1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Secure Encrypted Virtualization (SEV) interface
4 *
5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6 *
7 * Author: Brijesh Singh <brijesh.singh@amd.com>
8 */
9
10#include <linux/bitfield.h>
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/kthread.h>
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/spinlock.h>
17#include <linux/spinlock_types.h>
18#include <linux/types.h>
19#include <linux/mutex.h>
20#include <linux/delay.h>
21#include <linux/hw_random.h>
22#include <linux/ccp.h>
23#include <linux/firmware.h>
24#include <linux/panic_notifier.h>
25#include <linux/gfp.h>
26#include <linux/cpufeature.h>
27#include <linux/fs.h>
28#include <linux/fs_struct.h>
29#include <linux/psp.h>
30#include <linux/amd-iommu.h>
31
32#include <asm/smp.h>
33#include <asm/cacheflush.h>
34#include <asm/e820/types.h>
35#include <asm/sev.h>
36
37#include "psp-dev.h"
38#include "sev-dev.h"
39
40#define DEVICE_NAME		"sev"
41#define SEV_FW_FILE		"amd/sev.fw"
42#define SEV_FW_NAME_SIZE	64
43
44/* Minimum firmware version required for the SEV-SNP support */
45#define SNP_MIN_API_MAJOR	1
46#define SNP_MIN_API_MINOR	51
47
48/*
49 * Maximum number of firmware-writable buffers that might be specified
50 * in the parameters of a legacy SEV command buffer.
51 */
52#define CMD_BUF_FW_WRITABLE_MAX 2
53
54/* Leave room in the descriptor array for an end-of-list indicator. */
55#define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
56
57static DEFINE_MUTEX(sev_cmd_mutex);
58static struct sev_misc_dev *misc_dev;
59
60static int psp_cmd_timeout = 100;
61module_param(psp_cmd_timeout, int, 0644);
62MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
63
64static int psp_probe_timeout = 5;
65module_param(psp_probe_timeout, int, 0644);
66MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
67
68static char *init_ex_path;
69module_param(init_ex_path, charp, 0444);
70MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
71
72static bool psp_init_on_probe = true;
73module_param(psp_init_on_probe, bool, 0444);
74MODULE_PARM_DESC(psp_init_on_probe, "  if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
75
76MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
77MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
78MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
79MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
80
81static bool psp_dead;
82static int psp_timeout;
83
84/* Trusted Memory Region (TMR):
85 *   The TMR is a 1MB area that must be 1MB aligned.  Use the page allocator
86 *   to allocate the memory, which will return aligned memory for the specified
87 *   allocation order.
88 *
89 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
90 */
91#define SEV_TMR_SIZE		(1024 * 1024)
92#define SNP_TMR_SIZE		(2 * 1024 * 1024)
93
94static void *sev_es_tmr;
95static size_t sev_es_tmr_size = SEV_TMR_SIZE;
96
97/* INIT_EX NV Storage:
98 *   The NV Storage is a 32Kb area and must be 4Kb page aligned.  Use the page
99 *   allocator to allocate the memory, which will return aligned memory for the
100 *   specified allocation order.
101 */
102#define NV_LENGTH (32 * 1024)
103static void *sev_init_ex_buffer;
104
105/*
106 * SEV_DATA_RANGE_LIST:
107 *   Array containing range of pages that firmware transitions to HV-fixed
108 *   page state.
109 */
110static struct sev_data_range_list *snp_range_list;
111
112static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
113{
114	struct sev_device *sev = psp_master->sev_data;
115
116	if (sev->api_major > maj)
117		return true;
118
119	if (sev->api_major == maj && sev->api_minor >= min)
120		return true;
121
122	return false;
123}
124
125static void sev_irq_handler(int irq, void *data, unsigned int status)
126{
127	struct sev_device *sev = data;
128	int reg;
129
130	/* Check if it is command completion: */
131	if (!(status & SEV_CMD_COMPLETE))
132		return;
133
134	/* Check if it is SEV command completion: */
135	reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
136	if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
137		sev->int_rcvd = 1;
138		wake_up(&sev->int_queue);
139	}
140}
141
142static int sev_wait_cmd_ioc(struct sev_device *sev,
143			    unsigned int *reg, unsigned int timeout)
144{
145	int ret;
146
147	/*
148	 * If invoked during panic handling, local interrupts are disabled,
149	 * so the PSP command completion interrupt can't be used. Poll for
150	 * PSP command completion instead.
151	 */
152	if (irqs_disabled()) {
153		unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
154
155		/* Poll for SEV command completion: */
156		while (timeout_usecs--) {
157			*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
158			if (*reg & PSP_CMDRESP_RESP)
159				return 0;
160
161			udelay(10);
162		}
163		return -ETIMEDOUT;
164	}
165
166	ret = wait_event_timeout(sev->int_queue,
167			sev->int_rcvd, timeout * HZ);
168	if (!ret)
169		return -ETIMEDOUT;
170
171	*reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
172
173	return 0;
174}
175
176static int sev_cmd_buffer_len(int cmd)
177{
178	switch (cmd) {
179	case SEV_CMD_INIT:			return sizeof(struct sev_data_init);
180	case SEV_CMD_INIT_EX:                   return sizeof(struct sev_data_init_ex);
181	case SEV_CMD_SNP_SHUTDOWN_EX:		return sizeof(struct sev_data_snp_shutdown_ex);
182	case SEV_CMD_SNP_INIT_EX:		return sizeof(struct sev_data_snp_init_ex);
183	case SEV_CMD_PLATFORM_STATUS:		return sizeof(struct sev_user_data_status);
184	case SEV_CMD_PEK_CSR:			return sizeof(struct sev_data_pek_csr);
185	case SEV_CMD_PEK_CERT_IMPORT:		return sizeof(struct sev_data_pek_cert_import);
186	case SEV_CMD_PDH_CERT_EXPORT:		return sizeof(struct sev_data_pdh_cert_export);
187	case SEV_CMD_LAUNCH_START:		return sizeof(struct sev_data_launch_start);
188	case SEV_CMD_LAUNCH_UPDATE_DATA:	return sizeof(struct sev_data_launch_update_data);
189	case SEV_CMD_LAUNCH_UPDATE_VMSA:	return sizeof(struct sev_data_launch_update_vmsa);
190	case SEV_CMD_LAUNCH_FINISH:		return sizeof(struct sev_data_launch_finish);
191	case SEV_CMD_LAUNCH_MEASURE:		return sizeof(struct sev_data_launch_measure);
192	case SEV_CMD_ACTIVATE:			return sizeof(struct sev_data_activate);
193	case SEV_CMD_DEACTIVATE:		return sizeof(struct sev_data_deactivate);
194	case SEV_CMD_DECOMMISSION:		return sizeof(struct sev_data_decommission);
195	case SEV_CMD_GUEST_STATUS:		return sizeof(struct sev_data_guest_status);
196	case SEV_CMD_DBG_DECRYPT:		return sizeof(struct sev_data_dbg);
197	case SEV_CMD_DBG_ENCRYPT:		return sizeof(struct sev_data_dbg);
198	case SEV_CMD_SEND_START:		return sizeof(struct sev_data_send_start);
199	case SEV_CMD_SEND_UPDATE_DATA:		return sizeof(struct sev_data_send_update_data);
200	case SEV_CMD_SEND_UPDATE_VMSA:		return sizeof(struct sev_data_send_update_vmsa);
201	case SEV_CMD_SEND_FINISH:		return sizeof(struct sev_data_send_finish);
202	case SEV_CMD_RECEIVE_START:		return sizeof(struct sev_data_receive_start);
203	case SEV_CMD_RECEIVE_FINISH:		return sizeof(struct sev_data_receive_finish);
204	case SEV_CMD_RECEIVE_UPDATE_DATA:	return sizeof(struct sev_data_receive_update_data);
205	case SEV_CMD_RECEIVE_UPDATE_VMSA:	return sizeof(struct sev_data_receive_update_vmsa);
206	case SEV_CMD_LAUNCH_UPDATE_SECRET:	return sizeof(struct sev_data_launch_secret);
207	case SEV_CMD_DOWNLOAD_FIRMWARE:		return sizeof(struct sev_data_download_firmware);
208	case SEV_CMD_GET_ID:			return sizeof(struct sev_data_get_id);
209	case SEV_CMD_ATTESTATION_REPORT:	return sizeof(struct sev_data_attestation_report);
210	case SEV_CMD_SEND_CANCEL:		return sizeof(struct sev_data_send_cancel);
211	case SEV_CMD_SNP_GCTX_CREATE:		return sizeof(struct sev_data_snp_addr);
212	case SEV_CMD_SNP_LAUNCH_START:		return sizeof(struct sev_data_snp_launch_start);
213	case SEV_CMD_SNP_LAUNCH_UPDATE:		return sizeof(struct sev_data_snp_launch_update);
214	case SEV_CMD_SNP_ACTIVATE:		return sizeof(struct sev_data_snp_activate);
215	case SEV_CMD_SNP_DECOMMISSION:		return sizeof(struct sev_data_snp_addr);
216	case SEV_CMD_SNP_PAGE_RECLAIM:		return sizeof(struct sev_data_snp_page_reclaim);
217	case SEV_CMD_SNP_GUEST_STATUS:		return sizeof(struct sev_data_snp_guest_status);
218	case SEV_CMD_SNP_LAUNCH_FINISH:		return sizeof(struct sev_data_snp_launch_finish);
219	case SEV_CMD_SNP_DBG_DECRYPT:		return sizeof(struct sev_data_snp_dbg);
220	case SEV_CMD_SNP_DBG_ENCRYPT:		return sizeof(struct sev_data_snp_dbg);
221	case SEV_CMD_SNP_PAGE_UNSMASH:		return sizeof(struct sev_data_snp_page_unsmash);
