1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Cryptographic Coprocessor (CCP) driver
4 *
5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * Author: Gary R Hook <gary.hook@amd.com>
9 */
10
11#include <linux/dma-mapping.h>
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/interrupt.h>
15#include <crypto/scatterwalk.h>
16#include <crypto/des.h>
17#include <linux/ccp.h>
18
19#include "ccp-dev.h"
20
21/* SHA initial context values */
22static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
23	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
24	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
25	cpu_to_be32(SHA1_H4),
26};
27
28static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
29	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
30	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
31	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
32	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
33};
34
35static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
36	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
37	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
38	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
39	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
40};
41
42static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
43	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
44	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
45	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
46	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
47};
48
49static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
50	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
51	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
52	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
53	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
54};
55
56#define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
57					ccp_gen_jobid(ccp) : 0)
58
59static u32 ccp_gen_jobid(struct ccp_device *ccp)
60{
61	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
62}
63
64static void ccp_sg_free(struct ccp_sg_workarea *wa)
65{
66	if (wa->dma_count)
67		dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir);
68
69	wa->dma_count = 0;
70}
71
72static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
73				struct scatterlist *sg, u64 len,
74				enum dma_data_direction dma_dir)
75{
76	memset(wa, 0, sizeof(*wa));
77
78	wa->sg = sg;
79	if (!sg)
80		return 0;
81
82	wa->nents = sg_nents_for_len(sg, len);
83	if (wa->nents < 0)
84		return wa->nents;
85
86	wa->bytes_left = len;
87	wa->sg_used = 0;
88
89	if (len == 0)
90		return 0;
91
92	if (dma_dir == DMA_NONE)
93		return 0;
94
95	wa->dma_sg = sg;
96	wa->dma_sg_head = sg;
97	wa->dma_dev = dev;
98	wa->dma_dir = dma_dir;
99	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
100	if (!wa->dma_count)
101		return -ENOMEM;
102
103	return 0;
104}
105
106static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
107{
108	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
109	unsigned int sg_combined_len = 0;
110
111	if (!wa->sg)
112		return;
113
114	wa->sg_used += nbytes;
115	wa->bytes_left -= nbytes;
116	if (wa->sg_used == sg_dma_len(wa->dma_sg)) {
117		/* Advance to the next DMA scatterlist entry */
118		wa->dma_sg = sg_next(wa->dma_sg);
119
120		/* In the case that the DMA mapped scatterlist has entries
121		 * that have been merged, the non-DMA mapped scatterlist
122		 * must be advanced multiple times for each merged entry.
123		 * This ensures that the current non-DMA mapped entry
124		 * corresponds to the current DMA mapped entry.
125		 */
126		do {
127			sg_combined_len += wa->sg->length;
128			wa->sg = sg_next(wa->sg);
129		} while (wa->sg_used > sg_combined_len);
130
131		wa->sg_used = 0;
132	}
133}
134
135static void ccp_dm_free(struct ccp_dm_workarea *wa)
136{
137	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
138		if (wa->address)
139			dma_pool_free(wa->dma_pool, wa->address,
140				      wa->dma.address);
141	} else {
142		if (wa->dma.address)
143			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
144					 wa->dma.dir);
145		kfree(wa->address);
146	}
147
148	wa->address = NULL;
149	wa->dma.address = 0;
150}
151
152static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
153				struct ccp_cmd_queue *cmd_q,
154				unsigned int len,
155				enum dma_data_direction dir)
156{
157	memset(wa, 0, sizeof(*wa));
158
159	if (!len)
160		return 0;
161
162	wa->dev = cmd_q->ccp->dev;
163	wa->length = len;
164
165	if (len <= CCP_DMAPOOL_MAX_SIZE) {
166		wa->dma_pool = cmd_q->dma_pool;
167
168		wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
169					     &wa->dma.address);
170		if (!wa->address)
171			return -ENOMEM;
172
173		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
174
175	} else {
176		wa->address = kzalloc(len, GFP_KERNEL);
177		if (!wa->address)
178			return -ENOMEM;
179
180		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
181						 dir);
182		if (dma_mapping_error(wa->dev, wa->dma.address)) {
183			kfree(wa->address);
184			wa->address = NULL;
185			return -ENOMEM;
186		}
187
188		wa->dma.length = len;
189	}
190	wa->dma.dir = dir;
191
192	return 0;
193}
194
195static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
196			   struct scatterlist *sg, unsigned int sg_offset,
197			   unsigned int len)
198{
199	WARN_ON(!wa->address);
200
201	if (len > (wa->length - wa_offset))
202		return -EINVAL;
203
204	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
205				 0);
206	return 0;
207}
208
209static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
210			    struct scatterlist *sg, unsigned int sg_offset,
211			    unsigned int len)
212{
213	WARN_ON(!wa->address);
214
215	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
216				 1);
217}
218
219static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
220				   unsigned int wa_offset,
221				   struct scatterlist *sg,
222				   unsigned int sg_offset,
223				   unsigned int len)
224{
225	u8 *p, *q;
226	int	rc;
227
228	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
229	if (rc)
230		return rc;
231
232	p = wa->address + wa_offset;
233	q = p + len - 1;
234	while (p < q) {
235		*p = *p ^ *q;
236		*q = *p ^ *q;
237		*p = *p ^ *q;
238		p++;
239		q--;
240	}
241	return 0;
242}
243
244static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
245				    unsigned int wa_offset,
246				    struct scatterlist *sg,
247				    unsigned int sg_offset,
248				    unsigned int len)
249{
250	u8 *p, *q;
251
252	p = wa->address + wa_offset;
253	q = p + len - 1;
254	while (p < q) {
255		*p = *p ^ *q;
256		*q = *p ^ *q;
257		*p = *p ^ *q;
258		p++;
259		q--;
260	}
261
262	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
263}
264
265static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
266{
267	ccp_dm_free(&data->dm_wa);
268	ccp_sg_free(&data->sg_wa);
269}
270
271static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
272			 struct scatterlist *sg, u64 sg_len,
273			 unsigned int dm_len,
274			 enum dma_data_direction dir)
275{
276	int ret;
277
278	memset(data, 0, sizeof(*data));
279
280	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
281				   dir);
282	if (ret)
283		goto e_err;
284
285	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
286	if (ret)
287		goto e_err;
288
289	return 0;
290
291e_err:
292	ccp_free_data(data, cmd_q);
293
294	return ret;
295}
296
297static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
298{
299	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
300	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
301	unsigned int buf_count, nbytes;
302
303	/* Clear the buffer if setting it */
304	if (!from)
305		memset(dm_wa->address, 0, dm_wa->length);
306
307	if (!sg_wa->sg)
308		return 0;
309
310	/* Perform the copy operation
311	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
312	 *   an unsigned int
313	 */
314	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
315	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
316				 nbytes, from);
317
318	/* Update the structures and generate the count */
319	buf_count = 0;
320	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
321		nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used,
322			     dm_wa->length - buf_count);
323		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
324
325		buf_count += nbytes;
326		ccp_update_sg_workarea(sg_wa, nbytes);
327	}
328
329	return buf_count;
330}
331
332static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
333{
334	return ccp_queue_buf(data, 0);
335}
336
337static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
338{
339	return ccp_queue_buf(data, 1);
340}
341
342static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
343			     struct ccp_op *op, unsigned int block_size,
344			     bool blocksize_op)
345{
346	unsigned int sg_src_len, sg_dst_len, op_len;
347
348	/* The CCP can only DMA from/to one address each per operation. This
349	 * requires that we find the smallest DMA area between the source
350	 * and destination. The resulting len values will always be <= UINT_MAX
351	 * because the dma length is an unsigned int.
