
495	if (kmb_get_total_data(rctx)) {
496		/* Map input data into the HCU DMA linked list. */
497		rc = kmb_ocs_dma_prepare(req);
498		if (rc)
499			goto error;
500
501		/* Do hashing step. */
502		rc = ocs_hcu_hash_finup(hcu_dev, &rctx->hash_ctx,
503					rctx->dma_list,
504					req->result, rctx->dig_sz);
505		/* Free DMA list regardless of return code. */
506		kmb_ocs_hcu_dma_cleanup(req, rctx);
507
508		/* Process previous return code. */
509		if (rc)
510			goto error;
511
512	} else {  /* Otherwise (if we have no data), use final. */
513		rc = ocs_hcu_hash_final(hcu_dev, &rctx->hash_ctx, req->result,
514					rctx->dig_sz);
515		if (rc)
516			goto error;
517	}
518
519	/*
520	 * If we are finalizing a SW HMAC request, we just computed the result
521	 * of: H(k ^ ipad || m).
522	 *
523	 * We now need to complete the HMAC calculation with the OPAD step,
524	 * that is, we need to compute H(k ^ opad || digest), where digest is
525	 * the digest we just obtained, i.e., H(k ^ ipad || m).
526	 */
527	if (rctx->flags & REQ_FLAGS_HMAC_SW) {
528		/*
529		 * Compute k ^ opad and store it in the request buffer (which
530		 * is not used anymore at this point).
531		 * Note: key has been padded / hashed already (so keylen ==
532		 * blksz) .
533		 */
534		WARN_ON(tctx->key_len != rctx->blk_sz);
535		for (i = 0; i < rctx->blk_sz; i++)
536			rctx->buffer[i] = tctx->key[i] ^ HMAC_OPAD_VALUE;
537		/* Now append the digest to the rest of the buffer. */
538		for (i = 0; (i < rctx->dig_sz); i++)
539			rctx->buffer[rctx->blk_sz + i] = req->result[i];
540
541		/* Now hash the buffer to obtain the final HMAC. */
542		rc = ocs_hcu_digest(hcu_dev, rctx->algo, rctx->buffer,
543				    rctx->blk_sz + rctx->dig_sz, req->result,
544				    rctx->dig_sz);
545		if (rc)
546			goto error;
547	}
548
549	/* Perform secure clean-up. */
550	kmb_ocs_hcu_secure_cleanup(req);
551done:
552	crypto_finalize_hash_request(hcu_dev->engine, req, 0);
553
554	return 0;
555
556error:
557	kmb_ocs_hcu_secure_cleanup(req);
558	return rc;
559}
560
561static int kmb_ocs_hcu_init(struct ahash_request *req)
562{
563	struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
564	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
565	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
566	struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
567
568	if (!hcu_dev)
569		return -ENOENT;
570
571	/* Initialize entire request context to zero. */
572	memset(rctx, 0, sizeof(*rctx));
573
574	rctx->hcu_dev = hcu_dev;
575	rctx->dig_sz = crypto_ahash_digestsize(tfm);
576
577	switch (rctx->dig_sz) {
578#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
579	case SHA224_DIGEST_SIZE:
580		rctx->blk_sz = SHA224_BLOCK_SIZE;
581		rctx->algo = OCS_HCU_ALGO_SHA224;
582		break;
583#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
584	case SHA256_DIGEST_SIZE:
585		rctx->blk_sz = SHA256_BLOCK_SIZE;
586		/*
587		 * SHA256 and SM3 have the same digest size: use info from tfm
588		 * context to find out which one we should use.