222	case SEV_CMD_SNP_PLATFORM_STATUS:	return sizeof(struct sev_data_snp_addr);
223	case SEV_CMD_SNP_GUEST_REQUEST:		return sizeof(struct sev_data_snp_guest_request);
224	case SEV_CMD_SNP_CONFIG:		return sizeof(struct sev_user_data_snp_config);
225	case SEV_CMD_SNP_COMMIT:		return sizeof(struct sev_data_snp_commit);
226	default:				return 0;
227	}
228
229	return 0;
230}
231
232static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
233{
234	struct file *fp;
235	struct path root;
236	struct cred *cred;
237	const struct cred *old_cred;
238
239	task_lock(&init_task);
240	get_fs_root(init_task.fs, &root);
241	task_unlock(&init_task);
242
243	cred = prepare_creds();
244	if (!cred)
245		return ERR_PTR(-ENOMEM);
246	cred->fsuid = GLOBAL_ROOT_UID;
247	old_cred = override_creds(cred);
248
249	fp = file_open_root(&root, filename, flags, mode);
250	path_put(&root);
251
252	revert_creds(old_cred);
253
254	return fp;
255}
256
257static int sev_read_init_ex_file(void)
258{
259	struct sev_device *sev = psp_master->sev_data;
260	struct file *fp;
261	ssize_t nread;
262
263	lockdep_assert_held(&sev_cmd_mutex);
264
265	if (!sev_init_ex_buffer)
266		return -EOPNOTSUPP;
267
268	fp = open_file_as_root(init_ex_path, O_RDONLY, 0);
269	if (IS_ERR(fp)) {
270		int ret = PTR_ERR(fp);
271
272		if (ret == -ENOENT) {
273			dev_info(sev->dev,
274				"SEV: %s does not exist and will be created later.\n",
275				init_ex_path);
276			ret = 0;
277		} else {
278			dev_err(sev->dev,
279				"SEV: could not open %s for read, error %d\n",
280				init_ex_path, ret);
281		}
282		return ret;
283	}
284
285	nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
286	if (nread != NV_LENGTH) {
287		dev_info(sev->dev,
288			"SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
289			NV_LENGTH, nread);
290	}
291
292	dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
293	filp_close(fp, NULL);
294
295	return 0;
296}
297
298static int sev_write_init_ex_file(void)
299{
300	struct sev_device *sev = psp_master->sev_data;
301	struct file *fp;
302	loff_t offset = 0;
303	ssize_t nwrite;
304
305	lockdep_assert_held(&sev_cmd_mutex);
306
307	if (!sev_init_ex_buffer)
308		return 0;
309
310	fp = open_file_as_root(init_ex_path, O_CREAT | O_WRONLY, 0600);
311	if (IS_ERR(fp)) {
312		int ret = PTR_ERR(fp);
313
314		dev_err(sev->dev,
315			"SEV: could not open file for write, error %d\n",
316			ret);
317		return ret;
318	}
319
320	nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
321	vfs_fsync(fp, 0);
322	filp_close(fp, NULL);
323
324	if (nwrite != NV_LENGTH) {
325		dev_err(sev->dev,
326			"SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
327			NV_LENGTH, nwrite);
328		return -EIO;
329	}
330
331	dev_dbg(sev->dev, "SEV: write successful to NV file\n");
332
333	return 0;
334}
335
336static int sev_write_init_ex_file_if_required(int cmd_id)
337{
338	lockdep_assert_held(&sev_cmd_mutex);
339
340	if (!sev_init_ex_buffer)
341		return 0;
342
343	/*
344	 * Only a few platform commands modify the SPI/NV area, but none of the
345	 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
346	 * PEK_CERT_IMPORT, and PDH_GEN do.
347	 */
348	switch (cmd_id) {
349	case SEV_CMD_FACTORY_RESET:
350	case SEV_CMD_INIT_EX:
351	case SEV_CMD_PDH_GEN:
352	case SEV_CMD_PEK_CERT_IMPORT:
353	case SEV_CMD_PEK_GEN:
354		break;
355	default:
356		return 0;
357	}
358
359	return sev_write_init_ex_file();
360}
361
362/*
363 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
364 * needs snp_reclaim_pages(), so a forward declaration is needed.
365 */
366static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
367
368static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
369{
370	int ret, err, i;
371
372	paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
373
374	for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
375		struct sev_data_snp_page_reclaim data = {0};
376
377		data.paddr = paddr;
378
379		if (locked)
380			ret = __sev_do_cmd_locked(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
381		else
382			ret = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &err);
383
384		if (ret)
385			goto cleanup;
386
387		ret = rmp_make_shared(__phys_to_pfn(paddr), PG_LEVEL_4K);
388		if (ret)
389			goto cleanup;
390	}
391
392	return 0;
393
394cleanup:
395	/*
396	 * If there was a failure reclaiming the page then it is no longer safe
397	 * to release it back to the system; leak it instead.
398	 */
399	snp_leak_pages(__phys_to_pfn(paddr), npages - i);
400	return ret;
401}
402
403static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
404{
405	unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
406	int rc, i;
407
408	for (i = 0; i < npages; i++, pfn++) {
409		rc = rmp_make_private(pfn, 0, PG_LEVEL_4K, 0, true);
410		if (rc)
411			goto cleanup;
412	}
413
414	return 0;
415
416cleanup:
417	/*
418	 * Try unrolling the firmware state changes by
419	 * reclaiming the pages which were already changed to the
420	 * firmware state.
421	 */
422	snp_reclaim_pages(paddr, i, locked);
423
424	return rc;
425}
426
427static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order)
428{
429	unsigned long npages = 1ul << order, paddr;
430	struct sev_device *sev;
431	struct page *page;
432
433	if (!psp_master || !psp_master->sev_data)
434		return NULL;
435
436	page = alloc_pages(gfp_mask, order);
437	if (!page)
438		return NULL;
439
440	/* If SEV-SNP is initialized then add the page in RMP table. */
441	sev = psp_master->sev_data;
442	if (!sev->snp_initialized)
443		return page;
444
445	paddr = __pa((unsigned long)page_address(page));
446	if (rmp_mark_pages_firmware(paddr, npages, false))
447		return NULL;
448
449	return page;
450}
451
452void *snp_alloc_firmware_page(gfp_t gfp_mask)
453{
454	struct page *page;
455
456	page = __snp_alloc_firmware_pages(gfp_mask, 0);
457
458	return page ? page_address(page) : NULL;
459}
460EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
461
462static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
463{
464	struct sev_device *sev = psp_master->sev_data;
465	unsigned long paddr, npages = 1ul << order;
466
467	if (!page)
468		return;
469
470	paddr = __pa((unsigned long)page_address(page));
471	if (sev->snp_initialized &&
472	    snp_reclaim_pages(paddr, npages, locked))
473		return;
474
475	__free_pages(page, order);
476}
477
478void snp_free_firmware_page(void *addr)
479{
480	if (!addr)
481		return;
482
483	__snp_free_firmware_pages(virt_to_page(addr), 0, false);
484}
485EXPORT_SYMBOL_GPL(snp_free_firmware_page);
486
487static void *sev_fw_alloc(unsigned long len)
488{
489	struct page *page;
490
491	page = __snp_alloc_firmware_pages(GFP_KERNEL, get_order(len));
492	if (!page)
493		return NULL;
494
495	return page_address(page);
496}
497
498/**
499 * struct cmd_buf_desc - descriptors for managing legacy SEV command address
500 * parameters corresponding to buffers that may be written to by firmware.
501 *
502 * @paddr_ptr:  pointer to the address parameter in the command buffer which may
503 *              need to be saved/restored depending on whether a bounce buffer
504 *              is used. In the case of a bounce buffer, the command buffer
505 *              needs to be updated with the address of the new bounce buffer
506 *              snp_map_cmd_buf_desc() has allocated specifically for it. Must
507 *              be NULL if this descriptor is only an end-of-list indicator.
508 *
509 * @paddr_orig: storage for the original address parameter, which can be used to
510 *              restore the original value in @paddr_ptr in cases where it is
511 *              replaced with the address of a bounce buffer.
512 *
513 * @len: length of buffer located at the address originally stored at @paddr_ptr
514 *
515 * @guest_owned: true if the address corresponds to guest-owned pages, in which
516 *               case bounce buffers are not needed.
517 */
518struct cmd_buf_desc {
519	u64 *paddr_ptr;
520	u64 paddr_orig;
521	u32 len;
522	bool guest_owned;
523};
524
525/*
526 * If a legacy SEV command parameter is a memory address, those pages in
527 * turn need to be transitioned to/from firmware-owned before/after
528 * executing the firmware command.
529 *
530 * Additionally, in cases where those pages are not guest-owned, a bounce
531 * buffer is needed in place of the original memory address parameter.
532 *
533 * A set of descriptors are used to keep track of this handling, and
534 * initialized here based on the specific commands being executed.
