1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <crypto/algapi.h>
7#include <crypto/internal/skcipher.h>
8#include <crypto/internal/des.h>
9#include <crypto/xts.h>
10#include <crypto/sm4.h>
11#include <crypto/scatterwalk.h>
12
13#include "cc_driver.h"
14#include "cc_lli_defs.h"
15#include "cc_buffer_mgr.h"
16#include "cc_cipher.h"
17#include "cc_request_mgr.h"
18
19#define MAX_SKCIPHER_SEQ_LEN 6
20
21#define template_skcipher	template_u.skcipher
22
23struct cc_user_key_info {
24	u8 *key;
25	dma_addr_t key_dma_addr;
26};
27
28struct cc_hw_key_info {
29	enum cc_hw_crypto_key key1_slot;
30	enum cc_hw_crypto_key key2_slot;
31};
32
33struct cc_cpp_key_info {
34	u8 slot;
35	enum cc_cpp_alg alg;
36};
37
38enum cc_key_type {
39	CC_UNPROTECTED_KEY,		/* User key */
40	CC_HW_PROTECTED_KEY,		/* HW (FDE) key */
41	CC_POLICY_PROTECTED_KEY,	/* CPP key */
42	CC_INVALID_PROTECTED_KEY	/* Invalid key */
43};
44
45struct cc_cipher_ctx {
46	struct cc_drvdata *drvdata;
47	int keylen;
48	int cipher_mode;
49	int flow_mode;
50	unsigned int flags;
51	enum cc_key_type key_type;
52	struct cc_user_key_info user;
53	union {
54		struct cc_hw_key_info hw;
55		struct cc_cpp_key_info cpp;
56	};
57	struct crypto_shash *shash_tfm;
58	struct crypto_skcipher *fallback_tfm;
59	bool fallback_on;
60};
61
62static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
63
64static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
65{
66	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
67
68	return ctx_p->key_type;
69}
70
71static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
72{
73	switch (ctx_p->flow_mode) {
74	case S_DIN_to_AES:
75		switch (size) {
76		case CC_AES_128_BIT_KEY_SIZE:
77		case CC_AES_192_BIT_KEY_SIZE:
78			if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
79				return 0;
80			break;
81		case CC_AES_256_BIT_KEY_SIZE:
82			return 0;
83		case (CC_AES_192_BIT_KEY_SIZE * 2):
84		case (CC_AES_256_BIT_KEY_SIZE * 2):
85			if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
86			    ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
87				return 0;
88			break;
89		default:
90			break;
91		}
92		break;
93	case S_DIN_to_DES:
94		if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
95			return 0;
96		break;
97	case S_DIN_to_SM4:
98		if (size == SM4_KEY_SIZE)
99			return 0;
100		break;
101	default:
102		break;
103	}
104	return -EINVAL;
105}
106
107static int validate_data_size(struct cc_cipher_ctx *ctx_p,
108			      unsigned int size)
109{
110	switch (ctx_p->flow_mode) {
111	case S_DIN_to_AES:
112		switch (ctx_p->cipher_mode) {
113		case DRV_CIPHER_XTS:
114		case DRV_CIPHER_CBC_CTS:
115			if (size >= AES_BLOCK_SIZE)
116				return 0;
117			break;
118		case DRV_CIPHER_OFB:
119		case DRV_CIPHER_CTR:
120				return 0;
121		case DRV_CIPHER_ECB:
122		case DRV_CIPHER_CBC:
123		case DRV_CIPHER_ESSIV:
124			if (IS_ALIGNED(size, AES_BLOCK_SIZE))
125				return 0;
126			break;
127		default:
128			break;
129		}
130		break;
131	case S_DIN_to_DES:
132		if (IS_ALIGNED(size, DES_BLOCK_SIZE))
133			return 0;
134		break;
135	case S_DIN_to_SM4:
136		switch (ctx_p->cipher_mode) {
137		case DRV_CIPHER_CTR:
138			return 0;
139		case DRV_CIPHER_ECB:
140		case DRV_CIPHER_CBC:
141			if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
142				return 0;
143			break;
144		default:
145			break;
146		}
147		break;
148	default:
149		break;
150	}
151	return -EINVAL;
152}
153
154static int cc_cipher_init(struct crypto_tfm *tfm)
155{
156	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
157	struct cc_crypto_alg *cc_alg =
158			container_of(tfm->__crt_alg, struct cc_crypto_alg,
159				     skcipher_alg.base);
160	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
161	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
162	unsigned int fallback_req_size = 0;
163
164	dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
165		crypto_tfm_alg_name(tfm));
166
167	ctx_p->cipher_mode = cc_alg->cipher_mode;
168	ctx_p->flow_mode = cc_alg->flow_mode;
169	ctx_p->drvdata = cc_alg->drvdata;
170
171	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
172		const char *name = crypto_tfm_alg_name(tfm);
173
174		/* Alloc hash tfm for essiv */
175		ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
176		if (IS_ERR(ctx_p->shash_tfm)) {
177			dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
178			return PTR_ERR(ctx_p->shash_tfm);
179		}
180		max_key_buf_size <<= 1;
181
182		/* Alloc fallabck tfm or essiv when key size != 256 bit */
183		ctx_p->fallback_tfm =
184			crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
185
186		if (IS_ERR(ctx_p->fallback_tfm)) {
187			/* Note we're still allowing registration with no fallback since it's
188			 * better to have most modes supported than none at all.