589		 */
590		rctx->algo = ctx->is_sm3_tfm ? OCS_HCU_ALGO_SM3 :
591					       OCS_HCU_ALGO_SHA256;
592		break;
593	case SHA384_DIGEST_SIZE:
594		rctx->blk_sz = SHA384_BLOCK_SIZE;
595		rctx->algo = OCS_HCU_ALGO_SHA384;
596		break;
597	case SHA512_DIGEST_SIZE:
598		rctx->blk_sz = SHA512_BLOCK_SIZE;
599		rctx->algo = OCS_HCU_ALGO_SHA512;
600		break;
601	default:
602		return -EINVAL;
603	}
604
605	/* Initialize intermediate data. */
606	ocs_hcu_hash_init(&rctx->hash_ctx, rctx->algo);
607
608	/* If this a HMAC request, set HMAC flag. */
609	if (ctx->is_hmac_tfm)
610		rctx->flags |= REQ_FLAGS_HMAC;
611
612	return 0;
613}
614
615static int kmb_ocs_hcu_update(struct ahash_request *req)
616{
617	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
618	int rc;
619
620	if (!req->nbytes)
621		return 0;
622
623	rctx->sg_data_total = req->nbytes;
624	rctx->sg_data_offset = 0;
625	rctx->sg = req->src;
626
627	/*
628	 * If we are doing HMAC, then we must use SW-assisted HMAC, since HW
629	 * HMAC does not support context switching (there it can only be used
630	 * with finup() or digest()).
631	 */
632	if (rctx->flags & REQ_FLAGS_HMAC &&
633	    !(rctx->flags & REQ_FLAGS_HMAC_SW)) {
634		rctx->flags |= REQ_FLAGS_HMAC_SW;
635		rc = prepare_ipad(req);
636		if (rc)
637			return rc;
638	}
639
640	/*
641	 * If remaining sg_data fits into ctx buffer, just copy it there; we'll
642	 * process it at the next update() or final().
643	 */
644	if (rctx->sg_data_total <= (sizeof(rctx->buffer) - rctx->buf_cnt))
645		return flush_sg_to_ocs_buffer(rctx);
646
647	return kmb_ocs_hcu_handle_queue(req);
648}
649
650/* Common logic for kmb_ocs_hcu_final() and kmb_ocs_hcu_finup(). */
651static int kmb_ocs_hcu_fin_common(struct ahash_request *req)
652{
653	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
654	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
655	struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
656	int rc;
657
658	rctx->flags |= REQ_FINAL;
659
660	/*
661	 * If this is a HMAC request and, so far, we didn't have to switch to
662	 * SW HMAC, check if we can use HW HMAC.
663	 */
664	if (rctx->flags & REQ_FLAGS_HMAC &&
665	    !(rctx->flags & REQ_FLAGS_HMAC_SW)) {
666		/*
667		 * If we are here, it means we never processed any data so far,
668		 * so we can use HW HMAC, but only if there is some data to
669		 * process (since OCS HW MAC does not support zero-length
670		 * messages) and the key length is supported by the hardware
671		 * (OCS HCU HW only supports length <= 64); if HW HMAC cannot
672		 * be used, fall back to SW-assisted HMAC.
673		 */
674		if (kmb_get_total_data(rctx) &&
675		    ctx->key_len <= OCS_HCU_HW_KEY_LEN) {
676			rctx->flags |= REQ_FLAGS_HMAC_HW;
677		} else {
678			rctx->flags |= REQ_FLAGS_HMAC_SW;
679			rc = prepare_ipad(req);
680			if (rc)
681				return rc;
682		}
683	}
684
685	return kmb_ocs_hcu_handle_queue(req);
686}
687
688static int kmb_ocs_hcu_final(struct ahash_request *req)
689{
690	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
691
692	rctx->sg_data_total = 0;
693	rctx->sg_data_offset = 0;
694	rctx->sg = NULL;
695
696	return kmb_ocs_hcu_fin_common(req);
697}
698
699static int kmb_ocs_hcu_finup(struct ahash_request *req)
700{
701	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
702
703	rctx->sg_data_total = req->nbytes;
704	rctx->sg_data_offset = 0;
705	rctx->sg = req->src;
706
707	return kmb_ocs_hcu_fin_common(req);
708}
709
710static int kmb_ocs_hcu_digest(struct ahash_request *req)
711{
712	int rc = 0;
713	struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req);
714
715	if (!hcu_dev)
716		return -ENOENT;
717
718	rc = kmb_ocs_hcu_init(req);
719	if (rc)
720		return rc;
721
722	rc = kmb_ocs_hcu_finup(req);
723
724	return rc;
725}
726
727static int kmb_ocs_hcu_export(struct ahash_request *req, void *out)
728{
729	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
730
731	/* Intermediate data is always stored and applied per request. */
732	memcpy(out, rctx, sizeof(*rctx));
733
734	return 0;
735}
736
737static int kmb_ocs_hcu_import(struct ahash_request *req, const void *in)
738{
739	struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req);
740
741	/* Intermediate data is always stored and applied per request. */
742	memcpy(rctx, in, sizeof(*rctx));
743
744	return 0;
745}
746
747static int kmb_ocs_hcu_setkey(struct crypto_ahash *tfm, const u8 *key,
748			      unsigned int keylen)
749{
750	unsigned int digestsize = crypto_ahash_digestsize(tfm);
751	struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm);
752	size_t blk_sz = crypto_ahash_blocksize(tfm);
753	struct crypto_ahash *ahash_tfm;
754	struct ahash_request *req;
755	struct crypto_wait wait;
756	struct scatterlist sg;
757	const char *alg_name;
758	int rc;
759
760	/*
761	 * Key length must be equal to block size:
762	 * - If key is shorter, we are done for now (the key will be padded
763	 *   later on); this is to maximize the use of HW HMAC (which works
764	 *   only for keys <= 64 bytes).