535 */
536static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
537					   struct cmd_buf_desc *desc_list)
538{
539	switch (cmd) {
540	case SEV_CMD_PDH_CERT_EXPORT: {
541		struct sev_data_pdh_cert_export *data = cmd_buf;
542
543		desc_list[0].paddr_ptr = &data->pdh_cert_address;
544		desc_list[0].len = data->pdh_cert_len;
545		desc_list[1].paddr_ptr = &data->cert_chain_address;
546		desc_list[1].len = data->cert_chain_len;
547		break;
548	}
549	case SEV_CMD_GET_ID: {
550		struct sev_data_get_id *data = cmd_buf;
551
552		desc_list[0].paddr_ptr = &data->address;
553		desc_list[0].len = data->len;
554		break;
555	}
556	case SEV_CMD_PEK_CSR: {
557		struct sev_data_pek_csr *data = cmd_buf;
558
559		desc_list[0].paddr_ptr = &data->address;
560		desc_list[0].len = data->len;
561		break;
562	}
563	case SEV_CMD_LAUNCH_UPDATE_DATA: {
564		struct sev_data_launch_update_data *data = cmd_buf;
565
566		desc_list[0].paddr_ptr = &data->address;
567		desc_list[0].len = data->len;
568		desc_list[0].guest_owned = true;
569		break;
570	}
571	case SEV_CMD_LAUNCH_UPDATE_VMSA: {
572		struct sev_data_launch_update_vmsa *data = cmd_buf;
573
574		desc_list[0].paddr_ptr = &data->address;
575		desc_list[0].len = data->len;
576		desc_list[0].guest_owned = true;
577		break;
578	}
579	case SEV_CMD_LAUNCH_MEASURE: {
580		struct sev_data_launch_measure *data = cmd_buf;
581
582		desc_list[0].paddr_ptr = &data->address;
583		desc_list[0].len = data->len;
584		break;
585	}
586	case SEV_CMD_LAUNCH_UPDATE_SECRET: {
587		struct sev_data_launch_secret *data = cmd_buf;
588
589		desc_list[0].paddr_ptr = &data->guest_address;
590		desc_list[0].len = data->guest_len;
591		desc_list[0].guest_owned = true;
592		break;
593	}
594	case SEV_CMD_DBG_DECRYPT: {
595		struct sev_data_dbg *data = cmd_buf;
596
597		desc_list[0].paddr_ptr = &data->dst_addr;
598		desc_list[0].len = data->len;
599		desc_list[0].guest_owned = true;
600		break;
601	}
602	case SEV_CMD_DBG_ENCRYPT: {
603		struct sev_data_dbg *data = cmd_buf;
604
605		desc_list[0].paddr_ptr = &data->dst_addr;
606		desc_list[0].len = data->len;
607		desc_list[0].guest_owned = true;
608		break;
609	}
610	case SEV_CMD_ATTESTATION_REPORT: {
611		struct sev_data_attestation_report *data = cmd_buf;
612
613		desc_list[0].paddr_ptr = &data->address;
614		desc_list[0].len = data->len;
615		break;
616	}
617	case SEV_CMD_SEND_START: {
618		struct sev_data_send_start *data = cmd_buf;
619
620		desc_list[0].paddr_ptr = &data->session_address;
621		desc_list[0].len = data->session_len;
622		break;
623	}
624	case SEV_CMD_SEND_UPDATE_DATA: {
625		struct sev_data_send_update_data *data = cmd_buf;
626
627		desc_list[0].paddr_ptr = &data->hdr_address;
628		desc_list[0].len = data->hdr_len;
629		desc_list[1].paddr_ptr = &data->trans_address;
630		desc_list[1].len = data->trans_len;
631		break;
632	}
633	case SEV_CMD_SEND_UPDATE_VMSA: {
634		struct sev_data_send_update_vmsa *data = cmd_buf;
635
636		desc_list[0].paddr_ptr = &data->hdr_address;
637		desc_list[0].len = data->hdr_len;
638		desc_list[1].paddr_ptr = &data->trans_address;
639		desc_list[1].len = data->trans_len;
640		break;
641	}
642	case SEV_CMD_RECEIVE_UPDATE_DATA: {
643		struct sev_data_receive_update_data *data = cmd_buf;
644
645		desc_list[0].paddr_ptr = &data->guest_address;
646		desc_list[0].len = data->guest_len;
647		desc_list[0].guest_owned = true;
648		break;
649	}
650	case SEV_CMD_RECEIVE_UPDATE_VMSA: {
651		struct sev_data_receive_update_vmsa *data = cmd_buf;
652
653		desc_list[0].paddr_ptr = &data->guest_address;
654		desc_list[0].len = data->guest_len;
655		desc_list[0].guest_owned = true;
656		break;
657	}
658	default:
659		break;
660	}
661}
662
663static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
664{
665	unsigned int npages;
666
667	if (!desc->len)
668		return 0;
669
670	/* Allocate a bounce buffer if this isn't a guest owned page. */
671	if (!desc->guest_owned) {
672		struct page *page;
673
674		page = alloc_pages(GFP_KERNEL_ACCOUNT, get_order(desc->len));
675		if (!page) {
676			pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
677			return -ENOMEM;
678		}
679
680		desc->paddr_orig = *desc->paddr_ptr;
681		*desc->paddr_ptr = __psp_pa(page_to_virt(page));
682	}
683
684	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
685
686	/* Transition the buffer to firmware-owned. */
687	if (rmp_mark_pages_firmware(*desc->paddr_ptr, npages, true)) {
688		pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
689		return -EFAULT;
690	}
691
692	return 0;
693}
694
695static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
696{
697	unsigned int npages;
698
699	if (!desc->len)
700		return 0;
701
702	npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
703
704	/* Transition the buffers back to hypervisor-owned. */
705	if (snp_reclaim_pages(*desc->paddr_ptr, npages, true)) {
706		pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
707		return -EFAULT;
708	}
709
710	/* Copy data from bounce buffer and then free it. */
711	if (!desc->guest_owned) {
712		void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
713		void *dst_buf = __va(__sme_clr(desc->paddr_orig));
714
715		memcpy(dst_buf, bounce_buf, desc->len);
716		__free_pages(virt_to_page(bounce_buf), get_order(desc->len));
717
718		/* Restore the original address in the command buffer. */
719		*desc->paddr_ptr = desc->paddr_orig;
720	}
721
722	return 0;
723}
724
725static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
726{
727	int i;
728
729	snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
730
731	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
732		struct cmd_buf_desc *desc = &desc_list[i];
733
734		if (!desc->paddr_ptr)
735			break;
736
737		if (snp_map_cmd_buf_desc(desc))
738			goto err_unmap;
739	}
740
741	return 0;
742
743err_unmap:
744	for (i--; i >= 0; i--)
745		snp_unmap_cmd_buf_desc(&desc_list[i]);
746
747	return -EFAULT;
748}
749
750static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
751{
752	int i, ret = 0;
753
754	for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
755		struct cmd_buf_desc *desc = &desc_list[i];
756
757		if (!desc->paddr_ptr)
758			break;
759
760		if (snp_unmap_cmd_buf_desc(&desc_list[i]))
761			ret = -EFAULT;
762	}
763
764	return ret;
765}
766
767static bool sev_cmd_buf_writable(int cmd)
768{
769	switch (cmd) {
770	case SEV_CMD_PLATFORM_STATUS:
771	case SEV_CMD_GUEST_STATUS:
772	case SEV_CMD_LAUNCH_START:
773	case SEV_CMD_RECEIVE_START:
774	case SEV_CMD_LAUNCH_MEASURE:
775	case SEV_CMD_SEND_START:
776	case SEV_CMD_SEND_UPDATE_DATA:
777	case SEV_CMD_SEND_UPDATE_VMSA:
778	case SEV_CMD_PEK_CSR:
779	case SEV_CMD_PDH_CERT_EXPORT:
780	case SEV_CMD_GET_ID:
781	case SEV_CMD_ATTESTATION_REPORT:
782		return true;
783	default:
784		return false;
785	}
786}
787
788/* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
789static bool snp_legacy_handling_needed(int cmd)
790{
791	struct sev_device *sev = psp_master->sev_data;
792
793	return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
794}
795
796static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
797{
798	if (!snp_legacy_handling_needed(cmd))
799		return 0;
800
801	if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
802		return -EFAULT;
803
804	/*
805	 * Before command execution, the command buffer needs to be put into
806	 * the firmware-owned state.
807	 */
808	if (sev_cmd_buf_writable(cmd)) {
809		if (rmp_mark_pages_firmware(__pa(cmd_buf), 1, true))
810			return -EFAULT;
811	}
812
813	return 0;
814}
815
816static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
817{
818	if (!snp_legacy_handling_needed(cmd))
819		return 0;
820
821	/*
822	 * After command completion, the command buffer needs to be put back
823	 * into the hypervisor-owned state.
824	 */
825	if (sev_cmd_buf_writable(cmd))
826		if (snp_reclaim_pages(__pa(cmd_buf), 1, true))
827			return -EFAULT;
828
829	return 0;
830}
831
832static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
833{
834	struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
835	struct psp_device *psp = psp_master;
836	struct sev_device *sev;
837	unsigned int cmdbuff_hi, cmdbuff_lo;
838	unsigned int phys_lsb, phys_msb;
839	unsigned int reg, ret = 0;
840	void *cmd_buf;
841	int buf_len;
842
843	if (!psp || !psp->sev_data)
844		return -ENODEV;
845
846	if (psp_dead)
847		return -EBUSY;
848
849	sev = psp->sev_data;
850
851	buf_len = sev_cmd_buffer_len(cmd);
852	if (WARN_ON_ONCE(!data != !buf_len))
853		return -EINVAL;
854
855	/*
856	 * Copy the incoming data to driver's scratch buffer as __pa() will not
857	 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
858	 * physically contiguous.
