1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Cryptographic Coprocessor (CCP) driver
4 *
5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6 *
7 * Author: Gary R Hook <gary.hook@amd.com>
8 */
9
10#include <linux/kernel.h>
11#include <linux/kthread.h>
12#include <linux/dma-mapping.h>
13#include <linux/interrupt.h>
14#include <linux/compiler.h>
15#include <linux/ccp.h>
16
17#include "ccp-dev.h"
18
19/* Allocate the requested number of contiguous LSB slots
20 * from the LSB bitmap. Look in the private range for this
21 * queue first; failing that, check the public area.
22 * If no space is available, wait around.
23 * Return: first slot number
24 */
25static u32 ccp_lsb_alloc(struct ccp_cmd_queue *cmd_q, unsigned int count)
26{
27	struct ccp_device *ccp;
28	int start;
29
30	/* First look at the map for the queue */
31	if (cmd_q->lsb >= 0) {
32		start = (u32)bitmap_find_next_zero_area(cmd_q->lsbmap,
33							LSB_SIZE,
34							0, count, 0);
35		if (start < LSB_SIZE) {
36			bitmap_set(cmd_q->lsbmap, start, count);
37			return start + cmd_q->lsb * LSB_SIZE;
38		}
39	}
40
41	/* No joy; try to get an entry from the shared blocks */
42	ccp = cmd_q->ccp;
43	for (;;) {
44		mutex_lock(&ccp->sb_mutex);
45
46		start = (u32)bitmap_find_next_zero_area(ccp->lsbmap,
47							MAX_LSB_CNT * LSB_SIZE,
48							0,
49							count, 0);
50		if (start <= MAX_LSB_CNT * LSB_SIZE) {
51			bitmap_set(ccp->lsbmap, start, count);
52
53			mutex_unlock(&ccp->sb_mutex);
54			return start;
55		}
56
57		ccp->sb_avail = 0;
58
59		mutex_unlock(&ccp->sb_mutex);
60
61		/* Wait for KSB entries to become available */
62		if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
63			return 0;
64	}
65}
66
67/* Free a number of LSB slots from the bitmap, starting at
68 * the indicated starting slot number.
69 */
70static void ccp_lsb_free(struct ccp_cmd_queue *cmd_q, unsigned int start,
71			 unsigned int count)
72{
73	if (!start)
74		return;
75
76	if (cmd_q->lsb == start) {
77		/* An entry from the private LSB */
78		bitmap_clear(cmd_q->lsbmap, start, count);
79	} else {
80		/* From the shared LSBs */
81		struct ccp_device *ccp = cmd_q->ccp;
82
83		mutex_lock(&ccp->sb_mutex);
84		bitmap_clear(ccp->lsbmap, start, count);
85		ccp->sb_avail = 1;
86		mutex_unlock(&ccp->sb_mutex);
87		wake_up_interruptible_all(&ccp->sb_queue);
88	}
89}
90
91/* CCP version 5: Union to define the function field (cmd_reg1/dword0) */
92union ccp_function {
93	struct {
94		u16 size:7;
95		u16 encrypt:1;
96		u16 mode:5;
97		u16 type:2;
98	} aes;
99	struct {
100		u16 size:7;
101		u16 encrypt:1;
102		u16 rsvd:5;
103		u16 type:2;
104	} aes_xts;
105	struct {
106		u16 size:7;
107		u16 encrypt:1;
108		u16 mode:5;
109		u16 type:2;
110	} des3;
111	struct {
112		u16 rsvd1:10;
113		u16 type:4;
114		u16 rsvd2:1;
115	} sha;
116	struct {
117		u16 mode:3;
118		u16 size:12;
119	} rsa;
120	struct {
121		u16 byteswap:2;
122		u16 bitwise:3;
123		u16 reflect:2;
124		u16 rsvd:8;
125	} pt;
126	struct  {
127		u16 rsvd:13;
128	} zlib;
129	struct {
130		u16 size:10;
131		u16 type:2;
132		u16 mode:3;
133	} ecc;
134	u16 raw;
135};
136
137#define	CCP_AES_SIZE(p)		((p)->aes.size)
138#define	CCP_AES_ENCRYPT(p)	((p)->aes.encrypt)
139#define	CCP_AES_MODE(p)		((p)->aes.mode)
140#define	CCP_AES_TYPE(p)		((p)->aes.type)
141#define	CCP_XTS_SIZE(p)		((p)->aes_xts.size)