765	 * - If key is longer, we hash it.
766	 */
767	if (keylen <= blk_sz) {
768		memcpy(ctx->key, key, keylen);
769		ctx->key_len = keylen;
770		return 0;
771	}
772
773	switch (digestsize) {
774#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
775	case SHA224_DIGEST_SIZE:
776		alg_name = "sha224-keembay-ocs";
777		break;
778#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
779	case SHA256_DIGEST_SIZE:
780		alg_name = ctx->is_sm3_tfm ? "sm3-keembay-ocs" :
781					     "sha256-keembay-ocs";
782		break;
783	case SHA384_DIGEST_SIZE:
784		alg_name = "sha384-keembay-ocs";
785		break;
786	case SHA512_DIGEST_SIZE:
787		alg_name = "sha512-keembay-ocs";
788		break;
789	default:
790		return -EINVAL;
791	}
792
793	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
794	if (IS_ERR(ahash_tfm))
795		return PTR_ERR(ahash_tfm);
796
797	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
798	if (!req) {
799		rc = -ENOMEM;
800		goto err_free_ahash;
801	}
802
803	crypto_init_wait(&wait);
804	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
805				   crypto_req_done, &wait);
806	crypto_ahash_clear_flags(ahash_tfm, ~0);
807
808	sg_init_one(&sg, key, keylen);
809	ahash_request_set_crypt(req, &sg, ctx->key, keylen);
810
811	rc = crypto_wait_req(crypto_ahash_digest(req), &wait);
812	if (rc == 0)
813		ctx->key_len = digestsize;
814
815	ahash_request_free(req);
816err_free_ahash:
817	crypto_free_ahash(ahash_tfm);
818
819	return rc;
820}
821
822/* Set request size and initialize tfm context. */
823static void __cra_init(struct crypto_tfm *tfm, struct ocs_hcu_ctx *ctx)
824{
825	crypto_ahash_set_reqsize_dma(__crypto_ahash_cast(tfm),
826				     sizeof(struct ocs_hcu_rctx));
827}
828
829static int kmb_ocs_hcu_sha_cra_init(struct crypto_tfm *tfm)
830{
831	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
832
833	__cra_init(tfm, ctx);
834
835	return 0;
836}
837
838static int kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm *tfm)
839{
840	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
841
842	__cra_init(tfm, ctx);
843
844	ctx->is_sm3_tfm = true;
845
846	return 0;
847}
848
849static int kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm *tfm)
850{
851	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
852
853	__cra_init(tfm, ctx);
854
855	ctx->is_sm3_tfm = true;
856	ctx->is_hmac_tfm = true;
857
858	return 0;
859}
860
861static int kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm *tfm)
862{
863	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
864
865	__cra_init(tfm, ctx);
866
867	ctx->is_hmac_tfm = true;
868
869	return 0;
870}
871
872/* Function called when 'tfm' is de-initialized. */
873static void kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm *tfm)
874{
875	struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm);
876
877	/* Clear the key. */
878	memzero_explicit(ctx->key, sizeof(ctx->key));
879}
880
881static struct ahash_engine_alg ocs_hcu_algs[] = {
882#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224