859	 */
860	if (data) {
861		/*
862		 * Commands are generally issued one at a time and require the
863		 * sev_cmd_mutex, but there could be recursive firmware requests
864		 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
865		 * preparing buffers for another command. This is the only known
866		 * case of nesting in the current code, so exactly one
867		 * additional command buffer is available for that purpose.
868		 */
869		if (!sev->cmd_buf_active) {
870			cmd_buf = sev->cmd_buf;
871			sev->cmd_buf_active = true;
872		} else if (!sev->cmd_buf_backup_active) {
873			cmd_buf = sev->cmd_buf_backup;
874			sev->cmd_buf_backup_active = true;
875		} else {
876			dev_err(sev->dev,
877				"SEV: too many firmware commands in progress, no command buffers available.\n");
878			return -EBUSY;
879		}
880
881		memcpy(cmd_buf, data, buf_len);
882
883		/*
884		 * The behavior of the SEV-legacy commands is altered when the
885		 * SNP firmware is in the INIT state.
886		 */
887		ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
888		if (ret) {
889			dev_err(sev->dev,
890				"SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
891				cmd, ret);
892			return ret;
893		}
894	} else {
895		cmd_buf = sev->cmd_buf;
896	}
897
898	/* Get the physical address of the command buffer */
899	phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
900	phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
901
902	dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
903		cmd, phys_msb, phys_lsb, psp_timeout);
904
905	print_hex_dump_debug("(in):  ", DUMP_PREFIX_OFFSET, 16, 2, data,
906			     buf_len, false);
907
908	iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
909	iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
910
911	sev->int_rcvd = 0;
912
913	reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd) | SEV_CMDRESP_IOC;
914	iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
915
916	/* wait for command completion */
917	ret = sev_wait_cmd_ioc(sev, &reg, psp_timeout);
918	if (ret) {
919		if (psp_ret)
920			*psp_ret = 0;
921
922		dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
923		psp_dead = true;
924
925		return ret;
926	}
927
928	psp_timeout = psp_cmd_timeout;
929
930	if (psp_ret)
931		*psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
932
933	if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
934		dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
935			cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
936
937		/*
938		 * PSP firmware may report additional error information in the
939		 * command buffer registers on error. Print contents of command
940		 * buffer registers if they changed.
941		 */
942		cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
943		cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
944		if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
945			dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
946			dev_dbg(sev->dev, "  cmdbuff hi: %#010x\n", cmdbuff_hi);
947			dev_dbg(sev->dev, "  cmdbuff lo: %#010x\n", cmdbuff_lo);
948		}
949		ret = -EIO;
950	} else {
951		ret = sev_write_init_ex_file_if_required(cmd);
952	}
953
954	/*
955	 * Copy potential output from the PSP back to data.  Do this even on
956	 * failure in case the caller wants to glean something from the error.
957	 */
958	if (data) {
959		int ret_reclaim;
960		/*
961		 * Restore the page state after the command completes.
962		 */
963		ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
964		if (ret_reclaim) {
965			dev_err(sev->dev,
966				"SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
967				cmd, ret_reclaim);
968			return ret_reclaim;
969		}
970
971		memcpy(data, cmd_buf, buf_len);
972
973		if (sev->cmd_buf_backup_active)
974			sev->cmd_buf_backup_active = false;
975		else
976			sev->cmd_buf_active = false;
977
978		if (snp_unmap_cmd_buf_desc_list(desc_list))
979			return -EFAULT;
980	}
981
982	print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
983			     buf_len, false);
984
985	return ret;
986}
987
988int sev_do_cmd(int cmd, void *data, int *psp_ret)
989{
990	int rc;
991
992	mutex_lock(&sev_cmd_mutex);
993	rc = __sev_do_cmd_locked(cmd, data, psp_ret);
994	mutex_unlock(&sev_cmd_mutex);
995
996	return rc;
997}
998EXPORT_SYMBOL_GPL(sev_do_cmd);
999
1000static int __sev_init_locked(int *error)
1001{
1002	struct sev_data_init data;
1003
1004	memset(&data, 0, sizeof(data));
1005	if (sev_es_tmr) {
1006		/*
1007		 * Do not include the encryption mask on the physical
1008		 * address of the TMR (firmware should clear it anyway).
1009		 */
1010		data.tmr_address = __pa(sev_es_tmr);
1011
1012		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1013		data.tmr_len = sev_es_tmr_size;
1014	}
1015
1016	return __sev_do_cmd_locked(SEV_CMD_INIT, &data, error);
1017}
1018
1019static int __sev_init_ex_locked(int *error)
1020{
1021	struct sev_data_init_ex data;
1022
1023	memset(&data, 0, sizeof(data));
1024	data.length = sizeof(data);
1025	data.nv_address = __psp_pa(sev_init_ex_buffer);
1026	data.nv_len = NV_LENGTH;
1027
1028	if (sev_es_tmr) {
1029		/*
1030		 * Do not include the encryption mask on the physical
1031		 * address of the TMR (firmware should clear it anyway).
1032		 */
1033		data.tmr_address = __pa(sev_es_tmr);
1034
1035		data.flags |= SEV_INIT_FLAGS_SEV_ES;
1036		data.tmr_len = sev_es_tmr_size;
1037	}
1038
1039	return __sev_do_cmd_locked(SEV_CMD_INIT_EX, &data, error);
1040}
1041
1042static inline int __sev_do_init_locked(int *psp_ret)
1043{
1044	if (sev_init_ex_buffer)
1045		return __sev_init_ex_locked(psp_ret);
1046	else
1047		return __sev_init_locked(psp_ret);
1048}
1049
1050static void snp_set_hsave_pa(void *arg)
1051{
1052	wrmsrl(MSR_VM_HSAVE_PA, 0);
1053}
1054
1055static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1056{
1057	struct sev_data_range_list *range_list = arg;
1058	struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1059	size_t size;
1060
1061	/*
1062	 * Ensure the list of HV_FIXED pages that will be passed to firmware
1063	 * do not exceed the page-sized argument buffer.
1064	 */
1065	if ((range_list->num_elements * sizeof(struct sev_data_range) +
1066	     sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1067		return -E2BIG;
1068
1069	switch (rs->desc) {
1070	case E820_TYPE_RESERVED:
1071	case E820_TYPE_PMEM:
1072	case E820_TYPE_ACPI:
1073		range->base = rs->start & PAGE_MASK;
1074		size = PAGE_ALIGN((rs->end + 1) - rs->start);
1075		range->page_count = size >> PAGE_SHIFT;
1076		range_list->num_elements++;
1077		break;
1078	default:
1079		break;
1080	}
1081
1082	return 0;
1083}
1084
1085static int __sev_snp_init_locked(int *error)
1086{
1087	struct psp_device *psp = psp_master;
1088	struct sev_data_snp_init_ex data;
1089	struct sev_device *sev;
1090	void *arg = &data;
1091	int cmd, rc = 0;
1092
1093	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
1094		return -ENODEV;
1095
1096	sev = psp->sev_data;
1097
1098	if (sev->snp_initialized)
1099		return 0;
1100
1101	if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1102		dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1103			SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1104		return 0;
1105	}
1106
1107	/* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1108	on_each_cpu(snp_set_hsave_pa, NULL, 1);
1109
1110	/*
1111	 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1112	 * of system physical address ranges to convert into HV-fixed page
1113	 * states during the RMP initialization.  For instance, the memory that
1114	 * UEFI reserves should be included in the that list. This allows system
1115	 * components that occasionally write to memory (e.g. logging to UEFI
1116	 * reserved regions) to not fail due to RMP initialization and SNP
1117	 * enablement.
1118	 *
1119	 */
1120	if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, 52)) {
1121		/*
1122		 * Firmware checks that the pages containing the ranges enumerated
1123		 * in the RANGES structure are either in the default page state or in the
1124		 * firmware page state.
1125		 */
1126		snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1127		if (!snp_range_list) {
1128			dev_err(sev->dev,
1129				"SEV: SNP_INIT_EX range list memory allocation failed\n");
1130			return -ENOMEM;
1131		}
1132
1133		/*
1134		 * Retrieve all reserved memory regions from the e820 memory map
1135		 * to be setup as HV-fixed pages.