189			 */
190			dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
191			       name);
192			ctx_p->fallback_tfm = NULL;
193		} else {
194			fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
195		}
196	}
197
198	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
199				    sizeof(struct cipher_req_ctx) + fallback_req_size);
200
201	/* Allocate key buffer, cache line aligned */
202	ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
203	if (!ctx_p->user.key)
204		goto free_fallback;
205
206	dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
207		ctx_p->user.key);
208
209	/* Map key buffer */
210	ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
211						  max_key_buf_size,
212						  DMA_TO_DEVICE);
213	if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
214		dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
215			max_key_buf_size, ctx_p->user.key);
216		goto free_key;
217	}
218	dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
219		max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
220
221	return 0;
222
223free_key:
224	kfree(ctx_p->user.key);
225free_fallback:
226	crypto_free_skcipher(ctx_p->fallback_tfm);
227	crypto_free_shash(ctx_p->shash_tfm);
228
229	return -ENOMEM;
230}
231
232static void cc_cipher_exit(struct crypto_tfm *tfm)
233{
234	struct crypto_alg *alg = tfm->__crt_alg;
235	struct cc_crypto_alg *cc_alg =
236			container_of(alg, struct cc_crypto_alg,
237				     skcipher_alg.base);
238	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
239	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
240	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
241
242	dev_dbg(dev, "Clearing context @%p for %s\n",
243		crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
244
245	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
246		/* Free hash tfm for essiv */
247		crypto_free_shash(ctx_p->shash_tfm);
248		ctx_p->shash_tfm = NULL;
249		crypto_free_skcipher(ctx_p->fallback_tfm);
250		ctx_p->fallback_tfm = NULL;
251	}
252
253	/* Unmap key buffer */
254	dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
255			 DMA_TO_DEVICE);
256	dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
257		&ctx_p->user.key_dma_addr);
258
259	/* Free key buffer in context */
260	dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
261	kfree_sensitive(ctx_p->user.key);
262}
263
264struct tdes_keys {
265	u8	key1[DES_KEY_SIZE];
266	u8	key2[DES_KEY_SIZE];
267	u8	key3[DES_KEY_SIZE];
268};
269
270static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
271{
272	switch (slot_num) {
273	case 0:
274		return KFDE0_KEY;
275	case 1:
276		return KFDE1_KEY;
277	case 2:
278		return KFDE2_KEY;
279	case 3:
280		return KFDE3_KEY;
281	}
282	return END_OF_KEYS;
283}
284
285static u8 cc_slot_to_cpp_key(u8 slot_num)
286{
287	return (slot_num - CC_FIRST_CPP_KEY_SLOT);
288}
289
290static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
291{
292	if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
293		return CC_HW_PROTECTED_KEY;
294	else if (slot_num >=  CC_FIRST_CPP_KEY_SLOT &&
295		 slot_num <=  CC_LAST_CPP_KEY_SLOT)
296		return CC_POLICY_PROTECTED_KEY;
297	else
298		return CC_INVALID_PROTECTED_KEY;
299}
300
301static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
302			     unsigned int keylen)
303{
304	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
305	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
306	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
307	struct cc_hkey_info hki;
308
309	dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
310		ctx_p, crypto_tfm_alg_name(tfm), keylen);
311	dump_byte_array("key", key, keylen);
312
313	/* STAT_PHASE_0: Init and sanity checks */
314
315	/* This check the size of the protected key token */
316	if (keylen != sizeof(hki)) {
317		dev_err(dev, "Unsupported protected key size %d.\n", keylen);
318		return -EINVAL;
319	}
320
321	memcpy(&hki, key, keylen);
322
323	/* The real key len for crypto op is the size of the HW key
324	 * referenced by the HW key slot, not the hardware key token
325	 */
326	keylen = hki.keylen;
327
328	if (validate_keys_sizes(ctx_p, keylen)) {
329		dev_dbg(dev, "Unsupported key size %d.\n", keylen);
330		return -EINVAL;
331	}
332
333	ctx_p->keylen = keylen;
334	ctx_p->fallback_on = false;
335
336	switch (cc_slot_to_key_type(hki.hw_key1)) {
337	case CC_HW_PROTECTED_KEY:
338		if (ctx_p->flow_mode == S_DIN_to_SM4) {
339			dev_err(dev, "Only AES HW protected keys are supported\n");
340			return -EINVAL;
341		}
342
343		ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
344		if (ctx_p->hw.key1_slot == END_OF_KEYS) {
345			dev_err(dev, "Unsupported hw key1 number (%d)\n",
346				hki.hw_key1);
347			return -EINVAL;
348		}
349
350		if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
351		    ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
352			if (hki.hw_key1 == hki.hw_key2) {
353				dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
354					hki.hw_key1, hki.hw_key2);
355				return -EINVAL;
356			}
357
358			ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
359			if (ctx_p->hw.key2_slot == END_OF_KEYS) {
360				dev_err(dev, "Unsupported hw key2 number (%d)\n",
361					hki.hw_key2);
362				return -EINVAL;
363			}
364		}
365
366		ctx_p->key_type = CC_HW_PROTECTED_KEY;
367		dev_dbg(dev, "HW protected key  %d/%d set\n.",
368			ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
369		break;
370
371	case CC_POLICY_PROTECTED_KEY:
372		if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
373			dev_err(dev, "CPP keys not supported in this hardware revision.\n");
374			return -EINVAL;
375		}
376
377		if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
378		    ctx_p->cipher_mode != DRV_CIPHER_CTR) {
379			dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
380			return -EINVAL;
381		}
382
383		ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
384		if (ctx_p->flow_mode == S_DIN_to_AES)
385			ctx_p->cpp.alg = CC_CPP_AES;
386		else /* Must be SM4 since due to sethkey registration */
387			ctx_p->cpp.alg = CC_CPP_SM4;
388		ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
389		dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
390			ctx_p->cpp.alg, ctx_p->cpp.slot);
391		break;
392
393	default:
394		dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
395		return -EINVAL;
396	}
397
398	return 0;
399}
400
401static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
402			    unsigned int keylen)
403{
404	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
405	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
406	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
407	struct cc_crypto_alg *cc_alg =
408			container_of(tfm->__crt_alg, struct cc_crypto_alg,
409				     skcipher_alg.base);
410	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
411
412	dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
413		ctx_p, crypto_tfm_alg_name(tfm), keylen);
414	dump_byte_array("key", key, keylen);
415
416	/* STAT_PHASE_0: Init and sanity checks */
417
418	if (validate_keys_sizes(ctx_p, keylen)) {
419		dev_dbg(dev, "Invalid key size %d.\n", keylen);
420		return -EINVAL;
421	}
422
423	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
424
425		/* We only support 256 bit ESSIV-CBC-AES keys */
426		if (keylen != AES_KEYSIZE_256)  {
427			unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
428
429			if (likely(ctx_p->fallback_tfm)) {
430				ctx_p->fallback_on = true;
431				crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
432							    CRYPTO_TFM_REQ_MASK);
433				crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
434				return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
435			}
436
437			dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
438			return -EINVAL;
439		}
440
441		/* Internal ESSIV key buffer is double sized */
442		max_key_buf_size <<= 1;
443	}
444
445	ctx_p->fallback_on = false;
446	ctx_p->key_type = CC_UNPROTECTED_KEY;
447
448	/*
449	 * Verify DES weak keys
450	 * Note that we're dropping the expanded key since the
451	 * HW does the expansion on its own.