352	 */
353	sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used;
354	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
355
356	if (dst) {
357		sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used;
358		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
359		op_len = min(sg_src_len, sg_dst_len);
360	} else {
361		op_len = sg_src_len;
362	}
363
364	/* The data operation length will be at least block_size in length
365	 * or the smaller of available sg room remaining for the source or
366	 * the destination
367	 */
368	op_len = max(op_len, block_size);
369
370	/* Unless we have to buffer data, there's no reason to wait */
371	op->soc = 0;
372
373	if (sg_src_len < block_size) {
374		/* Not enough data in the sg element, so it
375		 * needs to be buffered into a blocksize chunk
376		 */
377		int cp_len = ccp_fill_queue_buf(src);
378
379		op->soc = 1;
380		op->src.u.dma.address = src->dm_wa.dma.address;
381		op->src.u.dma.offset = 0;
382		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
383	} else {
384		/* Enough data in the sg element, but we need to
385		 * adjust for any previously copied data
386		 */
387		op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg);
388		op->src.u.dma.offset = src->sg_wa.sg_used;
389		op->src.u.dma.length = op_len & ~(block_size - 1);
390
391		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
392	}
393
394	if (dst) {
395		if (sg_dst_len < block_size) {
396			/* Not enough room in the sg element or we're on the
397			 * last piece of data (when using padding), so the
398			 * output needs to be buffered into a blocksize chunk
399			 */
400			op->soc = 1;
401			op->dst.u.dma.address = dst->dm_wa.dma.address;
402			op->dst.u.dma.offset = 0;
403			op->dst.u.dma.length = op->src.u.dma.length;
404		} else {
405			/* Enough room in the sg element, but we need to
406			 * adjust for any previously used area
407			 */
408			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg);
409			op->dst.u.dma.offset = dst->sg_wa.sg_used;
410			op->dst.u.dma.length = op->src.u.dma.length;
411		}
412	}
413}
414
415static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
416			     struct ccp_op *op)
417{
418	op->init = 0;
419
420	if (dst) {
421		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
422			ccp_empty_queue_buf(dst);
423		else
424			ccp_update_sg_workarea(&dst->sg_wa,
425					       op->dst.u.dma.length);
426	}
427}
428
429static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
430			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
431			       u32 byte_swap, bool from)
432{
433	struct ccp_op op;
434
435	memset(&op, 0, sizeof(op));
436
437	op.cmd_q = cmd_q;
438	op.jobid = jobid;
439	op.eom = 1;
440
441	if (from) {
442		op.soc = 1;
443		op.src.type = CCP_MEMTYPE_SB;
444		op.src.u.sb = sb;
445		op.dst.type = CCP_MEMTYPE_SYSTEM;
446		op.dst.u.dma.address = wa->dma.address;
447		op.dst.u.dma.length = wa->length;
448	} else {
449		op.src.type = CCP_MEMTYPE_SYSTEM;
450		op.src.u.dma.address = wa->dma.address;
451		op.src.u.dma.length = wa->length;
452		op.dst.type = CCP_MEMTYPE_SB;
453		op.dst.u.sb = sb;
454	}
455
456	op.u.passthru.byte_swap = byte_swap;
457
458	return cmd_q->ccp->vdata->perform->passthru(&op);
459}
460
461static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
462			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
463			  u32 byte_swap)
464{
465	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
466}
467
468static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
469			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
470			    u32 byte_swap)
471{
472	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
473}
474
475static noinline_for_stack int
476ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
477{
478	struct ccp_aes_engine *aes = &cmd->u.aes;
479	struct ccp_dm_workarea key, ctx;
480	struct ccp_data src;
481	struct ccp_op op;
482	unsigned int dm_offset;
483	int ret;
484
485	if (!((aes->key_len == AES_KEYSIZE_128) ||
486	      (aes->key_len == AES_KEYSIZE_192) ||
487	      (aes->key_len == AES_KEYSIZE_256)))
488		return -EINVAL;
489
490	if (aes->src_len & (AES_BLOCK_SIZE - 1))
491		return -EINVAL;
492
493	if (aes->iv_len != AES_BLOCK_SIZE)
494		return -EINVAL;
495
496	if (!aes->key || !aes->iv || !aes->src)
497		return -EINVAL;
498
499	if (aes->cmac_final) {
500		if (aes->cmac_key_len != AES_BLOCK_SIZE)
501			return -EINVAL;
502
503		if (!aes->cmac_key)
504			return -EINVAL;
505	}
506
507	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
508	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
509
510	ret = -EIO;
511	memset(&op, 0, sizeof(op));
512	op.cmd_q = cmd_q;
513	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
514	op.sb_key = cmd_q->sb_key;
515	op.sb_ctx = cmd_q->sb_ctx;
516	op.init = 1;
517	op.u.aes.type = aes->type;
518	op.u.aes.mode = aes->mode;
519	op.u.aes.action = aes->action;
520
521	/* All supported key sizes fit in a single (32-byte) SB entry
522	 * and must be in little endian format. Use the 256-bit byte
523	 * swap passthru option to convert from big endian to little
524	 * endian.
525	 */
526	ret = ccp_init_dm_workarea(&key, cmd_q,
527				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
528				   DMA_TO_DEVICE);
529	if (ret)
530		return ret;
531
532	dm_offset = CCP_SB_BYTES - aes->key_len;
533	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
534	if (ret)
535		goto e_key;
536	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
537			     CCP_PASSTHRU_BYTESWAP_256BIT);
538	if (ret) {
539		cmd->engine_error = cmd_q->cmd_error;
540		goto e_key;
541	}
542
543	/* The AES context fits in a single (32-byte) SB entry and
544	 * must be in little endian format. Use the 256-bit byte swap
545	 * passthru option to convert from big endian to little endian.
546	 */
547	ret = ccp_init_dm_workarea(&ctx, cmd_q,
548				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
549				   DMA_BIDIRECTIONAL);
550	if (ret)
551		goto e_key;
552
553	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
554	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
555	if (ret)
556		goto e_ctx;
557	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
558			     CCP_PASSTHRU_BYTESWAP_256BIT);
559	if (ret) {
560		cmd->engine_error = cmd_q->cmd_error;
561		goto e_ctx;
562	}
563
564	/* Send data to the CCP AES engine */
565	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
566			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
567	if (ret)
568		goto e_ctx;
569
570	while (src.sg_wa.bytes_left) {
571		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
572		if (aes->cmac_final && !src.sg_wa.bytes_left) {
573			op.eom = 1;
574
575			/* Push the K1/K2 key to the CCP now */
576			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
577					       op.sb_ctx,
578					       CCP_PASSTHRU_BYTESWAP_256BIT);
579			if (ret) {
580				cmd->engine_error = cmd_q->cmd_error;
581				goto e_src;
582			}
583
584			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
585					      aes->cmac_key_len);
586			if (ret)
587				goto e_src;
588			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
589					     CCP_PASSTHRU_BYTESWAP_256BIT);
590			if (ret) {
591				cmd->engine_error = cmd_q->cmd_error;
592				goto e_src;
593			}
594		}
595
596		ret = cmd_q->ccp->vdata->perform->aes(&op);
597		if (ret) {
598			cmd->engine_error = cmd_q->cmd_error;
599			goto e_src;
600		}
601
602		ccp_process_data(&src, NULL, &op);
603	}
604
605	/* Retrieve the AES context - convert from LE to BE using
606	 * 32-byte (256-bit) byteswapping
607	 */
608	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
609			       CCP_PASSTHRU_BYTESWAP_256BIT);
610	if (ret) {
611		cmd->engine_error = cmd_q->cmd_error;
612		goto e_src;
613	}
614
615	/* ...but we only need AES_BLOCK_SIZE bytes */
616	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
617	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
618
619e_src:
620	ccp_free_data(&src, cmd_q);
621
622e_ctx:
623	ccp_dm_free(&ctx);
624
625e_key:
626	ccp_dm_free(&key);
627
628	return ret;
629}
630
631static noinline_for_stack int
632ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
633{
634	struct ccp_aes_engine *aes = &cmd->u.aes;
635	struct ccp_dm_workarea key, ctx, final_wa, tag;
636	struct ccp_data src, dst;
637	struct ccp_data aad;
638	struct ccp_op op;
639	unsigned int dm_offset;
640	unsigned int authsize;
641	unsigned int jobid;
642	unsigned int ilen;
643	bool in_place = true; /* Default value */
644	__be64 *final;
645	int ret;
646
647	struct scatterlist *p_inp, sg_inp[2];
648	struct scatterlist *p_tag, sg_tag[2];
649	struct scatterlist *p_outp, sg_outp[2];
650	struct scatterlist *p_aad;
651
652	if (!aes->iv)
653		return -EINVAL;
654
655	if (!((aes->key_len == AES_KEYSIZE_128) ||
656		(aes->key_len == AES_KEYSIZE_192) ||
657		(aes->key_len == AES_KEYSIZE_256)))
658		return -EINVAL;
659
660	if (!aes->key) /* Gotta have a key SGL */
661		return -EINVAL;
662
663	/* Zero defaults to 16 bytes, the maximum size */
664	authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
665	switch (authsize) {
666	case 16:
667	case 15:
668	case 14:
669	case 13:
670	case 12:
671	case 8:
672	case 4:
673		break;
674	default:
675		return -EINVAL;
676	}
677
678	/* First, decompose the source buffer into AAD & PT,
679	 * and the destination buffer into AAD, CT & tag, or
680	 * the input into CT & tag.
681	 * It is expected that the input and output SGs will
682	 * be valid, even if the AAD and input lengths are 0.
683	 */
684	p_aad = aes->src;
685	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
686	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
687	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
688		ilen = aes->src_len;
689		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
690	} else {
691		/* Input length for decryption includes tag */
692		ilen = aes->src_len - authsize;
693		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
694	}
695
696	jobid = CCP_NEW_JOBID(cmd_q->ccp);
697
698	memset(&op, 0, sizeof(op));
699	op.cmd_q = cmd_q;
700	op.jobid = jobid;
701	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
702	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
703	op.init = 1;
704	op.u.aes.type = aes->type;
705
706	/* Copy the key to the LSB */
707	ret = ccp_init_dm_workarea(&key, cmd_q,
708				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
709				   DMA_TO_DEVICE);
710	if (ret)
711		return ret;
712
713	dm_offset = CCP_SB_BYTES - aes->key_len;
714	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
715	if (ret)
716		goto e_key;
717	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
718			     CCP_PASSTHRU_BYTESWAP_256BIT);
719	if (ret) {
720		cmd->engine_error = cmd_q->cmd_error;
721		goto e_key;
722	}
723
724	/* Copy the context (IV) to the LSB.