1136		 */
1137		rc = walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_MEM, 0, ~0,
1138					 snp_range_list, snp_filter_reserved_mem_regions);
1139		if (rc) {
1140			dev_err(sev->dev,
1141				"SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1142			return rc;
1143		}
1144
1145		memset(&data, 0, sizeof(data));
1146		data.init_rmp = 1;
1147		data.list_paddr_en = 1;
1148		data.list_paddr = __psp_pa(snp_range_list);
1149		cmd = SEV_CMD_SNP_INIT_EX;
1150	} else {
1151		cmd = SEV_CMD_SNP_INIT;
1152		arg = NULL;
1153	}
1154
1155	/*
1156	 * The following sequence must be issued before launching the first SNP
1157	 * guest to ensure all dirty cache lines are flushed, including from
1158	 * updates to the RMP table itself via the RMPUPDATE instruction:
1159	 *
1160	 * - WBINVD on all running CPUs
1161	 * - SEV_CMD_SNP_INIT[_EX] firmware command
1162	 * - WBINVD on all running CPUs
1163	 * - SEV_CMD_SNP_DF_FLUSH firmware command
1164	 */
1165	wbinvd_on_all_cpus();
1166
1167	rc = __sev_do_cmd_locked(cmd, arg, error);
1168	if (rc)
1169		return rc;
1170
1171	/* Prepare for first SNP guest launch after INIT. */
1172	wbinvd_on_all_cpus();
1173	rc = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, error);
1174	if (rc)
1175		return rc;
1176
1177	sev->snp_initialized = true;
1178	dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1179
1180	sev_es_tmr_size = SNP_TMR_SIZE;
1181
1182	return rc;
1183}
1184
1185static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1186{
1187	if (sev_es_tmr)
1188		return;
1189
1190	/* Obtain the TMR memory area for SEV-ES use */
1191	sev_es_tmr = sev_fw_alloc(sev_es_tmr_size);
1192	if (sev_es_tmr) {
1193		/* Must flush the cache before giving it to the firmware */
1194		if (!sev->snp_initialized)
1195			clflush_cache_range(sev_es_tmr, sev_es_tmr_size);
1196	} else {
1197			dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1198	}
1199}
1200
1201/*
1202 * If an init_ex_path is provided allocate a buffer for the file and
1203 * read in the contents. Additionally, if SNP is initialized, convert
1204 * the buffer pages to firmware pages.
1205 */
1206static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1207{
1208	struct page *page;
1209	int rc;
1210
1211	if (!init_ex_path)
1212		return 0;
1213
1214	if (sev_init_ex_buffer)
1215		return 0;
1216
1217	page = alloc_pages(GFP_KERNEL, get_order(NV_LENGTH));
1218	if (!page) {
1219		dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1220		return -ENOMEM;
1221	}
1222
1223	sev_init_ex_buffer = page_address(page);
1224
1225	rc = sev_read_init_ex_file();
1226	if (rc)
1227		return rc;
1228
1229	/* If SEV-SNP is initialized, transition to firmware page. */
1230	if (sev->snp_initialized) {
1231		unsigned long npages;
1232
1233		npages = 1UL << get_order(NV_LENGTH);
1234		if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, false)) {
1235			dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1236			return -ENOMEM;
1237		}
1238	}
1239
1240	return 0;
1241}
1242
1243static int __sev_platform_init_locked(int *error)
1244{
1245	int rc, psp_ret = SEV_RET_NO_FW_CALL;
1246	struct sev_device *sev;
1247
1248	if (!psp_master || !psp_master->sev_data)
1249		return -ENODEV;
1250
1251	sev = psp_master->sev_data;
1252
1253	if (sev->state == SEV_STATE_INIT)
1254		return 0;
1255
1256	__sev_platform_init_handle_tmr(sev);
1257
1258	rc = __sev_platform_init_handle_init_ex_path(sev);
1259	if (rc)
1260		return rc;
1261
1262	rc = __sev_do_init_locked(&psp_ret);
1263	if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1264		/*
1265		 * Initialization command returned an integrity check failure
1266		 * status code, meaning that firmware load and validation of SEV
1267		 * related persistent data has failed. Retrying the
1268		 * initialization function should succeed by replacing the state
1269		 * with a reset state.
1270		 */
1271		dev_err(sev->dev,
1272"SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1273		rc = __sev_do_init_locked(&psp_ret);
1274	}
1275
1276	if (error)
1277		*error = psp_ret;
1278
1279	if (rc)
1280		return rc;
1281
1282	sev->state = SEV_STATE_INIT;
1283
1284	/* Prepare for first SEV guest launch after INIT */
1285	wbinvd_on_all_cpus();
1286	rc = __sev_do_cmd_locked(SEV_CMD_DF_FLUSH, NULL, error);
1287	if (rc)
1288		return rc;
1289
1290	dev_dbg(sev->dev, "SEV firmware initialized\n");
1291
1292	dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1293		 sev->api_minor, sev->build);
1294
1295	return 0;
1296}
1297
1298static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1299{
1300	struct sev_device *sev;
1301	int rc;
1302
1303	if (!psp_master || !psp_master->sev_data)
1304		return -ENODEV;
1305
1306	sev = psp_master->sev_data;
1307
1308	if (sev->state == SEV_STATE_INIT)
1309		return 0;
1310
1311	/*
1312	 * Legacy guests cannot be running while SNP_INIT(_EX) is executing,
1313	 * so perform SEV-SNP initialization at probe time.
1314	 */
1315	rc = __sev_snp_init_locked(&args->error);
1316	if (rc && rc != -ENODEV) {
1317		/*
1318		 * Don't abort the probe if SNP INIT failed,
1319		 * continue to initialize the legacy SEV firmware.
1320		 */
1321		dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n",
1322			rc, args->error);
1323	}
1324
1325	/* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1326	if (args->probe && !psp_init_on_probe)
1327		return 0;
1328
1329	return __sev_platform_init_locked(&args->error);
1330}
1331
1332int sev_platform_init(struct sev_platform_init_args *args)
1333{
1334	int rc;
1335
1336	mutex_lock(&sev_cmd_mutex);
1337	rc = _sev_platform_init_locked(args);
1338	mutex_unlock(&sev_cmd_mutex);
1339
1340	return rc;
1341}
1342EXPORT_SYMBOL_GPL(sev_platform_init);
1343
1344static int __sev_platform_shutdown_locked(int *error)
1345{
1346	struct psp_device *psp = psp_master;
1347	struct sev_device *sev;
1348	int ret;
1349
1350	if (!psp || !psp->sev_data)
1351		return 0;
1352
1353	sev = psp->sev_data;
1354
1355	if (sev->state == SEV_STATE_UNINIT)
1356		return 0;
1357
1358	ret = __sev_do_cmd_locked(SEV_CMD_SHUTDOWN, NULL, error);
1359	if (ret)
1360		return ret;
1361
1362	sev->state = SEV_STATE_UNINIT;
1363	dev_dbg(sev->dev, "SEV firmware shutdown\n");
1364
1365	return ret;
1366}
1367
1368static int sev_get_platform_state(int *state, int *error)
1369{
1370	struct sev_user_data_status data;
1371	int rc;
1372
1373	rc = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, error);
1374	if (rc)
1375		return rc;
1376
1377	*state = data.state;
1378	return rc;
1379}
1380
1381static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1382{
1383	int state, rc;
1384
1385	if (!writable)
1386		return -EPERM;
1387
1388	/*
1389	 * The SEV spec requires that FACTORY_RESET must be issued in
1390	 * UNINIT state. Before we go further lets check if any guest is
1391	 * active.
1392	 *
1393	 * If FW is in WORKING state then deny the request otherwise issue
1394	 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1395	 *
1396	 */
1397	rc = sev_get_platform_state(&state, &argp->error);
1398	if (rc)
1399		return rc;
1400
1401	if (state == SEV_STATE_WORKING)
1402		return -EBUSY;
1403
1404	if (state == SEV_STATE_INIT) {
1405		rc = __sev_platform_shutdown_locked(&argp->error);
1406		if (rc)
1407			return rc;
1408	}
1409
1410	return __sev_do_cmd_locked(SEV_CMD_FACTORY_RESET, NULL, &argp->error);
1411}
1412
1413static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1414{
1415	struct sev_user_data_status data;
1416	int ret;
1417
1418	memset(&data, 0, sizeof(data));
1419
1420	ret = __sev_do_cmd_locked(SEV_CMD_PLATFORM_STATUS, &data, &argp->error);
1421	if (ret)
1422		return ret;
1423
1424	if (copy_to_user((void __user *)argp->data, &data, sizeof(data)))
1425		ret = -EFAULT;
1426
1427	return ret;
1428}
1429
1430static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1431{
1432	struct sev_device *sev = psp_master->sev_data;
1433	int rc;
1434
1435	if (!writable)
1436		return -EPERM;
1437
1438	if (sev->state == SEV_STATE_UNINIT) {
1439		rc = __sev_platform_init_locked(&argp->error);
1440		if (rc)
1441			return rc;
1442	}
1443
1444	return __sev_do_cmd_locked(cmd, NULL, &argp->error);
1445}
1446
1447static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1448{
1449	struct sev_device *sev = psp_master->sev_data;
1450	struct sev_user_data_pek_csr input;
1451	struct sev_data_pek_csr data;
1452	void __user *input_address;
1453	void *blob = NULL;
1454	int ret;
1455
1456	if (!writable)
1457		return -EPERM;
1458
1459	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1460		return -EFAULT;
1461
1462	memset(&data, 0, sizeof(data));
1463
1464	/* userspace wants to query CSR length */
1465	if (!input.address || !input.length)
1466		goto cmd;
1467
1468	/* allocate a physically contiguous buffer to store the CSR blob */
1469	input_address = (void __user *)input.address;
1470	if (input.length > SEV_FW_BLOB_MAX_SIZE)
1471		return -EFAULT;
1472
1473	blob = kzalloc(input.length, GFP_KERNEL);
1474	if (!blob)
1475		return -ENOMEM;
1476
1477	data.address = __psp_pa(blob);
1478	data.len = input.length;
1479
1480cmd:
1481	if (sev->state == SEV_STATE_UNINIT) {
1482		ret = __sev_platform_init_locked(&argp->error);
1483		if (ret)
1484			goto e_free_blob;
1485	}
1486
1487	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CSR, &data, &argp->error);
1488
1489	 /* If we query the CSR length, FW responded with expected data. */
1490	input.length = data.len;
1491
1492	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1493		ret = -EFAULT;
1494		goto e_free_blob;
1495	}
1496
1497	if (blob) {
1498		if (copy_to_user(input_address, blob, input.length))
1499			ret = -EFAULT;
1500	}
1501
1502e_free_blob:
1503	kfree(blob);
1504	return ret;
1505}
1506
1507void *psp_copy_user_blob(u64 uaddr, u32 len)
1508{
1509	if (!uaddr || !len)
1510		return ERR_PTR(-EINVAL);
1511
1512	/* verify that blob length does not exceed our limit */
1513	if (len > SEV_FW_BLOB_MAX_SIZE)
1514		return ERR_PTR(-EINVAL);
1515
1516	return memdup_user((void __user *)uaddr, len);
1517}
1518EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1519
1520static int sev_get_api_version(void)
1521{
1522	struct sev_device *sev = psp_master->sev_data;
1523	struct sev_user_data_status status;
1524	int error = 0, ret;
1525
1526	ret = sev_platform_status(&status, &error);
1527	if (ret) {
1528		dev_err(sev->dev,
1529			"SEV: failed to get status. Error: %#x\n", error);
1530		return 1;
1531	}
1532
1533	sev->api_major = status.api_major;
1534	sev->api_minor = status.api_minor;
1535	sev->build = status.build;
1536	sev->state = status.state;
1537
1538	return 0;
1539}
1540
1541static int sev_get_firmware(struct device *dev,
1542			    const struct firmware **firmware)
1543{
1544	char fw_name_specific[SEV_FW_NAME_SIZE];
1545	char fw_name_subset[SEV_FW_NAME_SIZE];
1546
1547	snprintf(fw_name_specific, sizeof(fw_name_specific),
1548		 "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1549		 boot_cpu_data.x86, boot_cpu_data.x86_model);
1550
1551	snprintf(fw_name_subset, sizeof(fw_name_subset),
1552		 "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1553		 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1554
1555	/* Check for SEV FW for a particular model.