452	 */
453	if (ctx_p->flow_mode == S_DIN_to_DES) {
454		if ((keylen == DES3_EDE_KEY_SIZE &&
455		     verify_skcipher_des3_key(sktfm, key)) ||
456		    verify_skcipher_des_key(sktfm, key)) {
457			dev_dbg(dev, "weak DES key");
458			return -EINVAL;
459		}
460	}
461
462	if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
463	    xts_verify_key(sktfm, key, keylen)) {
464		dev_dbg(dev, "weak XTS key");
465		return -EINVAL;
466	}
467
468	/* STAT_PHASE_1: Copy key to ctx */
469	dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
470				max_key_buf_size, DMA_TO_DEVICE);
471
472	memcpy(ctx_p->user.key, key, keylen);
473
474	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
475		/* sha256 for key2 - use sw implementation */
476		int err;
477
478		err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
479					      ctx_p->user.key, keylen,
480					      ctx_p->user.key + keylen);
481		if (err) {
482			dev_err(dev, "Failed to hash ESSIV key.\n");
483			return err;
484		}
485
486		keylen <<= 1;
487	}
488	dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
489				   max_key_buf_size, DMA_TO_DEVICE);
490	ctx_p->keylen = keylen;
491
492	dev_dbg(dev, "return safely");
493	return 0;
494}
495
496static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
497{
498	switch (ctx_p->flow_mode) {
499	case S_DIN_to_AES:
500		return S_AES_to_DOUT;
501	case S_DIN_to_DES:
502		return S_DES_to_DOUT;
503	case S_DIN_to_SM4:
504		return S_SM4_to_DOUT;
505	default:
506		return ctx_p->flow_mode;
507	}
508}
509
510static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
511				 struct cipher_req_ctx *req_ctx,
512				 unsigned int ivsize, struct cc_hw_desc desc[],
513				 unsigned int *seq_size)
514{
515	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
516	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
517	int cipher_mode = ctx_p->cipher_mode;
518	int flow_mode = cc_out_setup_mode(ctx_p);
519	int direction = req_ctx->gen_ctx.op_type;
520	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
521
522	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
523		return;
524
525	switch (cipher_mode) {
526	case DRV_CIPHER_ECB:
527		break;
528	case DRV_CIPHER_CBC:
529	case DRV_CIPHER_CBC_CTS:
530	case DRV_CIPHER_CTR:
531	case DRV_CIPHER_OFB:
532		/* Read next IV */
533		hw_desc_init(&desc[*seq_size]);
534		set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
535		set_cipher_config0(&desc[*seq_size], direction);
536		set_flow_mode(&desc[*seq_size], flow_mode);
537		set_cipher_mode(&desc[*seq_size], cipher_mode);
538		if (cipher_mode == DRV_CIPHER_CTR ||
539		    cipher_mode == DRV_CIPHER_OFB) {
540			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
541		} else {
542			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
543		}
544		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
545		(*seq_size)++;
546		break;
547	case DRV_CIPHER_XTS:
548	case DRV_CIPHER_ESSIV:
549		/*  IV */
550		hw_desc_init(&desc[*seq_size]);
551		set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
552		set_cipher_mode(&desc[*seq_size], cipher_mode);
553		set_cipher_config0(&desc[*seq_size], direction);
554		set_flow_mode(&desc[*seq_size], flow_mode);
555		set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
556			     NS_BIT, 1);
557		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
558		(*seq_size)++;
559		break;
560	default:
561		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
562	}
563}
564
565
566static void cc_setup_state_desc(struct crypto_tfm *tfm,
567				 struct cipher_req_ctx *req_ctx,
568				 unsigned int ivsize, unsigned int nbytes,
569				 struct cc_hw_desc desc[],
570				 unsigned int *seq_size)
571{
572	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
573	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
574	int cipher_mode = ctx_p->cipher_mode;
575	int flow_mode = ctx_p->flow_mode;
576	int direction = req_ctx->gen_ctx.op_type;
577	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
578
579	switch (cipher_mode) {
580	case DRV_CIPHER_ECB:
581		break;
582	case DRV_CIPHER_CBC:
583	case DRV_CIPHER_CBC_CTS:
584	case DRV_CIPHER_CTR:
585	case DRV_CIPHER_OFB:
586		/* Load IV */
587		hw_desc_init(&desc[*seq_size]);
588		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
589			     NS_BIT);
590		set_cipher_config0(&desc[*seq_size], direction);
591		set_flow_mode(&desc[*seq_size], flow_mode);
592		set_cipher_mode(&desc[*seq_size], cipher_mode);
593		if (cipher_mode == DRV_CIPHER_CTR ||
594		    cipher_mode == DRV_CIPHER_OFB) {
595			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
596		} else {
597			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
598		}
599		(*seq_size)++;
600		break;
601	case DRV_CIPHER_XTS:
602	case DRV_CIPHER_ESSIV:
603		break;
604	default:
605		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
606	}
607}
608
609
610static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
611				 struct cipher_req_ctx *req_ctx,
612				 unsigned int ivsize, unsigned int nbytes,
613				 struct cc_hw_desc desc[],
614				 unsigned int *seq_size)
615{
616	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
617	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
618	int cipher_mode = ctx_p->cipher_mode;
619	int flow_mode = ctx_p->flow_mode;
620	int direction = req_ctx->gen_ctx.op_type;
621	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
622	unsigned int key_len = (ctx_p->keylen / 2);