142#define	CCP_XTS_TYPE(p)		((p)->aes_xts.type)
143#define	CCP_XTS_ENCRYPT(p)	((p)->aes_xts.encrypt)
144#define	CCP_DES3_SIZE(p)	((p)->des3.size)
145#define	CCP_DES3_ENCRYPT(p)	((p)->des3.encrypt)
146#define	CCP_DES3_MODE(p)	((p)->des3.mode)
147#define	CCP_DES3_TYPE(p)	((p)->des3.type)
148#define	CCP_SHA_TYPE(p)		((p)->sha.type)
149#define	CCP_RSA_SIZE(p)		((p)->rsa.size)
150#define	CCP_PT_BYTESWAP(p)	((p)->pt.byteswap)
151#define	CCP_PT_BITWISE(p)	((p)->pt.bitwise)
152#define	CCP_ECC_MODE(p)		((p)->ecc.mode)
153#define	CCP_ECC_AFFINE(p)	((p)->ecc.one)
154
155/* Word 0 */
156#define CCP5_CMD_DW0(p)		((p)->dw0)
157#define CCP5_CMD_SOC(p)		(CCP5_CMD_DW0(p).soc)
158#define CCP5_CMD_IOC(p)		(CCP5_CMD_DW0(p).ioc)
159#define CCP5_CMD_INIT(p)	(CCP5_CMD_DW0(p).init)
160#define CCP5_CMD_EOM(p)		(CCP5_CMD_DW0(p).eom)
161#define CCP5_CMD_FUNCTION(p)	(CCP5_CMD_DW0(p).function)
162#define CCP5_CMD_ENGINE(p)	(CCP5_CMD_DW0(p).engine)
163#define CCP5_CMD_PROT(p)	(CCP5_CMD_DW0(p).prot)
164
165/* Word 1 */
166#define CCP5_CMD_DW1(p)		((p)->length)
167#define CCP5_CMD_LEN(p)		(CCP5_CMD_DW1(p))
168
169/* Word 2 */
170#define CCP5_CMD_DW2(p)		((p)->src_lo)
171#define CCP5_CMD_SRC_LO(p)	(CCP5_CMD_DW2(p))
172
173/* Word 3 */
174#define CCP5_CMD_DW3(p)		((p)->dw3)
175#define CCP5_CMD_SRC_MEM(p)	((p)->dw3.src_mem)
176#define CCP5_CMD_SRC_HI(p)	((p)->dw3.src_hi)
177#define CCP5_CMD_LSB_ID(p)	((p)->dw3.lsb_cxt_id)
178#define CCP5_CMD_FIX_SRC(p)	((p)->dw3.fixed)
179
180/* Words 4/5 */
181#define CCP5_CMD_DW4(p)		((p)->dw4)
182#define CCP5_CMD_DST_LO(p)	(CCP5_CMD_DW4(p).dst_lo)
183#define CCP5_CMD_DW5(p)		((p)->dw5.fields.dst_hi)
184#define CCP5_CMD_DST_HI(p)	(CCP5_CMD_DW5(p))
185#define CCP5_CMD_DST_MEM(p)	((p)->dw5.fields.dst_mem)
186#define CCP5_CMD_FIX_DST(p)	((p)->dw5.fields.fixed)
187#define CCP5_CMD_SHA_LO(p)	((p)->dw4.sha_len_lo)
188#define CCP5_CMD_SHA_HI(p)	((p)->dw5.sha_len_hi)
189
190/* Word 6/7 */
191#define CCP5_CMD_DW6(p)		((p)->key_lo)
192#define CCP5_CMD_KEY_LO(p)	(CCP5_CMD_DW6(p))
193#define CCP5_CMD_DW7(p)		((p)->dw7)
194#define CCP5_CMD_KEY_HI(p)	((p)->dw7.key_hi)
195#define CCP5_CMD_KEY_MEM(p)	((p)->dw7.key_mem)
196
197static inline u32 low_address(unsigned long addr)
198{
199	return (u64)addr & 0x0ffffffff;
200}
201
202static inline u32 high_address(unsigned long addr)
203{
204	return ((u64)addr >> 32) & 0x00000ffff;
205}
206
207static unsigned int ccp5_get_free_slots(struct ccp_cmd_queue *cmd_q)
208{
209	unsigned int head_idx, n;
210	u32 head_lo, queue_start;
211
212	queue_start = low_address(cmd_q->qdma_tail);
213	head_lo = ioread32(cmd_q->reg_head_lo);
214	head_idx = (head_lo - queue_start) / sizeof(struct ccp5_desc);
215
216	n = head_idx + COMMANDS_PER_QUEUE - cmd_q->qidx - 1;
217
218	return n % COMMANDS_PER_QUEUE; /* Always one unused spot */
219}
220
221static int ccp5_do_cmd(struct ccp5_desc *desc,
222		       struct ccp_cmd_queue *cmd_q)
223{
224	__le32 *mP;
225	u32 *dP;
226	u32 tail;
227	int	i;
228	int ret = 0;
229
230	cmd_q->total_ops++;
231
232	if (CCP5_CMD_SOC(desc)) {
233		CCP5_CMD_IOC(desc) = 1;
234		CCP5_CMD_SOC(desc) = 0;
235	}
236	mutex_lock(&cmd_q->q_mutex);
237
238	mP = (__le32 *)&cmd_q->qbase[cmd_q->qidx];
239	dP = (u32 *)desc;
240	for (i = 0; i < 8; i++)
241		mP[i] = cpu_to_le32(dP[i]); /* handle endianness */
242
243	cmd_q->qidx = (cmd_q->qidx + 1) % COMMANDS_PER_QUEUE;
244