883{
884	.base.init		= kmb_ocs_hcu_init,
885	.base.update		= kmb_ocs_hcu_update,
886	.base.final		= kmb_ocs_hcu_final,
887	.base.finup		= kmb_ocs_hcu_finup,
888	.base.digest		= kmb_ocs_hcu_digest,
889	.base.export		= kmb_ocs_hcu_export,
890	.base.import		= kmb_ocs_hcu_import,
891	.base.halg = {
892		.digestsize	= SHA224_DIGEST_SIZE,
893		.statesize	= sizeof(struct ocs_hcu_rctx),
894		.base	= {
895			.cra_name		= "sha224",
896			.cra_driver_name	= "sha224-keembay-ocs",
897			.cra_priority		= 255,
898			.cra_flags		= CRYPTO_ALG_ASYNC,
899			.cra_blocksize		= SHA224_BLOCK_SIZE,
900			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
901			.cra_alignmask		= 0,
902			.cra_module		= THIS_MODULE,
903			.cra_init		= kmb_ocs_hcu_sha_cra_init,
904		}
905	},
906	.op.do_one_request = kmb_ocs_hcu_do_one_request,
907},
908{
909	.base.init		= kmb_ocs_hcu_init,
910	.base.update		= kmb_ocs_hcu_update,
911	.base.final		= kmb_ocs_hcu_final,
912	.base.finup		= kmb_ocs_hcu_finup,
913	.base.digest		= kmb_ocs_hcu_digest,
914	.base.export		= kmb_ocs_hcu_export,
915	.base.import		= kmb_ocs_hcu_import,
916	.base.setkey		= kmb_ocs_hcu_setkey,
917	.base.halg = {
918		.digestsize	= SHA224_DIGEST_SIZE,
919		.statesize	= sizeof(struct ocs_hcu_rctx),
920		.base	= {
921			.cra_name		= "hmac(sha224)",
922			.cra_driver_name	= "hmac-sha224-keembay-ocs",
923			.cra_priority		= 255,
924			.cra_flags		= CRYPTO_ALG_ASYNC,
925			.cra_blocksize		= SHA224_BLOCK_SIZE,
926			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
927			.cra_alignmask		= 0,
928			.cra_module		= THIS_MODULE,
929			.cra_init		= kmb_ocs_hcu_hmac_cra_init,
930			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
931		}
932	},
933	.op.do_one_request = kmb_ocs_hcu_do_one_request,
934},
935#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */
936{
937	.base.init		= kmb_ocs_hcu_init,
938	.base.update		= kmb_ocs_hcu_update,
939	.base.final		= kmb_ocs_hcu_final,
940	.base.finup		= kmb_ocs_hcu_finup,
941	.base.digest		= kmb_ocs_hcu_digest,
942	.base.export		= kmb_ocs_hcu_export,
943	.base.import		= kmb_ocs_hcu_import,
944	.base.halg = {
945		.digestsize	= SHA256_DIGEST_SIZE,
946		.statesize	= sizeof(struct ocs_hcu_rctx),
947		.base	= {
948			.cra_name		= "sha256",
949			.cra_driver_name	= "sha256-keembay-ocs",
950			.cra_priority		= 255,
951			.cra_flags		= CRYPTO_ALG_ASYNC,
952			.cra_blocksize		= SHA256_BLOCK_SIZE,
953			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
954			.cra_alignmask		= 0,
955			.cra_module		= THIS_MODULE,
956			.cra_init		= kmb_ocs_hcu_sha_cra_init,
957		}
958	},
959	.op.do_one_request = kmb_ocs_hcu_do_one_request,
960},
961{
962	.base.init		= kmb_ocs_hcu_init,
963	.base.update		= kmb_ocs_hcu_update,
964	.base.final		= kmb_ocs_hcu_final,
965	.base.finup		= kmb_ocs_hcu_finup,
966	.base.digest		= kmb_ocs_hcu_digest,
967	.base.export		= kmb_ocs_hcu_export,
968	.base.import		= kmb_ocs_hcu_import,
969	.base.setkey		= kmb_ocs_hcu_setkey,