725	 * There is an assumption here that the IV is 96 bits in length, plus
726	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
727	 */
728	ret = ccp_init_dm_workarea(&ctx, cmd_q,
729				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
730				   DMA_BIDIRECTIONAL);
731	if (ret)
732		goto e_key;
733
734	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
735	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
736	if (ret)
737		goto e_ctx;
738
739	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
740			     CCP_PASSTHRU_BYTESWAP_256BIT);
741	if (ret) {
742		cmd->engine_error = cmd_q->cmd_error;
743		goto e_ctx;
744	}
745
746	op.init = 1;
747	if (aes->aad_len > 0) {
748		/* Step 1: Run a GHASH over the Additional Authenticated Data */
749		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
750				    AES_BLOCK_SIZE,
751				    DMA_TO_DEVICE);
752		if (ret)
753			goto e_ctx;
754
755		op.u.aes.mode = CCP_AES_MODE_GHASH;
756		op.u.aes.action = CCP_AES_GHASHAAD;
757
758		while (aad.sg_wa.bytes_left) {
759			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
760
761			ret = cmd_q->ccp->vdata->perform->aes(&op);
762			if (ret) {
763				cmd->engine_error = cmd_q->cmd_error;
764				goto e_aad;
765			}
766
767			ccp_process_data(&aad, NULL, &op);
768			op.init = 0;
769		}
770	}
771
772	op.u.aes.mode = CCP_AES_MODE_GCTR;
773	op.u.aes.action = aes->action;
774
775	if (ilen > 0) {
776		/* Step 2: Run a GCTR over the plaintext */
777		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
778
779		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
780				    AES_BLOCK_SIZE,
781				    in_place ? DMA_BIDIRECTIONAL
782					     : DMA_TO_DEVICE);
783		if (ret)
784			goto e_aad;
785
786		if (in_place) {
787			dst = src;
788		} else {
789			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
790					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
791			if (ret)
792				goto e_src;
793		}
794
795		op.soc = 0;
796		op.eom = 0;
797		op.init = 1;
798		while (src.sg_wa.bytes_left) {
799			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
800			if (!src.sg_wa.bytes_left) {
801				unsigned int nbytes = ilen % AES_BLOCK_SIZE;
802
803				if (nbytes) {
804					op.eom = 1;
805					op.u.aes.size = (nbytes * 8) - 1;
806				}
807			}
808
809			ret = cmd_q->ccp->vdata->perform->aes(&op);
810			if (ret) {
811				cmd->engine_error = cmd_q->cmd_error;
812				goto e_dst;
813			}
814
815			ccp_process_data(&src, &dst, &op);
816			op.init = 0;
817		}
818	}
819
820	/* Step 3: Update the IV portion of the context with the original IV */
821	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
822			       CCP_PASSTHRU_BYTESWAP_256BIT);
823	if (ret) {
824		cmd->engine_error = cmd_q->cmd_error;
825		goto e_dst;
826	}
827
828	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
829	if (ret)
830		goto e_dst;
831
832	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
833			     CCP_PASSTHRU_BYTESWAP_256BIT);
834	if (ret) {
835		cmd->engine_error = cmd_q->cmd_error;
836		goto e_dst;
837	}
838
839	/* Step 4: Concatenate the lengths of the AAD and source, and
840	 * hash that 16 byte buffer.
841	 */
842	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
843				   DMA_BIDIRECTIONAL);
844	if (ret)
845		goto e_dst;
846	final = (__be64 *)final_wa.address;
847	final[0] = cpu_to_be64(aes->aad_len * 8);
848	final[1] = cpu_to_be64(ilen * 8);
849
850	memset(&op, 0, sizeof(op));
851	op.cmd_q = cmd_q;
852	op.jobid = jobid;
853	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
854	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
855	op.init = 1;
856	op.u.aes.type = aes->type;
857	op.u.aes.mode = CCP_AES_MODE_GHASH;
858	op.u.aes.action = CCP_AES_GHASHFINAL;
859	op.src.type = CCP_MEMTYPE_SYSTEM;
860	op.src.u.dma.address = final_wa.dma.address;
861	op.src.u.dma.length = AES_BLOCK_SIZE;
862	op.dst.type = CCP_MEMTYPE_SYSTEM;
863	op.dst.u.dma.address = final_wa.dma.address;
864	op.dst.u.dma.length = AES_BLOCK_SIZE;
865	op.eom = 1;
866	op.u.aes.size = 0;
867	ret = cmd_q->ccp->vdata->perform->aes(&op);
868	if (ret)
869		goto e_final_wa;
870
871	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
872		/* Put the ciphered tag after the ciphertext. */
873		ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
874	} else {
875		/* Does this ciphered tag match the input? */
876		ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
877					   DMA_BIDIRECTIONAL);
878		if (ret)
879			goto e_final_wa;
880		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
881		if (ret) {
882			ccp_dm_free(&tag);
883			goto e_final_wa;
884		}
885
886		ret = crypto_memneq(tag.address, final_wa.address,
887				    authsize) ? -EBADMSG : 0;
888		ccp_dm_free(&tag);
889	}
890
891e_final_wa:
892	ccp_dm_free(&final_wa);
893
894e_dst:
895	if (ilen > 0 && !in_place)
896		ccp_free_data(&dst, cmd_q);
897
898e_src:
899	if (ilen > 0)
900		ccp_free_data(&src, cmd_q);
901
902e_aad:
903	if (aes->aad_len)
904		ccp_free_data(&aad, cmd_q);
905
906e_ctx:
907	ccp_dm_free(&ctx);
908
909e_key:
910	ccp_dm_free(&key);
911
912	return ret;
913}
914
915static noinline_for_stack int
916ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
917{
918	struct ccp_aes_engine *aes = &cmd->u.aes;
919	struct ccp_dm_workarea key, ctx;
920	struct ccp_data src, dst;
921	struct ccp_op op;
922	unsigned int dm_offset;
923	bool in_place = false;
924	int ret;
925
926	if (!((aes->key_len == AES_KEYSIZE_128) ||
927	      (aes->key_len == AES_KEYSIZE_192) ||
928	      (aes->key_len == AES_KEYSIZE_256)))
929		return -EINVAL;
930
931	if (((aes->mode == CCP_AES_MODE_ECB) ||
932	     (aes->mode == CCP_AES_MODE_CBC)) &&
933	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
934		return -EINVAL;
935
936	if (!aes->key || !aes->src || !aes->dst)
937		return -EINVAL;
938
939	if (aes->mode != CCP_AES_MODE_ECB) {
940		if (aes->iv_len != AES_BLOCK_SIZE)
941			return -EINVAL;
942
943		if (!aes->iv)
944			return -EINVAL;
945	}
946
947	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
948	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
949
950	ret = -EIO;
951	memset(&op, 0, sizeof(op));
952	op.cmd_q = cmd_q;
953	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
954	op.sb_key = cmd_q->sb_key;
955	op.sb_ctx = cmd_q->sb_ctx;
956	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
957	op.u.aes.type = aes->type;
958	op.u.aes.mode = aes->mode;
959	op.u.aes.action = aes->action;
960
961	/* All supported key sizes fit in a single (32-byte) SB entry
962	 * and must be in little endian format. Use the 256-bit byte
963	 * swap passthru option to convert from big endian to little
964	 * endian.
965	 */
966	ret = ccp_init_dm_workarea(&key, cmd_q,
967				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
968				   DMA_TO_DEVICE);
969	if (ret)
970		return ret;
971
972	dm_offset = CCP_SB_BYTES - aes->key_len;
973	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
974	if (ret)
975		goto e_key;
976	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
977			     CCP_PASSTHRU_BYTESWAP_256BIT);
978	if (ret) {
979		cmd->engine_error = cmd_q->cmd_error;
980		goto e_key;
981	}
982
983	/* The AES context fits in a single (32-byte) SB entry and
984	 * must be in little endian format. Use the 256-bit byte swap
985	 * passthru option to convert from big endian to little endian.
986	 */
987	ret = ccp_init_dm_workarea(&ctx, cmd_q,
988				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
989				   DMA_BIDIRECTIONAL);
990	if (ret)
991		goto e_key;
992
993	if (aes->mode != CCP_AES_MODE_ECB) {
994		/* Load the AES context - convert to LE */
995		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
996		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
997		if (ret)
998			goto e_ctx;
999		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1000				     CCP_PASSTHRU_BYTESWAP_256BIT);
1001		if (ret) {
1002			cmd->engine_error = cmd_q->cmd_error;
1003			goto e_ctx;
1004		}
1005	}
1006	switch (aes->mode) {
1007	case CCP_AES_MODE_CFB: /* CFB128 only */
1008	case CCP_AES_MODE_CTR:
1009		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
1010		break;
1011	default:
1012		op.u.aes.size = 0;
1013	}
1014
1015	/* Prepare the input and output data workareas. For in-place
1016	 * operations we need to set the dma direction to BIDIRECTIONAL
1017	 * and copy the src workarea to the dst workarea.