1556	 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1557	 *
1558	 * or
1559	 *
1560	 * Check for SEV FW common to a subset of models.
1561	 * Ex. amd_sev_fam17h_model0xh.sbin for
1562	 *     Family 17h Model 00h -- Family 17h Model 0Fh
1563	 *
1564	 * or
1565	 *
1566	 * Fall-back to using generic name: sev.fw
1567	 */
1568	if ((firmware_request_nowarn(firmware, fw_name_specific, dev) >= 0) ||
1569	    (firmware_request_nowarn(firmware, fw_name_subset, dev) >= 0) ||
1570	    (firmware_request_nowarn(firmware, SEV_FW_FILE, dev) >= 0))
1571		return 0;
1572
1573	return -ENOENT;
1574}
1575
1576/* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1577static int sev_update_firmware(struct device *dev)
1578{
1579	struct sev_data_download_firmware *data;
1580	const struct firmware *firmware;
1581	int ret, error, order;
1582	struct page *p;
1583	u64 data_size;
1584
1585	if (!sev_version_greater_or_equal(0, 15)) {
1586		dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1587		return -1;
1588	}
1589
1590	if (sev_get_firmware(dev, &firmware) == -ENOENT) {
1591		dev_dbg(dev, "No SEV firmware file present\n");
1592		return -1;
1593	}
1594
1595	/*
1596	 * SEV FW expects the physical address given to it to be 32
1597	 * byte aligned. Memory allocated has structure placed at the
1598	 * beginning followed by the firmware being passed to the SEV
1599	 * FW. Allocate enough memory for data structure + alignment
1600	 * padding + SEV FW.
1601	 */
1602	data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1603
1604	order = get_order(firmware->size + data_size);
1605	p = alloc_pages(GFP_KERNEL, order);
1606	if (!p) {
1607		ret = -1;
1608		goto fw_err;
1609	}
1610
1611	/*
1612	 * Copy firmware data to a kernel allocated contiguous
1613	 * memory region.
1614	 */
1615	data = page_address(p);
1616	memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1617
1618	data->address = __psp_pa(page_address(p) + data_size);
1619	data->len = firmware->size;
1620
1621	ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1622
1623	/*
1624	 * A quirk for fixing the committed TCB version, when upgrading from
1625	 * earlier firmware version than 1.50.
1626	 */
1627	if (!ret && !sev_version_greater_or_equal(1, 50))
1628		ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1629
1630	if (ret)
1631		dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1632	else
1633		dev_info(dev, "SEV firmware update successful\n");
1634
1635	__free_pages(p, order);
1636
1637fw_err:
1638	release_firmware(firmware);
1639
1640	return ret;
1641}
1642
1643static int __sev_snp_shutdown_locked(int *error, bool panic)
1644{
1645	struct sev_device *sev = psp_master->sev_data;
1646	struct sev_data_snp_shutdown_ex data;
1647	int ret;
1648
1649	if (!sev->snp_initialized)
1650		return 0;
1651
1652	memset(&data, 0, sizeof(data));
1653	data.len = sizeof(data);
1654	data.iommu_snp_shutdown = 1;
1655
1656	/*
1657	 * If invoked during panic handling, local interrupts are disabled
1658	 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1659	 * In that case, a wbinvd() is done on remote CPUs via the NMI
1660	 * callback, so only a local wbinvd() is needed here.
1661	 */
1662	if (!panic)
1663		wbinvd_on_all_cpus();
1664	else
1665		wbinvd();
1666
1667	ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data, error);
1668	/* SHUTDOWN may require DF_FLUSH */
1669	if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1670		ret = __sev_do_cmd_locked(SEV_CMD_SNP_DF_FLUSH, NULL, NULL);
1671		if (ret) {
1672			dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n");
1673			return ret;
1674		}
1675		/* reissue the shutdown command */
1676		ret = __sev_do_cmd_locked(SEV_CMD_SNP_SHUTDOWN_EX, &data,
1677					  error);
1678	}
1679	if (ret) {
1680		dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n");
1681		return ret;
1682	}
1683
1684	/*
1685	 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1686	 * enforcement by the IOMMU and also transitions all pages
1687	 * associated with the IOMMU to the Reclaim state.
1688	 * Firmware was transitioning the IOMMU pages to Hypervisor state
1689	 * before version 1.53. But, accounting for the number of assigned
1690	 * 4kB pages in a 2M page was done incorrectly by not transitioning
1691	 * to the Reclaim state. This resulted in RMP #PF when later accessing
1692	 * the 2M page containing those pages during kexec boot. Hence, the
1693	 * firmware now transitions these pages to Reclaim state and hypervisor
1694	 * needs to transition these pages to shared state. SNP Firmware
1695	 * version 1.53 and above are needed for kexec boot.
1696	 */
1697	ret = amd_iommu_snp_disable();
1698	if (ret) {
1699		dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1700		return ret;
1701	}
1702
1703	sev->snp_initialized = false;
1704	dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1705
1706	return ret;
1707}
1708
1709static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1710{
1711	struct sev_device *sev = psp_master->sev_data;
1712	struct sev_user_data_pek_cert_import input;
1713	struct sev_data_pek_cert_import data;
1714	void *pek_blob, *oca_blob;
1715	int ret;
1716
1717	if (!writable)
1718		return -EPERM;
1719
1720	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1721		return -EFAULT;
1722
1723	/* copy PEK certificate blobs from userspace */
1724	pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1725	if (IS_ERR(pek_blob))
1726		return PTR_ERR(pek_blob);
1727
1728	data.reserved = 0;
1729	data.pek_cert_address = __psp_pa(pek_blob);
1730	data.pek_cert_len = input.pek_cert_len;
1731
1732	/* copy PEK certificate blobs from userspace */
1733	oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1734	if (IS_ERR(oca_blob)) {
1735		ret = PTR_ERR(oca_blob);
1736		goto e_free_pek;
1737	}
1738
1739	data.oca_cert_address = __psp_pa(oca_blob);
1740	data.oca_cert_len = input.oca_cert_len;
1741
1742	/* If platform is not in INIT state then transition it to INIT */
1743	if (sev->state != SEV_STATE_INIT) {
1744		ret = __sev_platform_init_locked(&argp->error);
1745		if (ret)
1746			goto e_free_oca;
1747	}
1748
1749	ret = __sev_do_cmd_locked(SEV_CMD_PEK_CERT_IMPORT, &data, &argp->error);
1750
1751e_free_oca:
1752	kfree(oca_blob);
1753e_free_pek:
1754	kfree(pek_blob);
1755	return ret;
1756}
1757
1758static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1759{
1760	struct sev_user_data_get_id2 input;
1761	struct sev_data_get_id data;
1762	void __user *input_address;
1763	void *id_blob = NULL;
1764	int ret;
1765
1766	/* SEV GET_ID is available from SEV API v0.16 and up */
1767	if (!sev_version_greater_or_equal(0, 16))
1768		return -ENOTSUPP;
1769
1770	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1771		return -EFAULT;
1772
1773	input_address = (void __user *)input.address;
1774
1775	if (input.address && input.length) {
1776		/*
1777		 * The length of the ID shouldn't be assumed by software since
1778		 * it may change in the future.  The allocation size is limited
1779		 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1780		 * If the allocation fails, simply return ENOMEM rather than
1781		 * warning in the kernel log.