623	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
624	unsigned int key_offset = key_len;
625
626	switch (cipher_mode) {
627	case DRV_CIPHER_ECB:
628		break;
629	case DRV_CIPHER_CBC:
630	case DRV_CIPHER_CBC_CTS:
631	case DRV_CIPHER_CTR:
632	case DRV_CIPHER_OFB:
633		break;
634	case DRV_CIPHER_XTS:
635	case DRV_CIPHER_ESSIV:
636
637		if (cipher_mode == DRV_CIPHER_ESSIV)
638			key_len = SHA256_DIGEST_SIZE;
639
640		/* load XEX key */
641		hw_desc_init(&desc[*seq_size]);
642		set_cipher_mode(&desc[*seq_size], cipher_mode);
643		set_cipher_config0(&desc[*seq_size], direction);
644		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
645			set_hw_crypto_key(&desc[*seq_size],
646					  ctx_p->hw.key2_slot);
647		} else {
648			set_din_type(&desc[*seq_size], DMA_DLLI,
649				     (key_dma_addr + key_offset),
650				     key_len, NS_BIT);
651		}
652		set_xex_data_unit_size(&desc[*seq_size], nbytes);
653		set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
654		set_key_size_aes(&desc[*seq_size], key_len);
655		set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
656		(*seq_size)++;
657
658		/* Load IV */
659		hw_desc_init(&desc[*seq_size]);
660		set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
661		set_cipher_mode(&desc[*seq_size], cipher_mode);
662		set_cipher_config0(&desc[*seq_size], direction);
663		set_key_size_aes(&desc[*seq_size], key_len);
664		set_flow_mode(&desc[*seq_size], flow_mode);
665		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
666			     CC_AES_BLOCK_SIZE, NS_BIT);
667		(*seq_size)++;
668		break;
669	default:
670		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
671	}
672}
673
674static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
675{
676	switch (ctx_p->flow_mode) {
677	case S_DIN_to_AES:
678		return DIN_AES_DOUT;
679	case S_DIN_to_DES:
680		return DIN_DES_DOUT;
681	case S_DIN_to_SM4:
682		return DIN_SM4_DOUT;
683	default:
684		return ctx_p->flow_mode;
685	}
686}
687
688static void cc_setup_key_desc(struct crypto_tfm *tfm,
689			      struct cipher_req_ctx *req_ctx,
690			      unsigned int nbytes, struct cc_hw_desc desc[],
691			      unsigned int *seq_size)
692{
693	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
694	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
695	int cipher_mode = ctx_p->cipher_mode;
696	int flow_mode = ctx_p->flow_mode;
697	int direction = req_ctx->gen_ctx.op_type;
698	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
699	unsigned int key_len = ctx_p->keylen;
700	unsigned int din_size;
701
702	switch (cipher_mode) {
703	case DRV_CIPHER_CBC:
704	case DRV_CIPHER_CBC_CTS:
705	case DRV_CIPHER_CTR:
706	case DRV_CIPHER_OFB:
707	case DRV_CIPHER_ECB:
708		/* Load key */
709		hw_desc_init(&desc[*seq_size]);
710		set_cipher_mode(&desc[*seq_size], cipher_mode);
711		set_cipher_config0(&desc[*seq_size], direction);
712
713		if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
714			/* We use the AES key size coding for all CPP algs */
715			set_key_size_aes(&desc[*seq_size], key_len);
716			set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
717			flow_mode = cc_out_flow_mode(ctx_p);
718		} else {
719			if (flow_mode == S_DIN_to_AES) {
720				if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
721					set_hw_crypto_key(&desc[*seq_size],
722							  ctx_p->hw.key1_slot);
723				} else {
724					/* CC_POLICY_UNPROTECTED_KEY
725					 * Invalid keys are filtered out in
726					 * sethkey()
727					 */
728					din_size = (key_len == 24) ?
729						AES_MAX_KEY_SIZE : key_len;
730
731					set_din_type(&desc[*seq_size], DMA_DLLI,
732						     key_dma_addr, din_size,
733						     NS_BIT);
734				}
735				set_key_size_aes(&desc[*seq_size], key_len);
736			} else {
737				/*des*/
738				set_din_type(&desc[*seq_size], DMA_DLLI,
739					     key_dma_addr, key_len, NS_BIT);
740				set_key_size_des(&desc[*seq_size], key_len);
741			}
742			set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
743		}
744		set_flow_mode(&desc[*seq_size], flow_mode);
745		(*seq_size)++;
746		break;
747	case DRV_CIPHER_XTS:
748	case DRV_CIPHER_ESSIV:
749		/* Load AES key */
750		hw_desc_init(&desc[*seq_size]);
751		set_cipher_mode(&desc[*seq_size], cipher_mode);
752		set_cipher_config0(&desc[*seq_size], direction);
753		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
754			set_hw_crypto_key(&desc[*seq_size],
755					  ctx_p->hw.key1_slot);
756		} else {
757			set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
758				     (key_len / 2), NS_BIT);
759		}
760		set_key_size_aes(&desc[*seq_size], (key_len / 2));
761		set_flow_mode(&desc[*seq_size], flow_mode);
762		set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
763		(*seq_size)++;
764		break;
765	default:
766		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
767	}
768}
769
770static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
771			       struct cipher_req_ctx *req_ctx,
772			       struct scatterlist *dst, struct scatterlist *src,
773			       unsigned int nbytes, void *areq,
774			       struct cc_hw_desc desc[], unsigned int *seq_size)
775{
776	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
777	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
778
779	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
780		/* bypass */
781		dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
782			&req_ctx->mlli_params.mlli_dma_addr,
783			req_ctx->mlli_params.mlli_len,