1018	 */
1019	if (sg_virt(aes->src) == sg_virt(aes->dst))
1020		in_place = true;
1021
1022	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1023			    AES_BLOCK_SIZE,
1024			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1025	if (ret)
1026		goto e_ctx;
1027
1028	if (in_place) {
1029		dst = src;
1030	} else {
1031		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1032				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1033		if (ret)
1034			goto e_src;
1035	}
1036
1037	/* Send data to the CCP AES engine */
1038	while (src.sg_wa.bytes_left) {
1039		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1040		if (!src.sg_wa.bytes_left) {
1041			op.eom = 1;
1042
1043			/* Since we don't retrieve the AES context in ECB
1044			 * mode we have to wait for the operation to complete
1045			 * on the last piece of data
1046			 */
1047			if (aes->mode == CCP_AES_MODE_ECB)
1048				op.soc = 1;
1049		}
1050
1051		ret = cmd_q->ccp->vdata->perform->aes(&op);
1052		if (ret) {
1053			cmd->engine_error = cmd_q->cmd_error;
1054			goto e_dst;
1055		}
1056
1057		ccp_process_data(&src, &dst, &op);
1058	}
1059
1060	if (aes->mode != CCP_AES_MODE_ECB) {
1061		/* Retrieve the AES context - convert from LE to BE using
1062		 * 32-byte (256-bit) byteswapping
1063		 */
1064		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1065				       CCP_PASSTHRU_BYTESWAP_256BIT);
1066		if (ret) {
1067			cmd->engine_error = cmd_q->cmd_error;
1068			goto e_dst;
1069		}
1070
1071		/* ...but we only need AES_BLOCK_SIZE bytes */
1072		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1073		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1074	}
1075
1076e_dst:
1077	if (!in_place)
1078		ccp_free_data(&dst, cmd_q);
1079
1080e_src:
1081	ccp_free_data(&src, cmd_q);
1082
1083e_ctx:
1084	ccp_dm_free(&ctx);
1085
1086e_key:
1087	ccp_dm_free(&key);
1088
1089	return ret;
1090}
1091
1092static noinline_for_stack int
1093ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1094{
1095	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1096	struct ccp_dm_workarea key, ctx;
1097	struct ccp_data src, dst;
1098	struct ccp_op op;
1099	unsigned int unit_size, dm_offset;
1100	bool in_place = false;
1101	unsigned int sb_count;
1102	enum ccp_aes_type aestype;
1103	int ret;
1104
1105	switch (xts->unit_size) {
1106	case CCP_XTS_AES_UNIT_SIZE_16:
1107		unit_size = 16;
1108		break;
1109	case CCP_XTS_AES_UNIT_SIZE_512:
1110		unit_size = 512;
1111		break;
1112	case CCP_XTS_AES_UNIT_SIZE_1024:
1113		unit_size = 1024;
1114		break;
1115	case CCP_XTS_AES_UNIT_SIZE_2048:
1116		unit_size = 2048;
1117		break;
1118	case CCP_XTS_AES_UNIT_SIZE_4096:
1119		unit_size = 4096;
1120		break;
1121
1122	default:
1123		return -EINVAL;
1124	}
1125
1126	if (xts->key_len == AES_KEYSIZE_128)
1127		aestype = CCP_AES_TYPE_128;
1128	else if (xts->key_len == AES_KEYSIZE_256)
1129		aestype = CCP_AES_TYPE_256;
1130	else
1131		return -EINVAL;
1132
1133	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1134		return -EINVAL;
1135
1136	if (xts->iv_len != AES_BLOCK_SIZE)
1137		return -EINVAL;
1138
1139	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1140		return -EINVAL;
1141
1142	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1143	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1144
1145	ret = -EIO;
1146	memset(&op, 0, sizeof(op));
1147	op.cmd_q = cmd_q;
1148	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1149	op.sb_key = cmd_q->sb_key;
1150	op.sb_ctx = cmd_q->sb_ctx;
1151	op.init = 1;
1152	op.u.xts.type = aestype;
1153	op.u.xts.action = xts->action;
1154	op.u.xts.unit_size = xts->unit_size;
1155
1156	/* A version 3 device only supports 128-bit keys, which fits into a
1157	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1158	 * SB entries.
1159	 */
1160	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1161		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1162	else
1163		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1164	ret = ccp_init_dm_workarea(&key, cmd_q,
1165				   sb_count * CCP_SB_BYTES,
1166				   DMA_TO_DEVICE);
1167	if (ret)
1168		return ret;
1169
1170	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1171		/* All supported key sizes must be in little endian format.
1172		 * Use the 256-bit byte swap passthru option to convert from
1173		 * big endian to little endian.
1174		 */
1175		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1176		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1177		if (ret)
1178			goto e_key;
1179		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1180		if (ret)
1181			goto e_key;
1182	} else {
1183		/* Version 5 CCPs use a 512-bit space for the key: each portion
1184		 * occupies 256 bits, or one entire slot, and is zero-padded.
1185		 */
1186		unsigned int pad;
1187
1188		dm_offset = CCP_SB_BYTES;
1189		pad = dm_offset - xts->key_len;
1190		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1191		if (ret)
1192			goto e_key;
1193		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1194				      xts->key_len, xts->key_len);
1195		if (ret)
1196			goto e_key;
1197	}
1198	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1199			     CCP_PASSTHRU_BYTESWAP_256BIT);
1200	if (ret) {
1201		cmd->engine_error = cmd_q->cmd_error;
1202		goto e_key;
1203	}
1204
1205	/* The AES context fits in a single (32-byte) SB entry and
1206	 * for XTS is already in little endian format so no byte swapping
1207	 * is needed.
1208	 */
1209	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1210				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1211				   DMA_BIDIRECTIONAL);
1212	if (ret)
1213		goto e_key;
1214
1215	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1216	if (ret)
1217		goto e_ctx;
1218	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1219			     CCP_PASSTHRU_BYTESWAP_NOOP);
1220	if (ret) {
1221		cmd->engine_error = cmd_q->cmd_error;
1222		goto e_ctx;
1223	}
1224
1225	/* Prepare the input and output data workareas. For in-place
1226	 * operations we need to set the dma direction to BIDIRECTIONAL
1227	 * and copy the src workarea to the dst workarea.
1228	 */
1229	if (sg_virt(xts->src) == sg_virt(xts->dst))
1230		in_place = true;
1231
1232	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1233			    unit_size,
1234			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1235	if (ret)
1236		goto e_ctx;
1237
1238	if (in_place) {
1239		dst = src;
1240	} else {
1241		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1242				    unit_size, DMA_FROM_DEVICE);
1243		if (ret)
1244			goto e_src;
1245	}
1246
1247	/* Send data to the CCP AES engine */
1248	while (src.sg_wa.bytes_left) {
1249		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1250		if (!src.sg_wa.bytes_left)
1251			op.eom = 1;
1252
1253		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1254		if (ret) {
1255			cmd->engine_error = cmd_q->cmd_error;
1256			goto e_dst;
1257		}
1258
1259		ccp_process_data(&src, &dst, &op);
1260	}
1261
1262	/* Retrieve the AES context - convert from LE to BE using
1263	 * 32-byte (256-bit) byteswapping
1264	 */
1265	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1266			       CCP_PASSTHRU_BYTESWAP_256BIT);
1267	if (ret) {
1268		cmd->engine_error = cmd_q->cmd_error;
1269		goto e_dst;
1270	}
1271
1272	/* ...but we only need AES_BLOCK_SIZE bytes */
1273	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1274	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1275
1276e_dst:
1277	if (!in_place)
1278		ccp_free_data(&dst, cmd_q);
1279
1280e_src:
1281	ccp_free_data(&src, cmd_q);
1282
1283e_ctx:
1284	ccp_dm_free(&ctx);
1285
1286e_key:
1287	ccp_dm_free(&key);
1288
1289	return ret;
1290}
1291
1292static noinline_for_stack int
1293ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1294{
1295	struct ccp_des3_engine *des3 = &cmd->u.des3;
1296
1297	struct ccp_dm_workarea key, ctx;
1298	struct ccp_data src, dst;
1299	struct ccp_op op;
1300	unsigned int dm_offset;
1301	unsigned int len_singlekey;
1302	bool in_place = false;
1303	int ret;
1304
1305	/* Error checks */
1306	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1307		return -EINVAL;
1308
1309	if (!cmd_q->ccp->vdata->perform->des3)
1310		return -EINVAL;
1311
1312	if (des3->key_len != DES3_EDE_KEY_SIZE)
1313		return -EINVAL;
1314
1315	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1316		(des3->mode == CCP_DES3_MODE_CBC)) &&
1317		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1318		return -EINVAL;
1319
1320	if (!des3->key || !des3->src || !des3->dst)
1321		return -EINVAL;
1322
1323	if (des3->mode != CCP_DES3_MODE_ECB) {
1324		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1325			return -EINVAL;
1326
1327		if (!des3->iv)
1328			return -EINVAL;
1329	}
1330
1331	/* Zero out all the fields of the command desc */
1332	memset(&op, 0, sizeof(op));
1333
1334	/* Set up the Function field */
1335	op.cmd_q = cmd_q;
1336	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1337	op.sb_key = cmd_q->sb_key;
1338
1339	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1340	op.u.des3.type = des3->type;
1341	op.u.des3.mode = des3->mode;
1342	op.u.des3.action = des3->action;
1343
1344	/*
1345	 * All supported key sizes fit in a single (32-byte) KSB entry and
1346	 * (like AES) must be in little endian format. Use the 256-bit byte
1347	 * swap passthru option to convert from big endian to little endian.