245	/* The data used by this command must be flushed to memory */
246	wmb();
247
248	/* Write the new tail address back to the queue register */
249	tail = low_address(cmd_q->qdma_tail + cmd_q->qidx * Q_DESC_SIZE);
250	iowrite32(tail, cmd_q->reg_tail_lo);
251
252	/* Turn the queue back on using our cached control register */
253	iowrite32(cmd_q->qcontrol | CMD5_Q_RUN, cmd_q->reg_control);
254	mutex_unlock(&cmd_q->q_mutex);
255
256	if (CCP5_CMD_IOC(desc)) {
257		/* Wait for the job to complete */
258		ret = wait_event_interruptible(cmd_q->int_queue,
259					       cmd_q->int_rcvd);
260		if (ret || cmd_q->cmd_error) {
261			/* Log the error and flush the queue by
262			 * moving the head pointer
263			 */
264			if (cmd_q->cmd_error)
265				ccp_log_error(cmd_q->ccp,
266					      cmd_q->cmd_error);
267			iowrite32(tail, cmd_q->reg_head_lo);
268			if (!ret)
269				ret = -EIO;
270		}
271		cmd_q->int_rcvd = 0;
272	}
273
274	return ret;
275}
276
277static int ccp5_perform_aes(struct ccp_op *op)
278{
279	struct ccp5_desc desc;
280	union ccp_function function;
281	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
282
283	op->cmd_q->total_aes_ops++;
284
285	/* Zero out all the fields of the command desc */
286	memset(&desc, 0, Q_DESC_SIZE);
287
288	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_AES;
289
290	CCP5_CMD_SOC(&desc) = op->soc;
291	CCP5_CMD_IOC(&desc) = 1;
292	CCP5_CMD_INIT(&desc) = op->init;
293	CCP5_CMD_EOM(&desc) = op->eom;
294	CCP5_CMD_PROT(&desc) = 0;
295
296	function.raw = 0;
297	CCP_AES_ENCRYPT(&function) = op->u.aes.action;
298	CCP_AES_MODE(&function) = op->u.aes.mode;
299	CCP_AES_TYPE(&function) = op->u.aes.type;
300	CCP_AES_SIZE(&function) = op->u.aes.size;
301
302	CCP5_CMD_FUNCTION(&desc) = function.raw;
303
304	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
305
306	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
307	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
308	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
309
310	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
311	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
312	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
313
314	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
315	CCP5_CMD_KEY_HI(&desc) = 0;
316	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
317	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
318
319	return ccp5_do_cmd(&desc, op->cmd_q);
320}
321
322static int ccp5_perform_xts_aes(struct ccp_op *op)
323{
324	struct ccp5_desc desc;
325	union ccp_function function;
326	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
327
328	op->cmd_q->total_xts_aes_ops++;
329
330	/* Zero out all the fields of the command desc */
331	memset(&desc, 0, Q_DESC_SIZE);
332
333	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_XTS_AES_128;
334
335	CCP5_CMD_SOC(&desc) = op->soc;
336	CCP5_CMD_IOC(&desc) = 1;
337	CCP5_CMD_INIT(&desc) = op->init;
338	CCP5_CMD_EOM(&desc) = op->eom;
339	CCP5_CMD_PROT(&desc) = 0;
340
341	function.raw = 0;
342	CCP_XTS_TYPE(&function) = op->u.xts.type;
343	CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
344	CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
345	CCP5_CMD_FUNCTION(&desc) = function.raw;
346
347	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
348
349	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