784			ctx_p->drvdata->mlli_sram_addr);
785		hw_desc_init(&desc[*seq_size]);
786		set_din_type(&desc[*seq_size], DMA_DLLI,
787			     req_ctx->mlli_params.mlli_dma_addr,
788			     req_ctx->mlli_params.mlli_len, NS_BIT);
789		set_dout_sram(&desc[*seq_size],
790			      ctx_p->drvdata->mlli_sram_addr,
791			      req_ctx->mlli_params.mlli_len);
792		set_flow_mode(&desc[*seq_size], BYPASS);
793		(*seq_size)++;
794	}
795}
796
797static void cc_setup_flow_desc(struct crypto_tfm *tfm,
798			       struct cipher_req_ctx *req_ctx,
799			       struct scatterlist *dst, struct scatterlist *src,
800			       unsigned int nbytes, struct cc_hw_desc desc[],
801			       unsigned int *seq_size)
802{
803	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
804	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
805	unsigned int flow_mode = cc_out_flow_mode(ctx_p);
806	bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
807			  ctx_p->cipher_mode == DRV_CIPHER_ECB);
808
809	/* Process */
810	if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
811		dev_dbg(dev, " data params addr %pad length 0x%X\n",
812			&sg_dma_address(src), nbytes);
813		dev_dbg(dev, " data params addr %pad length 0x%X\n",
814			&sg_dma_address(dst), nbytes);
815		hw_desc_init(&desc[*seq_size]);
816		set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
817			     nbytes, NS_BIT);
818		set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
819			      nbytes, NS_BIT, (!last_desc ? 0 : 1));
820		if (last_desc)
821			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
822
823		set_flow_mode(&desc[*seq_size], flow_mode);
824		(*seq_size)++;
825	} else {
826		hw_desc_init(&desc[*seq_size]);
827		set_din_type(&desc[*seq_size], DMA_MLLI,
828			     ctx_p->drvdata->mlli_sram_addr,
829			     req_ctx->in_mlli_nents, NS_BIT);
830		if (req_ctx->out_nents == 0) {
831			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
832				ctx_p->drvdata->mlli_sram_addr,
833				ctx_p->drvdata->mlli_sram_addr);
834			set_dout_mlli(&desc[*seq_size],
835				      ctx_p->drvdata->mlli_sram_addr,
836				      req_ctx->in_mlli_nents, NS_BIT,
837				      (!last_desc ? 0 : 1));
838		} else {
839			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
840				ctx_p->drvdata->mlli_sram_addr,
841				ctx_p->drvdata->mlli_sram_addr +
842				(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
843			set_dout_mlli(&desc[*seq_size],
844				      (ctx_p->drvdata->mlli_sram_addr +
845				       (LLI_ENTRY_BYTE_SIZE *
846					req_ctx->in_mlli_nents)),
847				      req_ctx->out_mlli_nents, NS_BIT,
848				      (!last_desc ? 0 : 1));
849		}
850		if (last_desc)
851			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
852
853		set_flow_mode(&desc[*seq_size], flow_mode);
854		(*seq_size)++;
855	}
856}
857
858static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
859{
860	struct skcipher_request *req = (struct skcipher_request *)cc_req;
861	struct scatterlist *dst = req->dst;
862	struct scatterlist *src = req->src;
863	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
864	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
865	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
866
867	if (err != -EINPROGRESS) {
868		/* Not a BACKLOG notification */
869		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
870		memcpy(req->iv, req_ctx->iv, ivsize);
871		kfree_sensitive(req_ctx->iv);
872	}
873
874	skcipher_request_complete(req, err);
875}
876
877static int cc_cipher_process(struct skcipher_request *req,
878			     enum drv_crypto_direction direction)
879{
880	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
881	struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
882	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
883	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
884	struct scatterlist *dst = req->dst;
885	struct scatterlist *src = req->src;
886	unsigned int nbytes = req->cryptlen;
887	void *iv = req->iv;
888	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
889	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
890	struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
891	struct cc_crypto_req cc_req = {};
892	int rc;
893	unsigned int seq_len = 0;
894	gfp_t flags = cc_gfp_flags(&req->base);
895
896	dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
897		((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
898		"Encrypt" : "Decrypt"), req, iv, nbytes);
899
900	/* STAT_PHASE_0: Init and sanity checks */
901
902	if (validate_data_size(ctx_p, nbytes)) {
903		dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
904		rc = -EINVAL;
905		goto exit_process;
906	}
907	if (nbytes == 0) {
908		/* No data to process is valid */
909		rc = 0;
910		goto exit_process;
911	}
912
913	if (ctx_p->fallback_on) {
914		struct skcipher_request *subreq = skcipher_request_ctx(req);
915
916		*subreq = *req;
917		skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
918		if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
919			return crypto_skcipher_encrypt(subreq);
920		else
921			return crypto_skcipher_decrypt(subreq);
922	}
923
924	/* The IV we are handed may be allocated from the stack so
925	 * we must copy it to a DMAable buffer before use.
926	 */
927	req_ctx->iv = kmemdup(iv, ivsize, flags);
928	if (!req_ctx->iv) {
929		rc = -ENOMEM;
930		goto exit_process;
931	}
932
933	/* Setup request structure */
934	cc_req.user_cb = cc_cipher_complete;