1348	 */
1349	ret = ccp_init_dm_workarea(&key, cmd_q,
1350				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1351				   DMA_TO_DEVICE);
1352	if (ret)
1353		return ret;
1354
1355	/*
1356	 * The contents of the key triplet are in the reverse order of what
1357	 * is required by the engine. Copy the 3 pieces individually to put
1358	 * them where they belong.
1359	 */
1360	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1361
1362	len_singlekey = des3->key_len / 3;
1363	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1364			      des3->key, 0, len_singlekey);
1365	if (ret)
1366		goto e_key;
1367	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1368			      des3->key, len_singlekey, len_singlekey);
1369	if (ret)
1370		goto e_key;
1371	ret = ccp_set_dm_area(&key, dm_offset,
1372			      des3->key, 2 * len_singlekey, len_singlekey);
1373	if (ret)
1374		goto e_key;
1375
1376	/* Copy the key to the SB */
1377	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1378			     CCP_PASSTHRU_BYTESWAP_256BIT);
1379	if (ret) {
1380		cmd->engine_error = cmd_q->cmd_error;
1381		goto e_key;
1382	}
1383
1384	/*
1385	 * The DES3 context fits in a single (32-byte) KSB entry and
1386	 * must be in little endian format. Use the 256-bit byte swap
1387	 * passthru option to convert from big endian to little endian.
1388	 */
1389	if (des3->mode != CCP_DES3_MODE_ECB) {
1390		op.sb_ctx = cmd_q->sb_ctx;
1391
1392		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1393					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1394					   DMA_BIDIRECTIONAL);
1395		if (ret)
1396			goto e_key;
1397
1398		/* Load the context into the LSB */
1399		dm_offset = CCP_SB_BYTES - des3->iv_len;
1400		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1401				      des3->iv_len);
1402		if (ret)
1403			goto e_ctx;
1404
1405		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1406				     CCP_PASSTHRU_BYTESWAP_256BIT);
1407		if (ret) {
1408			cmd->engine_error = cmd_q->cmd_error;
1409			goto e_ctx;
1410		}
1411	}
1412
1413	/*
1414	 * Prepare the input and output data workareas. For in-place
1415	 * operations we need to set the dma direction to BIDIRECTIONAL
1416	 * and copy the src workarea to the dst workarea.
1417	 */
1418	if (sg_virt(des3->src) == sg_virt(des3->dst))
1419		in_place = true;
1420
1421	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1422			DES3_EDE_BLOCK_SIZE,
1423			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1424	if (ret)
1425		goto e_ctx;
1426
1427	if (in_place)
1428		dst = src;
1429	else {
1430		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1431				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1432		if (ret)
1433			goto e_src;
1434	}
1435
1436	/* Send data to the CCP DES3 engine */
1437	while (src.sg_wa.bytes_left) {
1438		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1439		if (!src.sg_wa.bytes_left) {
1440			op.eom = 1;
1441
1442			/* Since we don't retrieve the context in ECB mode
1443			 * we have to wait for the operation to complete
1444			 * on the last piece of data
1445			 */
1446			op.soc = 0;
1447		}
1448
1449		ret = cmd_q->ccp->vdata->perform->des3(&op);
1450		if (ret) {
1451			cmd->engine_error = cmd_q->cmd_error;
1452			goto e_dst;
1453		}
1454
1455		ccp_process_data(&src, &dst, &op);
1456	}
1457
1458	if (des3->mode != CCP_DES3_MODE_ECB) {
1459		/* Retrieve the context and make BE */
1460		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1461				       CCP_PASSTHRU_BYTESWAP_256BIT);
1462		if (ret) {
1463			cmd->engine_error = cmd_q->cmd_error;
1464			goto e_dst;
1465		}
1466
1467		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1468		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1469				DES3_EDE_BLOCK_SIZE);
1470	}
1471e_dst:
1472	if (!in_place)
1473		ccp_free_data(&dst, cmd_q);
1474
1475e_src:
1476	ccp_free_data(&src, cmd_q);
1477
1478e_ctx:
1479	if (des3->mode != CCP_DES3_MODE_ECB)
1480		ccp_dm_free(&ctx);
1481
1482e_key:
1483	ccp_dm_free(&key);
1484
1485	return ret;
1486}
1487
1488static noinline_for_stack int
1489ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1490{
1491	struct ccp_sha_engine *sha = &cmd->u.sha;
1492	struct ccp_dm_workarea ctx;
1493	struct ccp_data src;
1494	struct ccp_op op;
1495	unsigned int ioffset, ooffset;
1496	unsigned int digest_size;
1497	int sb_count;
1498	const void *init;
1499	u64 block_size;
1500	int ctx_size;
1501	int ret;
1502
1503	switch (sha->type) {
1504	case CCP_SHA_TYPE_1:
1505		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1506			return -EINVAL;
1507		block_size = SHA1_BLOCK_SIZE;
1508		break;
1509	case CCP_SHA_TYPE_224:
1510		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1511			return -EINVAL;
1512		block_size = SHA224_BLOCK_SIZE;
1513		break;
1514	case CCP_SHA_TYPE_256:
1515		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1516			return -EINVAL;
1517		block_size = SHA256_BLOCK_SIZE;
1518		break;
1519	case CCP_SHA_TYPE_384:
1520		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1521		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1522			return -EINVAL;
1523		block_size = SHA384_BLOCK_SIZE;
1524		break;
1525	case CCP_SHA_TYPE_512:
1526		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1527		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1528			return -EINVAL;
1529		block_size = SHA512_BLOCK_SIZE;
1530		break;
1531	default:
1532		return -EINVAL;
1533	}
1534
1535	if (!sha->ctx)
1536		return -EINVAL;
1537
1538	if (!sha->final && (sha->src_len & (block_size - 1)))
1539		return -EINVAL;
1540
1541	/* The version 3 device can't handle zero-length input */
1542	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1543
1544		if (!sha->src_len) {
1545			unsigned int digest_len;
1546			const u8 *sha_zero;
1547
1548			/* Not final, just return */
1549			if (!sha->final)
1550				return 0;
1551
1552			/* CCP can't do a zero length sha operation so the
1553			 * caller must buffer the data.
1554			 */
1555			if (sha->msg_bits)
1556				return -EINVAL;
1557
1558			/* The CCP cannot perform zero-length sha operations
1559			 * so the caller is required to buffer data for the
1560			 * final operation. However, a sha operation for a
1561			 * message with a total length of zero is valid so
1562			 * known values are required to supply the result.