350	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
351	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
352
353	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
354	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
355	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
356
357	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
358	CCP5_CMD_KEY_HI(&desc) =  0;
359	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
360	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
361
362	return ccp5_do_cmd(&desc, op->cmd_q);
363}
364
365static int ccp5_perform_sha(struct ccp_op *op)
366{
367	struct ccp5_desc desc;
368	union ccp_function function;
369
370	op->cmd_q->total_sha_ops++;
371
372	/* Zero out all the fields of the command desc */
373	memset(&desc, 0, Q_DESC_SIZE);
374
375	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_SHA;
376
377	CCP5_CMD_SOC(&desc) = op->soc;
378	CCP5_CMD_IOC(&desc) = 1;
379	CCP5_CMD_INIT(&desc) = 1;
380	CCP5_CMD_EOM(&desc) = op->eom;
381	CCP5_CMD_PROT(&desc) = 0;
382
383	function.raw = 0;
384	CCP_SHA_TYPE(&function) = op->u.sha.type;
385	CCP5_CMD_FUNCTION(&desc) = function.raw;
386
387	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
388
389	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
390	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
391	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
392
393	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
394
395	if (op->eom) {
396		CCP5_CMD_SHA_LO(&desc) = lower_32_bits(op->u.sha.msg_bits);
397		CCP5_CMD_SHA_HI(&desc) = upper_32_bits(op->u.sha.msg_bits);
398	} else {
399		CCP5_CMD_SHA_LO(&desc) = 0;
400		CCP5_CMD_SHA_HI(&desc) = 0;
401	}
402
403	return ccp5_do_cmd(&desc, op->cmd_q);
404}
405
406static int ccp5_perform_des3(struct ccp_op *op)
407{
408	struct ccp5_desc desc;
409	union ccp_function function;
410	u32 key_addr = op->sb_key * LSB_ITEM_SIZE;
411
412	op->cmd_q->total_3des_ops++;
413
414	/* Zero out all the fields of the command desc */
415	memset(&desc, 0, sizeof(struct ccp5_desc));
416
417	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_DES3;
418
419	CCP5_CMD_SOC(&desc) = op->soc;
420	CCP5_CMD_IOC(&desc) = 1;
421	CCP5_CMD_INIT(&desc) = op->init;
422	CCP5_CMD_EOM(&desc) = op->eom;
423	CCP5_CMD_PROT(&desc) = 0;
424
425	function.raw = 0;
426	CCP_DES3_ENCRYPT(&function) = op->u.des3.action;
427	CCP_DES3_MODE(&function) = op->u.des3.mode;
428	CCP_DES3_TYPE(&function) = op->u.des3.type;
429	CCP5_CMD_FUNCTION(&desc) = function.raw;
430
431	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
432
433	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
434	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
435	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
436
437	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
438	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
439	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
440
441	CCP5_CMD_KEY_LO(&desc) = lower_32_bits(key_addr);
442	CCP5_CMD_KEY_HI(&desc) = 0;
443	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
444	CCP5_CMD_LSB_ID(&desc) = op->sb_ctx;
445
446	return ccp5_do_cmd(&desc, op->cmd_q);
447}
448
449static int ccp5_perform_rsa(struct ccp_op *op)
450{
451	struct ccp5_desc desc;
452	union ccp_function function;
453
454	op->cmd_q->total_rsa_ops++;
455