970	.base.halg = {
971		.digestsize	= SHA256_DIGEST_SIZE,
972		.statesize	= sizeof(struct ocs_hcu_rctx),
973		.base	= {
974			.cra_name		= "hmac(sha256)",
975			.cra_driver_name	= "hmac-sha256-keembay-ocs",
976			.cra_priority		= 255,
977			.cra_flags		= CRYPTO_ALG_ASYNC,
978			.cra_blocksize		= SHA256_BLOCK_SIZE,
979			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
980			.cra_alignmask		= 0,
981			.cra_module		= THIS_MODULE,
982			.cra_init		= kmb_ocs_hcu_hmac_cra_init,
983			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
984		}
985	},
986	.op.do_one_request = kmb_ocs_hcu_do_one_request,
987},
988{
989	.base.init		= kmb_ocs_hcu_init,
990	.base.update		= kmb_ocs_hcu_update,
991	.base.final		= kmb_ocs_hcu_final,
992	.base.finup		= kmb_ocs_hcu_finup,
993	.base.digest		= kmb_ocs_hcu_digest,
994	.base.export		= kmb_ocs_hcu_export,
995	.base.import		= kmb_ocs_hcu_import,
996	.base.halg = {
997		.digestsize	= SM3_DIGEST_SIZE,
998		.statesize	= sizeof(struct ocs_hcu_rctx),
999		.base	= {
1000			.cra_name		= "sm3",
1001			.cra_driver_name	= "sm3-keembay-ocs",
1002			.cra_priority		= 255,
1003			.cra_flags		= CRYPTO_ALG_ASYNC,
1004			.cra_blocksize		= SM3_BLOCK_SIZE,
1005			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
1006			.cra_alignmask		= 0,
1007			.cra_module		= THIS_MODULE,
1008			.cra_init		= kmb_ocs_hcu_sm3_cra_init,
1009		}
1010	},
1011	.op.do_one_request = kmb_ocs_hcu_do_one_request,
1012},
1013{
1014	.base.init		= kmb_ocs_hcu_init,
1015	.base.update		= kmb_ocs_hcu_update,
1016	.base.final		= kmb_ocs_hcu_final,
1017	.base.finup		= kmb_ocs_hcu_finup,
1018	.base.digest		= kmb_ocs_hcu_digest,
1019	.base.export		= kmb_ocs_hcu_export,
1020	.base.import		= kmb_ocs_hcu_import,
1021	.base.setkey		= kmb_ocs_hcu_setkey,
1022	.base.halg = {
1023		.digestsize	= SM3_DIGEST_SIZE,
1024		.statesize	= sizeof(struct ocs_hcu_rctx),
1025		.base	= {
1026			.cra_name		= "hmac(sm3)",
1027			.cra_driver_name	= "hmac-sm3-keembay-ocs",
1028			.cra_priority		= 255,
1029			.cra_flags		= CRYPTO_ALG_ASYNC,
1030			.cra_blocksize		= SM3_BLOCK_SIZE,
1031			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
1032			.cra_alignmask		= 0,
1033			.cra_module		= THIS_MODULE,
1034			.cra_init		= kmb_ocs_hcu_hmac_sm3_cra_init,
1035			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
1036		}
1037	},
1038	.op.do_one_request = kmb_ocs_hcu_do_one_request,
1039},
1040{
1041	.base.init		= kmb_ocs_hcu_init,
1042	.base.update		= kmb_ocs_hcu_update,
1043	.base.final		= kmb_ocs_hcu_final,
1044	.base.finup		= kmb_ocs_hcu_finup,
1045	.base.digest		= kmb_ocs_hcu_digest,
1046	.base.export		= kmb_ocs_hcu_export,
1047	.base.import		= kmb_ocs_hcu_import,
1048	.base.halg = {
1049		.digestsize	= SHA384_DIGEST_SIZE,
1050		.statesize	= sizeof(struct ocs_hcu_rctx),
1051		.base	= {
1052			.cra_name		= "sha384",
1053			.cra_driver_name	= "sha384-keembay-ocs",
1054			.cra_priority		= 255,
1055			.cra_flags		= CRYPTO_ALG_ASYNC,
1056			.cra_blocksize		= SHA384_BLOCK_SIZE,