935	cc_req.user_arg = req;
936
937	/* Setup CPP operation details */
938	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
939		cc_req.cpp.is_cpp = true;
940		cc_req.cpp.alg = ctx_p->cpp.alg;
941		cc_req.cpp.slot = ctx_p->cpp.slot;
942	}
943
944	/* Setup request context */
945	req_ctx->gen_ctx.op_type = direction;
946
947	/* STAT_PHASE_1: Map buffers */
948
949	rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
950				      req_ctx->iv, src, dst, flags);
951	if (rc) {
952		dev_err(dev, "map_request() failed\n");
953		goto exit_process;
954	}
955
956	/* STAT_PHASE_2: Create sequence */
957
958	/* Setup state (IV)  */
959	cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
960	/* Setup MLLI line, if needed */
961	cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
962	/* Setup key */
963	cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
964	/* Setup state (IV and XEX key)  */
965	cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
966	/* Data processing */
967	cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
968	/* Read next IV */
969	cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
970
971	/* STAT_PHASE_3: Lock HW and push sequence */
972
973	rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
974			     &req->base);
975	if (rc != -EINPROGRESS && rc != -EBUSY) {
976		/* Failed to send the request or request completed
977		 * synchronously
978		 */
979		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
980	}
981
982exit_process:
983	if (rc != -EINPROGRESS && rc != -EBUSY) {
984		kfree_sensitive(req_ctx->iv);
985	}
986
987	return rc;
988}
989
990static int cc_cipher_encrypt(struct skcipher_request *req)
991{
992	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
993
994	memset(req_ctx, 0, sizeof(*req_ctx));
995
996	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
997}
998
999static int cc_cipher_decrypt(struct skcipher_request *req)
1000{
1001	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
1002
1003	memset(req_ctx, 0, sizeof(*req_ctx));
1004
1005	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
1006}
1007
1008/* Block cipher alg */
1009static const struct cc_alg_template skcipher_algs[] = {
1010	{
1011		.name = "xts(paes)",
1012		.driver_name = "xts-paes-ccree",
1013		.blocksize = 1,
1014		.template_skcipher = {
1015			.setkey = cc_cipher_sethkey,
1016			.encrypt = cc_cipher_encrypt,
1017			.decrypt = cc_cipher_decrypt,
1018			.min_keysize = CC_HW_KEY_SIZE,
1019			.max_keysize = CC_HW_KEY_SIZE,
1020			.ivsize = AES_BLOCK_SIZE,
1021			},
1022		.cipher_mode = DRV_CIPHER_XTS,
1023		.flow_mode = S_DIN_to_AES,
1024		.min_hw_rev = CC_HW_REV_630,
1025		.std_body = CC_STD_NIST,
1026		.sec_func = true,
1027	},
1028	{
1029		.name = "essiv(cbc(paes),sha256)",
1030		.driver_name = "essiv-paes-ccree",
1031		.blocksize = AES_BLOCK_SIZE,
1032		.template_skcipher = {
1033			.setkey = cc_cipher_sethkey,
1034			.encrypt = cc_cipher_encrypt,
1035			.decrypt = cc_cipher_decrypt,
1036			.min_keysize = CC_HW_KEY_SIZE,
1037			.max_keysize = CC_HW_KEY_SIZE,
1038			.ivsize = AES_BLOCK_SIZE,
1039			},
1040		.cipher_mode = DRV_CIPHER_ESSIV,
1041		.flow_mode = S_DIN_to_AES,
1042		.min_hw_rev = CC_HW_REV_712,
1043		.std_body = CC_STD_NIST,
1044		.sec_func = true,
1045	},
1046	{
1047		.name = "ecb(paes)",
1048		.driver_name = "ecb-paes-ccree",
1049		.blocksize = AES_BLOCK_SIZE,
1050		.template_skcipher = {
1051			.setkey = cc_cipher_sethkey,
1052			.encrypt = cc_cipher_encrypt,
1053			.decrypt = cc_cipher_decrypt,
1054			.min_keysize = CC_HW_KEY_SIZE,
1055			.max_keysize = CC_HW_KEY_SIZE,
1056			.ivsize = 0,
1057			},
1058		.cipher_mode = DRV_CIPHER_ECB,
1059		.flow_mode = S_DIN_to_AES,
1060		.min_hw_rev = CC_HW_REV_712,
1061		.std_body = CC_STD_NIST,
1062		.sec_func = true,
1063	},
1064	{
1065		.name = "cbc(paes)",
1066		.driver_name = "cbc-paes-ccree",
1067		.blocksize = AES_BLOCK_SIZE,
1068		.template_skcipher = {
1069			.setkey = cc_cipher_sethkey,
1070			.encrypt = cc_cipher_encrypt,
1071			.decrypt = cc_cipher_decrypt,
1072			.min_keysize = CC_HW_KEY_SIZE,
1073			.max_keysize = CC_HW_KEY_SIZE,
1074			.ivsize = AES_BLOCK_SIZE,
1075		},
1076		.cipher_mode = DRV_CIPHER_CBC,
1077		.flow_mode = S_DIN_to_AES,
1078		.min_hw_rev = CC_HW_REV_712,
1079		.std_body = CC_STD_NIST,
1080		.sec_func = true,
1081	},
1082	{
1083		.name = "cts(cbc(paes))",
1084		.driver_name = "cts-cbc-paes-ccree",
1085		.blocksize = AES_BLOCK_SIZE,
1086		.template_skcipher = {
1087			.setkey = cc_cipher_sethkey,
1088			.encrypt = cc_cipher_encrypt,
1089			.decrypt = cc_cipher_decrypt,
1090			.min_keysize = CC_HW_KEY_SIZE,
1091			.max_keysize = CC_HW_KEY_SIZE,
1092			.ivsize = AES_BLOCK_SIZE,
1093			},
1094		.cipher_mode = DRV_CIPHER_CBC_CTS,
1095		.flow_mode = S_DIN_to_AES,
1096		.min_hw_rev = CC_HW_REV_712,
1097		.std_body = CC_STD_NIST,
1098		.sec_func = true,
1099	},
1100	{
1101		.name = "ctr(paes)",
1102		.driver_name = "ctr-paes-ccree",
1103		.blocksize = 1,
1104		.template_skcipher = {
1105			.setkey = cc_cipher_sethkey,
1106			.encrypt = cc_cipher_encrypt,
1107			.decrypt = cc_cipher_decrypt,
1108			.min_keysize = CC_HW_KEY_SIZE,
1109			.max_keysize = CC_HW_KEY_SIZE,
1110			.ivsize = AES_BLOCK_SIZE,
1111			},
1112		.cipher_mode = DRV_CIPHER_CTR,
1113		.flow_mode = S_DIN_to_AES,
1114		.min_hw_rev = CC_HW_REV_712,
1115		.std_body = CC_STD_NIST,
1116		.sec_func = true,
1117	},
1118	{
1119		/* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html