1563			 */
1564			switch (sha->type) {
1565			case CCP_SHA_TYPE_1:
1566				sha_zero = sha1_zero_message_hash;
1567				digest_len = SHA1_DIGEST_SIZE;
1568				break;
1569			case CCP_SHA_TYPE_224:
1570				sha_zero = sha224_zero_message_hash;
1571				digest_len = SHA224_DIGEST_SIZE;
1572				break;
1573			case CCP_SHA_TYPE_256:
1574				sha_zero = sha256_zero_message_hash;
1575				digest_len = SHA256_DIGEST_SIZE;
1576				break;
1577			default:
1578				return -EINVAL;
1579			}
1580
1581			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1582						 digest_len, 1);
1583
1584			return 0;
1585		}
1586	}
1587
1588	/* Set variables used throughout */
1589	switch (sha->type) {
1590	case CCP_SHA_TYPE_1:
1591		digest_size = SHA1_DIGEST_SIZE;
1592		init = (void *) ccp_sha1_init;
1593		ctx_size = SHA1_DIGEST_SIZE;
1594		sb_count = 1;
1595		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1596			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1597		else
1598			ooffset = ioffset = 0;
1599		break;
1600	case CCP_SHA_TYPE_224:
1601		digest_size = SHA224_DIGEST_SIZE;
1602		init = (void *) ccp_sha224_init;
1603		ctx_size = SHA256_DIGEST_SIZE;
1604		sb_count = 1;
1605		ioffset = 0;
1606		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1607			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1608		else
1609			ooffset = 0;
1610		break;
1611	case CCP_SHA_TYPE_256:
1612		digest_size = SHA256_DIGEST_SIZE;
1613		init = (void *) ccp_sha256_init;
1614		ctx_size = SHA256_DIGEST_SIZE;
1615		sb_count = 1;
1616		ooffset = ioffset = 0;
1617		break;
1618	case CCP_SHA_TYPE_384:
1619		digest_size = SHA384_DIGEST_SIZE;
1620		init = (void *) ccp_sha384_init;
1621		ctx_size = SHA512_DIGEST_SIZE;
1622		sb_count = 2;
1623		ioffset = 0;
1624		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1625		break;
1626	case CCP_SHA_TYPE_512:
1627		digest_size = SHA512_DIGEST_SIZE;
1628		init = (void *) ccp_sha512_init;
1629		ctx_size = SHA512_DIGEST_SIZE;
1630		sb_count = 2;
1631		ooffset = ioffset = 0;
1632		break;
1633	default:
1634		ret = -EINVAL;
1635		goto e_data;
1636	}
1637
1638	/* For zero-length plaintext the src pointer is ignored;
1639	 * otherwise both parts must be valid
1640	 */
1641	if (sha->src_len && !sha->src)
1642		return -EINVAL;
1643
1644	memset(&op, 0, sizeof(op));
1645	op.cmd_q = cmd_q;
1646	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1647	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1648	op.u.sha.type = sha->type;
1649	op.u.sha.msg_bits = sha->msg_bits;
1650
1651	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1652	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1653	 * first slot, and the left half in the second. Each portion must then
1654	 * be in little endian format: use the 256-bit byte swap option.
1655	 */
1656	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1657				   DMA_BIDIRECTIONAL);
1658	if (ret)
1659		return ret;
1660	if (sha->first) {
1661		switch (sha->type) {
1662		case CCP_SHA_TYPE_1:
1663		case CCP_SHA_TYPE_224:
1664		case CCP_SHA_TYPE_256:
1665			memcpy(ctx.address + ioffset, init, ctx_size);
1666			break;
1667		case CCP_SHA_TYPE_384:
1668		case CCP_SHA_TYPE_512:
1669			memcpy(ctx.address + ctx_size / 2, init,
1670			       ctx_size / 2);
1671			memcpy(ctx.address, init + ctx_size / 2,
1672			       ctx_size / 2);
1673			break;
1674		default:
1675			ret = -EINVAL;
1676			goto e_ctx;
1677		}
1678	} else {
1679		/* Restore the context */
1680		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1681				      sb_count * CCP_SB_BYTES);
1682		if (ret)
1683			goto e_ctx;
1684	}
1685
1686	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1687			     CCP_PASSTHRU_BYTESWAP_256BIT);
1688	if (ret) {
1689		cmd->engine_error = cmd_q->cmd_error;
1690		goto e_ctx;
1691	}
1692
1693	if (sha->src) {
1694		/* Send data to the CCP SHA engine; block_size is set above */
1695		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1696				    block_size, DMA_TO_DEVICE);
1697		if (ret)
1698			goto e_ctx;
1699
1700		while (src.sg_wa.bytes_left) {
1701			ccp_prepare_data(&src, NULL, &op, block_size, false);
1702			if (sha->final && !src.sg_wa.bytes_left)
1703				op.eom = 1;
1704
1705			ret = cmd_q->ccp->vdata->perform->sha(&op);
1706			if (ret) {
1707				cmd->engine_error = cmd_q->cmd_error;
1708				goto e_data;
1709			}
1710
1711			ccp_process_data(&src, NULL, &op);
1712		}
1713	} else {
1714		op.eom = 1;
1715		ret = cmd_q->ccp->vdata->perform->sha(&op);
1716		if (ret) {
1717			cmd->engine_error = cmd_q->cmd_error;
1718			goto e_data;
1719		}
1720	}
1721
1722	/* Retrieve the SHA context - convert from LE to BE using
1723	 * 32-byte (256-bit) byteswapping to BE
1724	 */
1725	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1726			       CCP_PASSTHRU_BYTESWAP_256BIT);
1727	if (ret) {
1728		cmd->engine_error = cmd_q->cmd_error;
1729		goto e_data;
1730	}
1731
1732	if (sha->final) {
1733		/* Finishing up, so get the digest */
1734		switch (sha->type) {
1735		case CCP_SHA_TYPE_1:
1736		case CCP_SHA_TYPE_224:
1737		case CCP_SHA_TYPE_256:
1738			ccp_get_dm_area(&ctx, ooffset,
1739					sha->ctx, 0,
1740					digest_size);
1741			break;
1742		case CCP_SHA_TYPE_384:
1743		case CCP_SHA_TYPE_512:
1744			ccp_get_dm_area(&ctx, 0,
1745					sha->ctx, LSB_ITEM_SIZE - ooffset,
1746					LSB_ITEM_SIZE);
1747			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1748					sha->ctx, 0,
1749					LSB_ITEM_SIZE - ooffset);
1750			break;
1751		default:
1752			ret = -EINVAL;
1753			goto e_data;
1754		}
1755	} else {
1756		/* Stash the context */
1757		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1758				sb_count * CCP_SB_BYTES);
1759	}
1760
1761	if (sha->final && sha->opad) {
1762		/* HMAC operation, recursively perform final SHA */
1763		struct ccp_cmd hmac_cmd;
1764		struct scatterlist sg;
1765		u8 *hmac_buf;
1766
1767		if (sha->opad_len != block_size) {
1768			ret = -EINVAL;
1769			goto e_data;
1770		}
1771
1772		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1773		if (!hmac_buf) {
1774			ret = -ENOMEM;
1775			goto e_data;
1776		}
1777		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1778
1779		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1780		switch (sha->type) {
1781		case CCP_SHA_TYPE_1:
1782		case CCP_SHA_TYPE_224:
1783		case CCP_SHA_TYPE_256:
1784			memcpy(hmac_buf + block_size,
1785			       ctx.address + ooffset,
1786			       digest_size);
1787			break;
1788		case CCP_SHA_TYPE_384:
1789		case CCP_SHA_TYPE_512:
1790			memcpy(hmac_buf + block_size,
1791			       ctx.address + LSB_ITEM_SIZE + ooffset,
1792			       LSB_ITEM_SIZE);
1793			memcpy(hmac_buf + block_size +
1794			       (LSB_ITEM_SIZE - ooffset),
1795			       ctx.address,
1796			       LSB_ITEM_SIZE);
1797			break;
1798		default:
1799			kfree(hmac_buf);
1800			ret = -EINVAL;
1801			goto e_data;
1802		}
1803
1804		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1805		hmac_cmd.engine = CCP_ENGINE_SHA;
1806		hmac_cmd.u.sha.type = sha->type;
1807		hmac_cmd.u.sha.ctx = sha->ctx;
1808		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1809		hmac_cmd.u.sha.src = &sg;
1810		hmac_cmd.u.sha.src_len = block_size + digest_size;
1811		hmac_cmd.u.sha.opad = NULL;
1812		hmac_cmd.u.sha.opad_len = 0;
1813		hmac_cmd.u.sha.first = 1;
1814		hmac_cmd.u.sha.final = 1;
1815		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1816
1817		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1818		if (ret)
1819			cmd->engine_error = hmac_cmd.engine_error;
1820
1821		kfree(hmac_buf);
1822	}
1823
1824e_data:
1825	if (sha->src)
1826		ccp_free_data(&src, cmd_q);
1827
1828e_ctx:
1829	ccp_dm_free(&ctx);
1830
1831	return ret;
1832}
1833
1834static noinline_for_stack int
1835ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1836{
1837	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1838	struct ccp_dm_workarea exp, src, dst;
1839	struct ccp_op op;
1840	unsigned int sb_count, i_len, o_len;
1841	int ret;
1842
1843	/* Check against the maximum allowable size, in bits */
1844	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1845		return -EINVAL;
1846
1847	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1848		return -EINVAL;
1849
1850	memset(&op, 0, sizeof(op));
1851	op.cmd_q = cmd_q;
1852	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1853
1854	/* The RSA modulus must precede the message being acted upon, so
1855	 * it must be copied to a DMA area where the message and the
1856	 * modulus can be concatenated.  Therefore the input buffer
1857	 * length required is twice the output buffer length (which
1858	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1859	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1860	 * required.
1861	 */
1862	o_len = 32 * ((rsa->key_size + 255) / 256);
1863	i_len = o_len * 2;
1864
1865	sb_count = 0;
1866	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1867		/* sb_count is the number of storage block slots required
1868		 * for the modulus.
1869		 */
1870		sb_count = o_len / CCP_SB_BYTES;
1871		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1872								sb_count);
1873		if (!op.sb_key)
1874			return -EIO;
1875	} else {
1876		/* A version 5 device allows a modulus size that will not fit
1877		 * in the LSB, so the command will transfer it from memory.