1057			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
1058			.cra_alignmask		= 0,
1059			.cra_module		= THIS_MODULE,
1060			.cra_init		= kmb_ocs_hcu_sha_cra_init,
1061		}
1062	},
1063	.op.do_one_request = kmb_ocs_hcu_do_one_request,
1064},
1065{
1066	.base.init		= kmb_ocs_hcu_init,
1067	.base.update		= kmb_ocs_hcu_update,
1068	.base.final		= kmb_ocs_hcu_final,
1069	.base.finup		= kmb_ocs_hcu_finup,
1070	.base.digest		= kmb_ocs_hcu_digest,
1071	.base.export		= kmb_ocs_hcu_export,
1072	.base.import		= kmb_ocs_hcu_import,
1073	.base.setkey		= kmb_ocs_hcu_setkey,
1074	.base.halg = {
1075		.digestsize	= SHA384_DIGEST_SIZE,
1076		.statesize	= sizeof(struct ocs_hcu_rctx),
1077		.base	= {
1078			.cra_name		= "hmac(sha384)",
1079			.cra_driver_name	= "hmac-sha384-keembay-ocs",
1080			.cra_priority		= 255,
1081			.cra_flags		= CRYPTO_ALG_ASYNC,
1082			.cra_blocksize		= SHA384_BLOCK_SIZE,
1083			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
1084			.cra_alignmask		= 0,
1085			.cra_module		= THIS_MODULE,
1086			.cra_init		= kmb_ocs_hcu_hmac_cra_init,
1087			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
1088		}
1089	},
1090	.op.do_one_request = kmb_ocs_hcu_do_one_request,
1091},
1092{
1093	.base.init		= kmb_ocs_hcu_init,
1094	.base.update		= kmb_ocs_hcu_update,
1095	.base.final		= kmb_ocs_hcu_final,
1096	.base.finup		= kmb_ocs_hcu_finup,
1097	.base.digest		= kmb_ocs_hcu_digest,
1098	.base.export		= kmb_ocs_hcu_export,
1099	.base.import		= kmb_ocs_hcu_import,
1100	.base.halg = {
1101		.digestsize	= SHA512_DIGEST_SIZE,
1102		.statesize	= sizeof(struct ocs_hcu_rctx),
1103		.base	= {
1104			.cra_name		= "sha512",
1105			.cra_driver_name	= "sha512-keembay-ocs",
1106			.cra_priority		= 255,
1107			.cra_flags		= CRYPTO_ALG_ASYNC,
1108			.cra_blocksize		= SHA512_BLOCK_SIZE,
1109			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
1110			.cra_alignmask		= 0,
1111			.cra_module		= THIS_MODULE,
1112			.cra_init		= kmb_ocs_hcu_sha_cra_init,
1113		}
1114	},
1115	.op.do_one_request = kmb_ocs_hcu_do_one_request,
1116},
1117{
1118	.base.init		= kmb_ocs_hcu_init,
1119	.base.update		= kmb_ocs_hcu_update,
1120	.base.final		= kmb_ocs_hcu_final,
1121	.base.finup		= kmb_ocs_hcu_finup,
1122	.base.digest		= kmb_ocs_hcu_digest,
1123	.base.export		= kmb_ocs_hcu_export,
1124	.base.import		= kmb_ocs_hcu_import,
1125	.base.setkey		= kmb_ocs_hcu_setkey,
1126	.base.halg = {
1127		.digestsize	= SHA512_DIGEST_SIZE,
1128		.statesize	= sizeof(struct ocs_hcu_rctx),
1129		.base	= {
1130			.cra_name		= "hmac(sha512)",
1131			.cra_driver_name	= "hmac-sha512-keembay-ocs",
1132			.cra_priority		= 255,
1133			.cra_flags		= CRYPTO_ALG_ASYNC,
1134			.cra_blocksize		= SHA512_BLOCK_SIZE,
1135			.cra_ctxsize		= sizeof(struct ocs_hcu_ctx),
1136			.cra_alignmask		= 0,
1137			.cra_module		= THIS_MODULE,
1138			.cra_init		= kmb_ocs_hcu_hmac_cra_init,
1139			.cra_exit		= kmb_ocs_hcu_hmac_cra_exit,
1140		}
1141	},
1142	.op.do_one_request = kmb_ocs_hcu_do_one_request,