1120		 * for the reason why this differs from the generic
1121		 * implementation.
1122		 */
1123		.name = "xts(aes)",
1124		.driver_name = "xts-aes-ccree",
1125		.blocksize = 1,
1126		.template_skcipher = {
1127			.setkey = cc_cipher_setkey,
1128			.encrypt = cc_cipher_encrypt,
1129			.decrypt = cc_cipher_decrypt,
1130			.min_keysize = AES_MIN_KEY_SIZE * 2,
1131			.max_keysize = AES_MAX_KEY_SIZE * 2,
1132			.ivsize = AES_BLOCK_SIZE,
1133			},
1134		.cipher_mode = DRV_CIPHER_XTS,
1135		.flow_mode = S_DIN_to_AES,
1136		.min_hw_rev = CC_HW_REV_630,
1137		.std_body = CC_STD_NIST,
1138	},
1139	{
1140		.name = "essiv(cbc(aes),sha256)",
1141		.driver_name = "essiv-aes-ccree",
1142		.blocksize = AES_BLOCK_SIZE,
1143		.template_skcipher = {
1144			.setkey = cc_cipher_setkey,
1145			.encrypt = cc_cipher_encrypt,
1146			.decrypt = cc_cipher_decrypt,
1147			.min_keysize = AES_MIN_KEY_SIZE,
1148			.max_keysize = AES_MAX_KEY_SIZE,
1149			.ivsize = AES_BLOCK_SIZE,
1150			},
1151		.cipher_mode = DRV_CIPHER_ESSIV,
1152		.flow_mode = S_DIN_to_AES,
1153		.min_hw_rev = CC_HW_REV_712,
1154		.std_body = CC_STD_NIST,
1155	},
1156	{
1157		.name = "ecb(aes)",
1158		.driver_name = "ecb-aes-ccree",
1159		.blocksize = AES_BLOCK_SIZE,
1160		.template_skcipher = {
1161			.setkey = cc_cipher_setkey,
1162			.encrypt = cc_cipher_encrypt,
1163			.decrypt = cc_cipher_decrypt,
1164			.min_keysize = AES_MIN_KEY_SIZE,
1165			.max_keysize = AES_MAX_KEY_SIZE,
1166			.ivsize = 0,
1167			},
1168		.cipher_mode = DRV_CIPHER_ECB,
1169		.flow_mode = S_DIN_to_AES,
1170		.min_hw_rev = CC_HW_REV_630,
1171		.std_body = CC_STD_NIST,
1172	},
1173	{
1174		.name = "cbc(aes)",
1175		.driver_name = "cbc-aes-ccree",
1176		.blocksize = AES_BLOCK_SIZE,
1177		.template_skcipher = {
1178			.setkey = cc_cipher_setkey,
1179			.encrypt = cc_cipher_encrypt,
1180			.decrypt = cc_cipher_decrypt,
1181			.min_keysize = AES_MIN_KEY_SIZE,
1182			.max_keysize = AES_MAX_KEY_SIZE,
1183			.ivsize = AES_BLOCK_SIZE,
1184		},
1185		.cipher_mode = DRV_CIPHER_CBC,
1186		.flow_mode = S_DIN_to_AES,
1187		.min_hw_rev = CC_HW_REV_630,
1188		.std_body = CC_STD_NIST,
1189	},
1190	{
1191		.name = "cts(cbc(aes))",
1192		.driver_name = "cts-cbc-aes-ccree",
1193		.blocksize = AES_BLOCK_SIZE,
1194		.template_skcipher = {
1195			.setkey = cc_cipher_setkey,
1196			.encrypt = cc_cipher_encrypt,
1197			.decrypt = cc_cipher_decrypt,
1198			.min_keysize = AES_MIN_KEY_SIZE,
1199			.max_keysize = AES_MAX_KEY_SIZE,
1200			.ivsize = AES_BLOCK_SIZE,
1201			},
1202		.cipher_mode = DRV_CIPHER_CBC_CTS,
1203		.flow_mode = S_DIN_to_AES,
1204		.min_hw_rev = CC_HW_REV_630,
1205		.std_body = CC_STD_NIST,
1206	},
1207	{
1208		.name = "ctr(aes)",
1209		.driver_name = "ctr-aes-ccree",
1210		.blocksize = 1,
1211		.template_skcipher = {
1212			.setkey = cc_cipher_setkey,
1213			.encrypt = cc_cipher_encrypt,
1214			.decrypt = cc_cipher_decrypt,
1215			.min_keysize = AES_MIN_KEY_SIZE,
1216			.max_keysize = AES_MAX_KEY_SIZE,
1217			.ivsize = AES_BLOCK_SIZE,
1218			},
1219		.cipher_mode = DRV_CIPHER_CTR,
1220		.flow_mode = S_DIN_to_AES,
1221		.min_hw_rev = CC_HW_REV_630,
1222		.std_body = CC_STD_NIST,
1223	},
1224	{
1225		.name = "cbc(des3_ede)",
1226		.driver_name = "cbc-3des-ccree",
1227		.blocksize = DES3_EDE_BLOCK_SIZE,
1228		.template_skcipher = {
1229			.setkey = cc_cipher_setkey,
1230			.encrypt = cc_cipher_encrypt,
1231			.decrypt = cc_cipher_decrypt,
1232			.min_keysize = DES3_EDE_KEY_SIZE,
1233			.max_keysize = DES3_EDE_KEY_SIZE,
1234			.ivsize = DES3_EDE_BLOCK_SIZE,
1235			},
1236		.cipher_mode = DRV_CIPHER_CBC,
1237		.flow_mode = S_DIN_to_DES,
1238		.min_hw_rev = CC_HW_REV_630,
1239		.std_body = CC_STD_NIST,
1240	},
1241	{
1242		.name = "ecb(des3_ede)",
1243		.driver_name = "ecb-3des-ccree",
1244		.blocksize = DES3_EDE_BLOCK_SIZE,
1245		.template_skcipher = {
1246			.setkey = cc_cipher_setkey,
1247			.encrypt = cc_cipher_encrypt,
1248			.decrypt = cc_cipher_decrypt,
1249			.min_keysize = DES3_EDE_KEY_SIZE,
1250			.max_keysize = DES3_EDE_KEY_SIZE,
1251			.ivsize = 0,
1252			},
1253		.cipher_mode = DRV_CIPHER_ECB,
1254		.flow_mode = S_DIN_to_DES,
1255		.min_hw_rev = CC_HW_REV_630,
1256		.std_body = CC_STD_NIST,
1257	},
1258	{
1259		.name = "cbc(des)",
1260		.driver_name = "cbc-des-ccree",
1261		.blocksize = DES_BLOCK_SIZE,
1262		.template_skcipher = {
1263			.setkey = cc_cipher_setkey,
1264			.encrypt = cc_cipher_encrypt,
1265			.decrypt = cc_cipher_decrypt,
1266			.min_keysize = DES_KEY_SIZE,
1267			.max_keysize = DES_KEY_SIZE,
1268			.ivsize = DES_BLOCK_SIZE,
1269			},
1270		.cipher_mode = DRV_CIPHER_CBC,
1271		.flow_mode = S_DIN_to_DES,
1272		.min_hw_rev = CC_HW_REV_630,
1273		.std_body = CC_STD_NIST,
1274	},
1275	{
1276		.name = "ecb(des)",
1277		.driver_name = "ecb-des-ccree",
1278		.blocksize = DES_BLOCK_SIZE,
1279		.template_skcipher = {
1280			.setkey = cc_cipher_setkey,
1281			.encrypt = cc_cipher_encrypt,
1282			.decrypt = cc_cipher_decrypt,
1283			.min_keysize = DES_KEY_SIZE,
1284			.max_keysize = DES_KEY_SIZE,
1285			.ivsize = 0,
1286			},
1287		.cipher_mode = DRV_CIPHER_ECB,
1288		.flow_mode = S_DIN_to_DES,
1289		.min_hw_rev = CC_HW_REV_630,
1290		.std_body = CC_STD_NIST,
1291	},
1292	{
1293		.name = "cbc(sm4)",
1294		.driver_name = "cbc-sm4-ccree",
1295		.blocksize = SM4_BLOCK_SIZE,
1296		.template_skcipher = {
1297			.setkey = cc_cipher_setkey,
1298			.encrypt = cc_cipher_encrypt,