1878		 * Set the sb key to the default, even though it's not used.
1879		 */
1880		op.sb_key = cmd_q->sb_key;
1881	}
1882
1883	/* The RSA exponent must be in little endian format. Reverse its
1884	 * byte order.
1885	 */
1886	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1887	if (ret)
1888		goto e_sb;
1889
1890	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1891	if (ret)
1892		goto e_exp;
1893
1894	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1895		/* Copy the exponent to the local storage block, using
1896		 * as many 32-byte blocks as were allocated above. It's
1897		 * already little endian, so no further change is required.
1898		 */
1899		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1900				     CCP_PASSTHRU_BYTESWAP_NOOP);
1901		if (ret) {
1902			cmd->engine_error = cmd_q->cmd_error;
1903			goto e_exp;
1904		}
1905	} else {
1906		/* The exponent can be retrieved from memory via DMA. */
1907		op.exp.u.dma.address = exp.dma.address;
1908		op.exp.u.dma.offset = 0;
1909	}
1910
1911	/* Concatenate the modulus and the message. Both the modulus and
1912	 * the operands must be in little endian format.  Since the input
1913	 * is in big endian format it must be converted.
1914	 */
1915	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1916	if (ret)
1917		goto e_exp;
1918
1919	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1920	if (ret)
1921		goto e_src;
1922	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1923	if (ret)
1924		goto e_src;
1925
1926	/* Prepare the output area for the operation */
1927	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1928	if (ret)
1929		goto e_src;
1930
1931	op.soc = 1;
1932	op.src.u.dma.address = src.dma.address;
1933	op.src.u.dma.offset = 0;
1934	op.src.u.dma.length = i_len;
1935	op.dst.u.dma.address = dst.dma.address;
1936	op.dst.u.dma.offset = 0;
1937	op.dst.u.dma.length = o_len;
1938
1939	op.u.rsa.mod_size = rsa->key_size;
1940	op.u.rsa.input_len = i_len;
1941
1942	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1943	if (ret) {
1944		cmd->engine_error = cmd_q->cmd_error;
1945		goto e_dst;
1946	}
1947
1948	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1949
1950e_dst:
1951	ccp_dm_free(&dst);
1952
1953e_src:
1954	ccp_dm_free(&src);
1955
1956e_exp:
1957	ccp_dm_free(&exp);
1958
1959e_sb:
1960	if (sb_count)
1961		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1962
1963	return ret;
1964}
1965
1966static noinline_for_stack int
1967ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1968{
1969	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1970	struct ccp_dm_workarea mask;
1971	struct ccp_data src, dst;
1972	struct ccp_op op;
1973	bool in_place = false;
1974	unsigned int i;
1975	int ret = 0;
1976
1977	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1978		return -EINVAL;
1979
1980	if (!pt->src || !pt->dst)
1981		return -EINVAL;
1982
1983	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1984		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1985			return -EINVAL;
1986		if (!pt->mask)
1987			return -EINVAL;
1988	}
1989
1990	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1991
1992	memset(&op, 0, sizeof(op));
1993	op.cmd_q = cmd_q;
1994	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1995
1996	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1997		/* Load the mask */
1998		op.sb_key = cmd_q->sb_key;
1999
2000		ret = ccp_init_dm_workarea(&mask, cmd_q,
2001					   CCP_PASSTHRU_SB_COUNT *
2002					   CCP_SB_BYTES,
2003					   DMA_TO_DEVICE);
2004		if (ret)
2005			return ret;
2006
2007		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
2008		if (ret)
2009			goto e_mask;
2010		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2011				     CCP_PASSTHRU_BYTESWAP_NOOP);
2012		if (ret) {
2013			cmd->engine_error = cmd_q->cmd_error;
2014			goto e_mask;
2015		}
2016	}
2017
2018	/* Prepare the input and output data workareas. For in-place
2019	 * operations we need to set the dma direction to BIDIRECTIONAL
2020	 * and copy the src workarea to the dst workarea.
2021	 */
2022	if (sg_virt(pt->src) == sg_virt(pt->dst))
2023		in_place = true;
2024
2025	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2026			    CCP_PASSTHRU_MASKSIZE,
2027			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2028	if (ret)
2029		goto e_mask;
2030
2031	if (in_place) {
2032		dst = src;
2033	} else {
2034		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2035				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2036		if (ret)
2037			goto e_src;
2038	}
2039
2040	/* Send data to the CCP Passthru engine
2041	 *   Because the CCP engine works on a single source and destination
2042	 *   dma address at a time, each entry in the source scatterlist
2043	 *   (after the dma_map_sg call) must be less than or equal to the
2044	 *   (remaining) length in the destination scatterlist entry and the
2045	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2046	 */
2047	dst.sg_wa.sg_used = 0;
2048	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2049		if (!dst.sg_wa.sg ||
2050		    (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) {
2051			ret = -EINVAL;
2052			goto e_dst;
2053		}
2054
2055		if (i == src.sg_wa.dma_count) {
2056			op.eom = 1;
2057			op.soc = 1;
2058		}
2059
2060		op.src.type = CCP_MEMTYPE_SYSTEM;
2061		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2062		op.src.u.dma.offset = 0;
2063		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2064
2065		op.dst.type = CCP_MEMTYPE_SYSTEM;
2066		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2067		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2068		op.dst.u.dma.length = op.src.u.dma.length;
2069
2070		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2071		if (ret) {
2072			cmd->engine_error = cmd_q->cmd_error;
2073			goto e_dst;
2074		}
2075
2076		dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg);
2077		if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) {
2078			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2079			dst.sg_wa.sg_used = 0;
2080		}
2081		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2082	}
2083
2084e_dst:
2085	if (!in_place)
2086		ccp_free_data(&dst, cmd_q);
2087
2088e_src:
2089	ccp_free_data(&src, cmd_q);
2090
2091e_mask:
2092	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2093		ccp_dm_free(&mask);
2094
2095	return ret;
2096}
2097
2098static noinline_for_stack int
2099ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2100				      struct ccp_cmd *cmd)
2101{
2102	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2103	struct ccp_dm_workarea mask;
2104	struct ccp_op op;
2105	int ret;
2106
2107	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2108		return -EINVAL;
2109
2110	if (!pt->src_dma || !pt->dst_dma)
2111		return -EINVAL;
2112
2113	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2114		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2115			return -EINVAL;
2116		if (!pt->mask)
2117			return -EINVAL;
2118	}
2119
2120	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2121
2122	memset(&op, 0, sizeof(op));
2123	op.cmd_q = cmd_q;
2124	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2125
2126	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2127		/* Load the mask */
2128		op.sb_key = cmd_q->sb_key;
2129
2130		mask.length = pt->mask_len;
2131		mask.dma.address = pt->mask;
2132		mask.dma.length = pt->mask_len;
2133
2134		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2135				     CCP_PASSTHRU_BYTESWAP_NOOP);
2136		if (ret) {
2137			cmd->engine_error = cmd_q->cmd_error;
2138			return ret;
2139		}
2140	}
2141
2142	/* Send data to the CCP Passthru engine */
2143	op.eom = 1;
2144	op.soc = 1;
2145
2146	op.src.type = CCP_MEMTYPE_SYSTEM;
2147	op.src.u.dma.address = pt->src_dma;
2148	op.src.u.dma.offset = 0;
2149	op.src.u.dma.length = pt->src_len;
2150
2151	op.dst.type = CCP_MEMTYPE_SYSTEM;
2152	op.dst.u.dma.address = pt->dst_dma;
2153	op.dst.u.dma.offset = 0;
2154	op.dst.u.dma.length = pt->src_len;
2155
2156	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2157	if (ret)
2158		cmd->engine_error = cmd_q->cmd_error;
2159
2160	return ret;
2161}
2162
2163static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2164{
2165	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2166	struct ccp_dm_workarea src, dst;
2167	struct ccp_op op;
2168	int ret;
2169	u8 *save;
2170
2171	if (!ecc->u.mm.operand_1 ||
2172	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2173		return -EINVAL;
2174
2175	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2176		if (!ecc->u.mm.operand_2 ||
2177		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2178			return -EINVAL;
2179
2180	if (!ecc->u.mm.result ||
2181	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2182		return -EINVAL;
2183
2184	memset(&op, 0, sizeof(op));
2185	op.cmd_q = cmd_q;
2186	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2187
2188	/* Concatenate the modulus and the operands. Both the modulus and
2189	 * the operands must be in little endian format.  Since the input
2190	 * is in big endian format it must be converted and placed in a
2191	 * fixed length buffer.