1782		 */
1783		id_blob = kzalloc(input.length, GFP_KERNEL | __GFP_NOWARN);
1784		if (!id_blob)
1785			return -ENOMEM;
1786
1787		data.address = __psp_pa(id_blob);
1788		data.len = input.length;
1789	} else {
1790		data.address = 0;
1791		data.len = 0;
1792	}
1793
1794	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, &data, &argp->error);
1795
1796	/*
1797	 * Firmware will return the length of the ID value (either the minimum
1798	 * required length or the actual length written), return it to the user.
1799	 */
1800	input.length = data.len;
1801
1802	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1803		ret = -EFAULT;
1804		goto e_free;
1805	}
1806
1807	if (id_blob) {
1808		if (copy_to_user(input_address, id_blob, data.len)) {
1809			ret = -EFAULT;
1810			goto e_free;
1811		}
1812	}
1813
1814e_free:
1815	kfree(id_blob);
1816
1817	return ret;
1818}
1819
1820static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
1821{
1822	struct sev_data_get_id *data;
1823	u64 data_size, user_size;
1824	void *id_blob, *mem;
1825	int ret;
1826
1827	/* SEV GET_ID available from SEV API v0.16 and up */
1828	if (!sev_version_greater_or_equal(0, 16))
1829		return -ENOTSUPP;
1830
1831	/* SEV FW expects the buffer it fills with the ID to be
1832	 * 8-byte aligned. Memory allocated should be enough to
1833	 * hold data structure + alignment padding + memory
1834	 * where SEV FW writes the ID.
1835	 */
1836	data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
1837	user_size = sizeof(struct sev_user_data_get_id);
1838
1839	mem = kzalloc(data_size + user_size, GFP_KERNEL);
1840	if (!mem)
1841		return -ENOMEM;
1842
1843	data = mem;
1844	id_blob = mem + data_size;
1845
1846	data->address = __psp_pa(id_blob);
1847	data->len = user_size;
1848
1849	ret = __sev_do_cmd_locked(SEV_CMD_GET_ID, data, &argp->error);
1850	if (!ret) {
1851		if (copy_to_user((void __user *)argp->data, id_blob, data->len))
1852			ret = -EFAULT;
1853	}
1854
1855	kfree(mem);
1856
1857	return ret;
1858}
1859
1860static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
1861{
1862	struct sev_device *sev = psp_master->sev_data;
1863	struct sev_user_data_pdh_cert_export input;
1864	void *pdh_blob = NULL, *cert_blob = NULL;
1865	struct sev_data_pdh_cert_export data;
1866	void __user *input_cert_chain_address;
1867	void __user *input_pdh_cert_address;
1868	int ret;
1869
1870	/* If platform is not in INIT state then transition it to INIT. */
1871	if (sev->state != SEV_STATE_INIT) {
1872		if (!writable)
1873			return -EPERM;
1874
1875		ret = __sev_platform_init_locked(&argp->error);
1876		if (ret)
1877			return ret;
1878	}
1879
1880	if (copy_from_user(&input, (void __user *)argp->data, sizeof(input)))
1881		return -EFAULT;
1882
1883	memset(&data, 0, sizeof(data));
1884
1885	/* Userspace wants to query the certificate length. */
1886	if (!input.pdh_cert_address ||
1887	    !input.pdh_cert_len ||
1888	    !input.cert_chain_address)
1889		goto cmd;
1890
1891	input_pdh_cert_address = (void __user *)input.pdh_cert_address;
1892	input_cert_chain_address = (void __user *)input.cert_chain_address;
1893
1894	/* Allocate a physically contiguous buffer to store the PDH blob. */
1895	if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
1896		return -EFAULT;
1897
1898	/* Allocate a physically contiguous buffer to store the cert chain blob. */
1899	if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1900		return -EFAULT;
1901
1902	pdh_blob = kzalloc(input.pdh_cert_len, GFP_KERNEL);
1903	if (!pdh_blob)
1904		return -ENOMEM;
1905
1906	data.pdh_cert_address = __psp_pa(pdh_blob);
1907	data.pdh_cert_len = input.pdh_cert_len;
1908
1909	cert_blob = kzalloc(input.cert_chain_len, GFP_KERNEL);
1910	if (!cert_blob) {
1911		ret = -ENOMEM;
1912		goto e_free_pdh;
1913	}
1914
1915	data.cert_chain_address = __psp_pa(cert_blob);
1916	data.cert_chain_len = input.cert_chain_len;
1917
1918cmd:
1919	ret = __sev_do_cmd_locked(SEV_CMD_PDH_CERT_EXPORT, &data, &argp->error);
1920
1921	/* If we query the length, FW responded with expected data. */
1922	input.cert_chain_len = data.cert_chain_len;
1923	input.pdh_cert_len = data.pdh_cert_len;
1924
1925	if (copy_to_user((void __user *)argp->data, &input, sizeof(input))) {
1926		ret = -EFAULT;
1927		goto e_free_cert;
1928	}
1929
1930	if (pdh_blob) {
1931		if (copy_to_user(input_pdh_cert_address,
1932				 pdh_blob, input.pdh_cert_len)) {
1933			ret = -EFAULT;
1934			goto e_free_cert;
1935		}
1936	}
1937
1938	if (cert_blob) {
1939		if (copy_to_user(input_cert_chain_address,
1940				 cert_blob, input.cert_chain_len))
1941			ret = -EFAULT;
1942	}
1943
1944e_free_cert:
1945	kfree(cert_blob);
1946e_free_pdh:
1947	kfree(pdh_blob);
1948	return ret;
1949}
1950
1951static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
1952{
1953	struct sev_device *sev = psp_master->sev_data;
1954	struct sev_data_snp_addr buf;
1955	struct page *status_page;
1956	void *data;
1957	int ret;
1958
1959	if (!sev->snp_initialized || !argp->data)
1960		return -EINVAL;
1961
1962	status_page = alloc_page(GFP_KERNEL_ACCOUNT);
1963	if (!status_page)
1964		return -ENOMEM;
1965
1966	data = page_address(status_page);
1967
1968	/*
1969	 * Firmware expects status page to be in firmware-owned state, otherwise
1970	 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
1971	 */
1972	if (rmp_mark_pages_firmware(__pa(data), 1, true)) {
1973		ret = -EFAULT;
1974		goto cleanup;
1975	}
1976
1977	buf.address = __psp_pa(data);
1978	ret = __sev_do_cmd_locked(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &argp->error);
1979
1980	/*
1981	 * Status page will be transitioned to Reclaim state upon success, or
1982	 * left in Firmware state in failure. Use snp_reclaim_pages() to
1983	 * transition either case back to Hypervisor-owned state.
1984	 */
1985	if (snp_reclaim_pages(__pa(data), 1, true))
1986		return -EFAULT;
1987
1988	if (ret)
1989		goto cleanup;
1990
1991	if (copy_to_user((void __user *)argp->data, data,
1992			 sizeof(struct sev_user_data_snp_status)))
1993		ret = -EFAULT;
1994
1995cleanup:
1996	__free_pages(status_page, 0);
1997	return ret;
1998}
1999
2000static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2001{
2002	struct sev_device *sev = psp_master->sev_data;
2003	struct sev_data_snp_commit buf;
2004
2005	if (!sev->snp_initialized)
2006		return -EINVAL;
2007
2008	buf.len = sizeof(buf);
2009
2010	return __sev_do_cmd_locked(SEV_CMD_SNP_COMMIT, &buf, &argp->error);
2011}
2012
2013static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2014{
2015	struct sev_device *sev = psp_master->sev_data;
2016	struct sev_user_data_snp_config config;
2017
2018	if (!sev->snp_initialized || !argp->data)
2019		return -EINVAL;
2020
2021	if (!writable)
2022		return -EPERM;
2023
2024	if (copy_from_user(&config, (void __user *)argp->data, sizeof(config)))
2025		return -EFAULT;
2026
2027	return __sev_do_cmd_locked(SEV_CMD_SNP_CONFIG, &config, &argp->error);
2028}
2029
2030static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2031{
2032	void __user *argp = (void __user *)arg;
2033	struct sev_issue_cmd input;
2034	int ret = -EFAULT;
2035	bool writable = file->f_mode & FMODE_WRITE;
2036
2037	if (!psp_master || !psp_master->sev_data)
2038		return -ENODEV;
2039
2040	if (ioctl != SEV_ISSUE_CMD)
2041		return -EINVAL;
2042
2043	if (copy_from_user(&input, argp, sizeof(struct sev_issue_cmd)))
2044		return -EFAULT;
2045
2046	if (input.cmd > SEV_MAX)
2047		return -EINVAL;
2048
2049	mutex_lock(&sev_cmd_mutex);
2050
2051	switch (input.cmd) {
2052
2053	case SEV_FACTORY_RESET:
2054		ret = sev_ioctl_do_reset(&input, writable);
2055		break;
2056	case SEV_PLATFORM_STATUS:
2057		ret = sev_ioctl_do_platform_status(&input);
2058		break;
2059	case SEV_PEK_GEN:
2060		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PEK_GEN, &input, writable);
2061		break;
2062	case SEV_PDH_GEN:
2063		ret = sev_ioctl_do_pek_pdh_gen(SEV_CMD_PDH_GEN, &input, writable);
2064		break;
2065	case SEV_PEK_CSR:
2066		ret = sev_ioctl_do_pek_csr(&input, writable);
2067		break;
2068	case SEV_PEK_CERT_IMPORT:
2069		ret = sev_ioctl_do_pek_import(&input, writable);
2070		break;
2071	case SEV_PDH_CERT_EXPORT:
2072		ret = sev_ioctl_do_pdh_export(&input, writable);
2073		break;
2074	case SEV_GET_ID:
2075		pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2076		ret = sev_ioctl_do_get_id(&input);
2077		break;
2078	case SEV_GET_ID2:
2079		ret = sev_ioctl_do_get_id2(&input);
2080		break;
2081	case SNP_PLATFORM_STATUS:
2082		ret = sev_ioctl_do_snp_platform_status(&input);
2083		break;
2084	case SNP_COMMIT:
2085		ret = sev_ioctl_do_snp_commit(&input);
2086		break;
2087	case SNP_SET_CONFIG:
2088		ret = sev_ioctl_do_snp_set_config(&input, writable);
2089		break;
2090	default:
2091		ret = -EINVAL;
2092		goto out;
2093	}
2094
2095	if (copy_to_user(argp, &input, sizeof(struct sev_issue_cmd)))
2096		ret = -EFAULT;
2097out:
2098	mutex_unlock(&sev_cmd_mutex);
2099
2100	return ret;
2101}
2102
2103static const struct file_operations sev_fops = {
2104	.owner	= THIS_MODULE,
2105	.unlocked_ioctl = sev_ioctl,
2106};
2107
2108int sev_platform_status(struct sev_user_data_status *data, int *error)
2109{
2110	return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2111}
2112EXPORT_SYMBOL_GPL(sev_platform_status);
2113
2114int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2115{
2116	return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2117}
2118EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2119
2120int sev_guest_activate(struct sev_data_activate *data, int *error)
2121{
2122	return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2123}
2124EXPORT_SYMBOL_GPL(sev_guest_activate);
2125
2126int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2127{
2128	return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2129}
2130EXPORT_SYMBOL_GPL(sev_guest_decommission);
2131
2132int sev_guest_df_flush(int *error)
2133{
2134	return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2135}
2136EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2137
2138static void sev_exit(struct kref *ref)
2139{
2140	misc_deregister(&misc_dev->misc);
2141	kfree(misc_dev);
2142	misc_dev = NULL;
2143}
2144
2145static int sev_misc_init(struct sev_device *sev)
2146{
2147	struct device *dev = sev->dev;
2148	int ret;
2149
2150	/*
2151	 * SEV feature support can be detected on multiple devices but the SEV
2152	 * FW commands must be issued on the master. During probe, we do not
2153	 * know the master hence we create /dev/sev on the first device probe.