1299			.decrypt = cc_cipher_decrypt,
1300			.min_keysize = SM4_KEY_SIZE,
1301			.max_keysize = SM4_KEY_SIZE,
1302			.ivsize = SM4_BLOCK_SIZE,
1303			},
1304		.cipher_mode = DRV_CIPHER_CBC,
1305		.flow_mode = S_DIN_to_SM4,
1306		.min_hw_rev = CC_HW_REV_713,
1307		.std_body = CC_STD_OSCCA,
1308	},
1309	{
1310		.name = "ecb(sm4)",
1311		.driver_name = "ecb-sm4-ccree",
1312		.blocksize = SM4_BLOCK_SIZE,
1313		.template_skcipher = {
1314			.setkey = cc_cipher_setkey,
1315			.encrypt = cc_cipher_encrypt,
1316			.decrypt = cc_cipher_decrypt,
1317			.min_keysize = SM4_KEY_SIZE,
1318			.max_keysize = SM4_KEY_SIZE,
1319			.ivsize = 0,
1320			},
1321		.cipher_mode = DRV_CIPHER_ECB,
1322		.flow_mode = S_DIN_to_SM4,
1323		.min_hw_rev = CC_HW_REV_713,
1324		.std_body = CC_STD_OSCCA,
1325	},
1326	{
1327		.name = "ctr(sm4)",
1328		.driver_name = "ctr-sm4-ccree",
1329		.blocksize = 1,
1330		.template_skcipher = {
1331			.setkey = cc_cipher_setkey,
1332			.encrypt = cc_cipher_encrypt,
1333			.decrypt = cc_cipher_decrypt,
1334			.min_keysize = SM4_KEY_SIZE,
1335			.max_keysize = SM4_KEY_SIZE,
1336			.ivsize = SM4_BLOCK_SIZE,
1337			},
1338		.cipher_mode = DRV_CIPHER_CTR,
1339		.flow_mode = S_DIN_to_SM4,
1340		.min_hw_rev = CC_HW_REV_713,
1341		.std_body = CC_STD_OSCCA,
1342	},
1343	{
1344		.name = "cbc(psm4)",
1345		.driver_name = "cbc-psm4-ccree",
1346		.blocksize = SM4_BLOCK_SIZE,
1347		.template_skcipher = {
1348			.setkey = cc_cipher_sethkey,
1349			.encrypt = cc_cipher_encrypt,
1350			.decrypt = cc_cipher_decrypt,
1351			.min_keysize = CC_HW_KEY_SIZE,
1352			.max_keysize = CC_HW_KEY_SIZE,
1353			.ivsize = SM4_BLOCK_SIZE,
1354			},
1355		.cipher_mode = DRV_CIPHER_CBC,
1356		.flow_mode = S_DIN_to_SM4,
1357		.min_hw_rev = CC_HW_REV_713,
1358		.std_body = CC_STD_OSCCA,
1359		.sec_func = true,
1360	},
1361	{
1362		.name = "ctr(psm4)",
1363		.driver_name = "ctr-psm4-ccree",
1364		.blocksize = SM4_BLOCK_SIZE,
1365		.template_skcipher = {
1366			.setkey = cc_cipher_sethkey,
1367			.encrypt = cc_cipher_encrypt,
1368			.decrypt = cc_cipher_decrypt,
1369			.min_keysize = CC_HW_KEY_SIZE,
1370			.max_keysize = CC_HW_KEY_SIZE,
1371			.ivsize = SM4_BLOCK_SIZE,
1372			},
1373		.cipher_mode = DRV_CIPHER_CTR,
1374		.flow_mode = S_DIN_to_SM4,
1375		.min_hw_rev = CC_HW_REV_713,
1376		.std_body = CC_STD_OSCCA,
1377		.sec_func = true,
1378	},
1379};
1380
1381static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1382					   struct device *dev)
1383{
1384	struct cc_crypto_alg *t_alg;
1385	struct skcipher_alg *alg;
1386
1387	t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
1388	if (!t_alg)
1389		return ERR_PTR(-ENOMEM);
1390
1391	alg = &t_alg->skcipher_alg;
1392
1393	memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1394
1395	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s",
1396		     tmpl->name) >= CRYPTO_MAX_ALG_NAME)
1397		return ERR_PTR(-EINVAL);
1398	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1399		     tmpl->driver_name) >= CRYPTO_MAX_ALG_NAME)
1400		return ERR_PTR(-EINVAL);
1401
1402	alg->base.cra_module = THIS_MODULE;
1403	alg->base.cra_priority = CC_CRA_PRIO;
1404	alg->base.cra_blocksize = tmpl->blocksize;
1405	alg->base.cra_alignmask = 0;
1406	alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1407
1408	alg->base.cra_init = cc_cipher_init;
1409	alg->base.cra_exit = cc_cipher_exit;
1410	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
1411
1412	t_alg->cipher_mode = tmpl->cipher_mode;
1413	t_alg->flow_mode = tmpl->flow_mode;
1414
1415	return t_alg;
1416}
1417
1418int cc_cipher_free(struct cc_drvdata *drvdata)
1419{
1420	struct cc_crypto_alg *t_alg, *n;
1421
1422	/* Remove registered algs */
1423	list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
1424		crypto_unregister_skcipher(&t_alg->skcipher_alg);
1425		list_del(&t_alg->entry);
1426	}
1427	return 0;
1428}
1429
1430int cc_cipher_alloc(struct cc_drvdata *drvdata)
1431{
1432	struct cc_crypto_alg *t_alg;
1433	struct device *dev = drvdata_to_dev(drvdata);
1434	int rc = -ENOMEM;
1435	int alg;
1436
1437	INIT_LIST_HEAD(&drvdata->alg_list);
1438
1439	/* Linux crypto */
1440	dev_dbg(dev, "Number of algorithms = %zu\n",
1441		ARRAY_SIZE(skcipher_algs));
1442	for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1443		if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
1444		    !(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
1445		    (drvdata->sec_disabled && skcipher_algs[alg].sec_func))
1446			continue;
1447
1448		dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1449		t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1450		if (IS_ERR(t_alg)) {
1451			rc = PTR_ERR(t_alg);
1452			dev_err(dev, "%s alg allocation failed\n",
1453				skcipher_algs[alg].driver_name);
1454			goto fail0;
1455		}
1456		t_alg->drvdata = drvdata;
1457
1458		dev_dbg(dev, "registering %s\n",
1459			skcipher_algs[alg].driver_name);
1460		rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1461		dev_dbg(dev, "%s alg registration rc = %x\n",
1462			t_alg->skcipher_alg.base.cra_driver_name, rc);
1463		if (rc) {
1464			dev_err(dev, "%s alg registration failed\n",
1465				t_alg->skcipher_alg.base.cra_driver_name);
1466			goto fail0;
1467		}
1468
1469		list_add_tail(&t_alg->entry, &drvdata->alg_list);
1470		dev_dbg(dev, "Registered %s\n",
1471			t_alg->skcipher_alg.base.cra_driver_name);
1472	}
1473	return 0;
1474
1475fail0:
1476	cc_cipher_free(drvdata);
1477	return rc;
1478}
1479