2192	 */
2193	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2194				   DMA_TO_DEVICE);
2195	if (ret)
2196		return ret;
2197
2198	/* Save the workarea address since it is updated in order to perform
2199	 * the concatenation
2200	 */
2201	save = src.address;
2202
2203	/* Copy the ECC modulus */
2204	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2205	if (ret)
2206		goto e_src;
2207	src.address += CCP_ECC_OPERAND_SIZE;
2208
2209	/* Copy the first operand */
2210	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2211				      ecc->u.mm.operand_1_len);
2212	if (ret)
2213		goto e_src;
2214	src.address += CCP_ECC_OPERAND_SIZE;
2215
2216	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2217		/* Copy the second operand */
2218		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2219					      ecc->u.mm.operand_2_len);
2220		if (ret)
2221			goto e_src;
2222		src.address += CCP_ECC_OPERAND_SIZE;
2223	}
2224
2225	/* Restore the workarea address */
2226	src.address = save;
2227
2228	/* Prepare the output area for the operation */
2229	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2230				   DMA_FROM_DEVICE);
2231	if (ret)
2232		goto e_src;
2233
2234	op.soc = 1;
2235	op.src.u.dma.address = src.dma.address;
2236	op.src.u.dma.offset = 0;
2237	op.src.u.dma.length = src.length;
2238	op.dst.u.dma.address = dst.dma.address;
2239	op.dst.u.dma.offset = 0;
2240	op.dst.u.dma.length = dst.length;
2241
2242	op.u.ecc.function = cmd->u.ecc.function;
2243
2244	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2245	if (ret) {
2246		cmd->engine_error = cmd_q->cmd_error;
2247		goto e_dst;
2248	}
2249
2250	ecc->ecc_result = le16_to_cpup(
2251		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2252	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2253		ret = -EIO;
2254		goto e_dst;
2255	}
2256
2257	/* Save the ECC result */
2258	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2259				CCP_ECC_MODULUS_BYTES);
2260
2261e_dst:
2262	ccp_dm_free(&dst);
2263
2264e_src:
2265	ccp_dm_free(&src);
2266
2267	return ret;
2268}
2269
2270static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2271{
2272	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2273	struct ccp_dm_workarea src, dst;
2274	struct ccp_op op;
2275	int ret;
2276	u8 *save;
2277
2278	if (!ecc->u.pm.point_1.x ||
2279	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2280	    !ecc->u.pm.point_1.y ||
2281	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2282		return -EINVAL;
2283
2284	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2285		if (!ecc->u.pm.point_2.x ||
2286		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2287		    !ecc->u.pm.point_2.y ||
2288		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2289			return -EINVAL;
2290	} else {
2291		if (!ecc->u.pm.domain_a ||
2292		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2293			return -EINVAL;
2294
2295		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2296			if (!ecc->u.pm.scalar ||
2297			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2298				return -EINVAL;
2299	}
2300
2301	if (!ecc->u.pm.result.x ||
2302	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2303	    !ecc->u.pm.result.y ||
2304	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2305		return -EINVAL;
2306
2307	memset(&op, 0, sizeof(op));
2308	op.cmd_q = cmd_q;
2309	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2310
2311	/* Concatenate the modulus and the operands. Both the modulus and
2312	 * the operands must be in little endian format.  Since the input
2313	 * is in big endian format it must be converted and placed in a
2314	 * fixed length buffer.
2315	 */
2316	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2317				   DMA_TO_DEVICE);
2318	if (ret)
2319		return ret;
2320
2321	/* Save the workarea address since it is updated in order to perform
2322	 * the concatenation
2323	 */
2324	save = src.address;
2325
2326	/* Copy the ECC modulus */
2327	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2328	if (ret)
2329		goto e_src;
2330	src.address += CCP_ECC_OPERAND_SIZE;
2331
2332	/* Copy the first point X and Y coordinate */
2333	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2334				      ecc->u.pm.point_1.x_len);
2335	if (ret)
2336		goto e_src;
2337	src.address += CCP_ECC_OPERAND_SIZE;
2338	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2339				      ecc->u.pm.point_1.y_len);
2340	if (ret)
2341		goto e_src;
2342	src.address += CCP_ECC_OPERAND_SIZE;
2343
2344	/* Set the first point Z coordinate to 1 */
2345	*src.address = 0x01;
2346	src.address += CCP_ECC_OPERAND_SIZE;
2347
2348	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2349		/* Copy the second point X and Y coordinate */
2350		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2351					      ecc->u.pm.point_2.x_len);
2352		if (ret)
2353			goto e_src;
2354		src.address += CCP_ECC_OPERAND_SIZE;
2355		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2356					      ecc->u.pm.point_2.y_len);
2357		if (ret)
2358			goto e_src;
2359		src.address += CCP_ECC_OPERAND_SIZE;
2360
2361		/* Set the second point Z coordinate to 1 */
2362		*src.address = 0x01;
2363		src.address += CCP_ECC_OPERAND_SIZE;
2364	} else {
2365		/* Copy the Domain "a" parameter */
2366		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2367					      ecc->u.pm.domain_a_len);
2368		if (ret)
2369			goto e_src;
2370		src.address += CCP_ECC_OPERAND_SIZE;
2371
2372		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2373			/* Copy the scalar value */
2374			ret = ccp_reverse_set_dm_area(&src, 0,
2375						      ecc->u.pm.scalar, 0,
2376						      ecc->u.pm.scalar_len);
2377			if (ret)
2378				goto e_src;
2379			src.address += CCP_ECC_OPERAND_SIZE;
2380		}
2381	}
2382
2383	/* Restore the workarea address */
2384	src.address = save;
2385
2386	/* Prepare the output area for the operation */
2387	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2388				   DMA_FROM_DEVICE);
2389	if (ret)
2390		goto e_src;
2391
2392	op.soc = 1;
2393	op.src.u.dma.address = src.dma.address;
2394	op.src.u.dma.offset = 0;
2395	op.src.u.dma.length = src.length;
2396	op.dst.u.dma.address = dst.dma.address;
2397	op.dst.u.dma.offset = 0;
2398	op.dst.u.dma.length = dst.length;
2399
2400	op.u.ecc.function = cmd->u.ecc.function;
2401
2402	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2403	if (ret) {
2404		cmd->engine_error = cmd_q->cmd_error;
2405		goto e_dst;
2406	}
2407
2408	ecc->ecc_result = le16_to_cpup(
2409		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2410	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2411		ret = -EIO;
2412		goto e_dst;
2413	}
2414
2415	/* Save the workarea address since it is updated as we walk through
2416	 * to copy the point math result
2417	 */
2418	save = dst.address;
2419
2420	/* Save the ECC result X and Y coordinates */
2421	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2422				CCP_ECC_MODULUS_BYTES);
2423	dst.address += CCP_ECC_OUTPUT_SIZE;
2424	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2425				CCP_ECC_MODULUS_BYTES);
2426
2427	/* Restore the workarea address */
2428	dst.address = save;
2429
2430e_dst:
2431	ccp_dm_free(&dst);
2432
2433e_src:
2434	ccp_dm_free(&src);
2435
2436	return ret;
2437}
2438
2439static noinline_for_stack int
2440ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2441{
2442	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2443
2444	ecc->ecc_result = 0;
2445
2446	if (!ecc->mod ||
2447	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2448		return -EINVAL;
2449
2450	switch (ecc->function) {
2451	case CCP_ECC_FUNCTION_MMUL_384BIT:
2452	case CCP_ECC_FUNCTION_MADD_384BIT:
2453	case CCP_ECC_FUNCTION_MINV_384BIT:
2454		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2455
2456	case CCP_ECC_FUNCTION_PADD_384BIT:
2457	case CCP_ECC_FUNCTION_PMUL_384BIT:
2458	case CCP_ECC_FUNCTION_PDBL_384BIT:
2459		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2460
2461	default:
2462		return -EINVAL;
2463	}
2464}
2465
2466int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2467{
2468	int ret;
2469
2470	cmd->engine_error = 0;
2471	cmd_q->cmd_error = 0;
2472	cmd_q->int_rcvd = 0;
2473	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2474
2475	switch (cmd->engine) {
2476	case CCP_ENGINE_AES:
2477		switch (cmd->u.aes.mode) {
2478		case CCP_AES_MODE_CMAC:
2479			ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2480			break;
2481		case CCP_AES_MODE_GCM:
2482			ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2483			break;
2484		default:
2485			ret = ccp_run_aes_cmd(cmd_q, cmd);
2486			break;
2487		}
2488		break;
2489	case CCP_ENGINE_XTS_AES_128:
2490		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2491		break;
2492	case CCP_ENGINE_DES3:
2493		ret = ccp_run_des3_cmd(cmd_q, cmd);
2494		break;
2495	case CCP_ENGINE_SHA:
2496		ret = ccp_run_sha_cmd(cmd_q, cmd);
2497		break;
2498	case CCP_ENGINE_RSA:
2499		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2500		break;
2501	case CCP_ENGINE_PASSTHRU:
2502		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2503			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2504		else
2505			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2506		break;
2507	case CCP_ENGINE_ECC:
2508		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2509		break;
2510	default:
2511		ret = -EINVAL;
2512	}
2513
2514	return ret;
2515}
2516