1143},
1144};
1145
1146/* Device tree driver match. */
1147static const struct of_device_id kmb_ocs_hcu_of_match[] = {
1148	{
1149		.compatible = "intel,keembay-ocs-hcu",
1150	},
1151	{}
1152};
1153
1154static void kmb_ocs_hcu_remove(struct platform_device *pdev)
1155{
1156	struct ocs_hcu_dev *hcu_dev = platform_get_drvdata(pdev);
1157
1158	crypto_engine_unregister_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
1159
1160	crypto_engine_exit(hcu_dev->engine);
1161
1162	spin_lock_bh(&ocs_hcu.lock);
1163	list_del(&hcu_dev->list);
1164	spin_unlock_bh(&ocs_hcu.lock);
1165}
1166
1167static int kmb_ocs_hcu_probe(struct platform_device *pdev)
1168{
1169	struct device *dev = &pdev->dev;
1170	struct ocs_hcu_dev *hcu_dev;
1171	int rc;
1172
1173	hcu_dev = devm_kzalloc(dev, sizeof(*hcu_dev), GFP_KERNEL);
1174	if (!hcu_dev)
1175		return -ENOMEM;
1176
1177	hcu_dev->dev = dev;
1178
1179	platform_set_drvdata(pdev, hcu_dev);
1180	rc = dma_set_mask_and_coherent(&pdev->dev, OCS_HCU_DMA_BIT_MASK);
1181	if (rc)
1182		return rc;
1183
1184	hcu_dev->io_base = devm_platform_ioremap_resource(pdev, 0);
1185	if (IS_ERR(hcu_dev->io_base))
1186		return PTR_ERR(hcu_dev->io_base);
1187
1188	init_completion(&hcu_dev->irq_done);
1189
1190	/* Get and request IRQ. */
1191	hcu_dev->irq = platform_get_irq(pdev, 0);
1192	if (hcu_dev->irq < 0)
1193		return hcu_dev->irq;
1194
1195	rc = devm_request_threaded_irq(&pdev->dev, hcu_dev->irq,
1196				       ocs_hcu_irq_handler, NULL, 0,
1197				       "keembay-ocs-hcu", hcu_dev);
1198	if (rc < 0) {
1199		dev_err(dev, "Could not request IRQ.\n");
1200		return rc;
1201	}
1202
1203	INIT_LIST_HEAD(&hcu_dev->list);
1204
1205	spin_lock_bh(&ocs_hcu.lock);
1206	list_add_tail(&hcu_dev->list, &ocs_hcu.dev_list);
1207	spin_unlock_bh(&ocs_hcu.lock);
1208
1209	/* Initialize crypto engine */
1210	hcu_dev->engine = crypto_engine_alloc_init(dev, 1);
1211	if (!hcu_dev->engine) {
1212		rc = -ENOMEM;
1213		goto list_del;
1214	}
1215
1216	rc = crypto_engine_start(hcu_dev->engine);
1217	if (rc) {
1218		dev_err(dev, "Could not start engine.\n");
1219		goto cleanup;
1220	}
1221
1222	/* Security infrastructure guarantees OCS clock is enabled. */
1223
1224	rc = crypto_engine_register_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs));
1225	if (rc) {
1226		dev_err(dev, "Could not register algorithms.\n");
1227		goto cleanup;
1228	}
1229
1230	return 0;
1231
1232cleanup:
1233	crypto_engine_exit(hcu_dev->engine);
1234list_del:
1235	spin_lock_bh(&ocs_hcu.lock);
1236	list_del(&hcu_dev->list);
1237	spin_unlock_bh(&ocs_hcu.lock);
1238
1239	return rc;
1240}
1241
1242/* The OCS driver is a platform device. */
1243static struct platform_driver kmb_ocs_hcu_driver = {
1244	.probe = kmb_ocs_hcu_probe,
1245	.remove_new = kmb_ocs_hcu_remove,
1246	.driver = {
1247			.name = DRV_NAME,
1248			.of_match_table = kmb_ocs_hcu_of_match,
1249		},
1250};
1251
1252module_platform_driver(kmb_ocs_hcu_driver);
1253
1254MODULE_LICENSE("GPL");
1255