2154	 * sev_do_cmd() finds the right master device to which to issue the
2155	 * command to the firmware.
2156	 */
2157	if (!misc_dev) {
2158		struct miscdevice *misc;
2159
2160		misc_dev = kzalloc(sizeof(*misc_dev), GFP_KERNEL);
2161		if (!misc_dev)
2162			return -ENOMEM;
2163
2164		misc = &misc_dev->misc;
2165		misc->minor = MISC_DYNAMIC_MINOR;
2166		misc->name = DEVICE_NAME;
2167		misc->fops = &sev_fops;
2168
2169		ret = misc_register(misc);
2170		if (ret)
2171			return ret;
2172
2173		kref_init(&misc_dev->refcount);
2174	} else {
2175		kref_get(&misc_dev->refcount);
2176	}
2177
2178	init_waitqueue_head(&sev->int_queue);
2179	sev->misc = misc_dev;
2180	dev_dbg(dev, "registered SEV device\n");
2181
2182	return 0;
2183}
2184
2185int sev_dev_init(struct psp_device *psp)
2186{
2187	struct device *dev = psp->dev;
2188	struct sev_device *sev;
2189	int ret = -ENOMEM;
2190
2191	if (!boot_cpu_has(X86_FEATURE_SEV)) {
2192		dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2193		return 0;
2194	}
2195
2196	sev = devm_kzalloc(dev, sizeof(*sev), GFP_KERNEL);
2197	if (!sev)
2198		goto e_err;
2199
2200	sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, 1);
2201	if (!sev->cmd_buf)
2202		goto e_sev;
2203
2204	sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2205
2206	psp->sev_data = sev;
2207
2208	sev->dev = dev;
2209	sev->psp = psp;
2210
2211	sev->io_regs = psp->io_regs;
2212
2213	sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2214	if (!sev->vdata) {
2215		ret = -ENODEV;
2216		dev_err(dev, "sev: missing driver data\n");
2217		goto e_buf;
2218	}
2219
2220	psp_set_sev_irq_handler(psp, sev_irq_handler, sev);
2221
2222	ret = sev_misc_init(sev);
2223	if (ret)
2224		goto e_irq;
2225
2226	dev_notice(dev, "sev enabled\n");
2227
2228	return 0;
2229
2230e_irq:
2231	psp_clear_sev_irq_handler(psp);
2232e_buf:
2233	devm_free_pages(dev, (unsigned long)sev->cmd_buf);
2234e_sev:
2235	devm_kfree(dev, sev);
2236e_err:
2237	psp->sev_data = NULL;
2238
2239	dev_notice(dev, "sev initialization failed\n");
2240
2241	return ret;
2242}
2243
2244static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2245{
2246	int error;
2247
2248	__sev_platform_shutdown_locked(NULL);
2249
2250	if (sev_es_tmr) {
2251		/*
2252		 * The TMR area was encrypted, flush it from the cache.
2253		 *
2254		 * If invoked during panic handling, local interrupts are
2255		 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2256		 * can't be used. In that case, wbinvd() is done on remote CPUs
2257		 * via the NMI callback, and done for this CPU later during
2258		 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2259		 */
2260		if (!panic)
2261			wbinvd_on_all_cpus();
2262
2263		__snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2264					  get_order(sev_es_tmr_size),
2265					  true);
2266		sev_es_tmr = NULL;
2267	}
2268
2269	if (sev_init_ex_buffer) {
2270		__snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2271					  get_order(NV_LENGTH),
2272					  true);
2273		sev_init_ex_buffer = NULL;
2274	}
2275
2276	if (snp_range_list) {
2277		kfree(snp_range_list);
2278		snp_range_list = NULL;
2279	}
2280
2281	__sev_snp_shutdown_locked(&error, panic);
2282}
2283
2284static void sev_firmware_shutdown(struct sev_device *sev)
2285{
2286	mutex_lock(&sev_cmd_mutex);
2287	__sev_firmware_shutdown(sev, false);
2288	mutex_unlock(&sev_cmd_mutex);
2289}
2290
2291void sev_dev_destroy(struct psp_device *psp)
2292{
2293	struct sev_device *sev = psp->sev_data;
2294
2295	if (!sev)
2296		return;
2297
2298	sev_firmware_shutdown(sev);
2299
2300	if (sev->misc)
2301		kref_put(&misc_dev->refcount, sev_exit);
2302
2303	psp_clear_sev_irq_handler(psp);
2304}
2305
2306static int snp_shutdown_on_panic(struct notifier_block *nb,
2307				 unsigned long reason, void *arg)
2308{
2309	struct sev_device *sev = psp_master->sev_data;
2310
2311	/*
2312	 * If sev_cmd_mutex is already acquired, then it's likely
2313	 * another PSP command is in flight and issuing a shutdown
2314	 * would fail in unexpected ways. Rather than create even
2315	 * more confusion during a panic, just bail out here.
2316	 */
2317	if (mutex_is_locked(&sev_cmd_mutex))
2318		return NOTIFY_DONE;
2319
2320	__sev_firmware_shutdown(sev, true);
2321
2322	return NOTIFY_DONE;
2323}
2324
2325static struct notifier_block snp_panic_notifier = {
2326	.notifier_call = snp_shutdown_on_panic,
2327};
2328
2329int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2330				void *data, int *error)
2331{
2332	if (!filep || filep->f_op != &sev_fops)
2333		return -EBADF;
2334
2335	return sev_do_cmd(cmd, data, error);
2336}
2337EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2338
2339void sev_pci_init(void)
2340{
2341	struct sev_device *sev = psp_master->sev_data;
2342	struct sev_platform_init_args args = {0};
2343	int rc;
2344
2345	if (!sev)
2346		return;
2347
2348	psp_timeout = psp_probe_timeout;
2349
2350	if (sev_get_api_version())
2351		goto err;
2352
2353	if (sev_update_firmware(sev->dev) == 0)
2354		sev_get_api_version();
2355
2356	/* Initialize the platform */
2357	args.probe = true;
2358	rc = sev_platform_init(&args);
2359	if (rc)
2360		dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n",
2361			args.error, rc);
2362
2363	dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ?
2364		"-SNP" : "", sev->api_major, sev->api_minor, sev->build);
2365
2366	atomic_notifier_chain_register(&panic_notifier_list,
2367				       &snp_panic_notifier);
2368	return;
2369
2370err:
2371	psp_master->sev_data = NULL;
2372}
2373
2374void sev_pci_exit(void)
2375{
2376	struct sev_device *sev = psp_master->sev_data;
2377
2378	if (!sev)
2379		return;
2380
2381	sev_firmware_shutdown(sev);
2382
2383	atomic_notifier_chain_unregister(&panic_notifier_list,
2384					 &snp_panic_notifier);
2385}
2386