456	/* Zero out all the fields of the command desc */
457	memset(&desc, 0, Q_DESC_SIZE);
458
459	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_RSA;
460
461	CCP5_CMD_SOC(&desc) = op->soc;
462	CCP5_CMD_IOC(&desc) = 1;
463	CCP5_CMD_INIT(&desc) = 0;
464	CCP5_CMD_EOM(&desc) = 1;
465	CCP5_CMD_PROT(&desc) = 0;
466
467	function.raw = 0;
468	CCP_RSA_SIZE(&function) = (op->u.rsa.mod_size + 7) >> 3;
469	CCP5_CMD_FUNCTION(&desc) = function.raw;
470
471	CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
472
473	/* Source is from external memory */
474	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
475	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
476	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
477
478	/* Destination is in external memory */
479	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
480	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
481	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
482
483	/* Key (Exponent) is in external memory */
484	CCP5_CMD_KEY_LO(&desc) = ccp_addr_lo(&op->exp.u.dma);
485	CCP5_CMD_KEY_HI(&desc) = ccp_addr_hi(&op->exp.u.dma);
486	CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
487
488	return ccp5_do_cmd(&desc, op->cmd_q);
489}
490
491static int ccp5_perform_passthru(struct ccp_op *op)
492{
493	struct ccp5_desc desc;
494	union ccp_function function;
495	struct ccp_dma_info *saddr = &op->src.u.dma;
496	struct ccp_dma_info *daddr = &op->dst.u.dma;
497
498
499	op->cmd_q->total_pt_ops++;
500
501	memset(&desc, 0, Q_DESC_SIZE);
502
503	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_PASSTHRU;
504
505	CCP5_CMD_SOC(&desc) = 0;
506	CCP5_CMD_IOC(&desc) = 1;
507	CCP5_CMD_INIT(&desc) = 0;
508	CCP5_CMD_EOM(&desc) = op->eom;
509	CCP5_CMD_PROT(&desc) = 0;
510
511	function.raw = 0;
512	CCP_PT_BYTESWAP(&function) = op->u.passthru.byte_swap;
513	CCP_PT_BITWISE(&function) = op->u.passthru.bit_mod;
514	CCP5_CMD_FUNCTION(&desc) = function.raw;
515
516	/* Length of source data is always 256 bytes */
517	if (op->src.type == CCP_MEMTYPE_SYSTEM)
518		CCP5_CMD_LEN(&desc) = saddr->length;
519	else
520		CCP5_CMD_LEN(&desc) = daddr->length;
521
522	if (op->src.type == CCP_MEMTYPE_SYSTEM) {
523		CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
524		CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
525		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
526
527		if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
528			CCP5_CMD_LSB_ID(&desc) = op->sb_key;
529	} else {
530		u32 key_addr = op->src.u.sb * CCP_SB_BYTES;
531
532		CCP5_CMD_SRC_LO(&desc) = lower_32_bits(key_addr);
533		CCP5_CMD_SRC_HI(&desc) = 0;
534		CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SB;
535	}
536
537	if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
538		CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
539		CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
540		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
541	} else {
542		u32 key_addr = op->dst.u.sb * CCP_SB_BYTES;
543
544		CCP5_CMD_DST_LO(&desc) = lower_32_bits(key_addr);
545		CCP5_CMD_DST_HI(&desc) = 0;
546		CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SB;
547	}
548
549	return ccp5_do_cmd(&desc, op->cmd_q);
550}
551
552static int ccp5_perform_ecc(struct ccp_op *op)
553{
554	struct ccp5_desc desc;
555	union ccp_function function;
556
557	op->cmd_q->total_ecc_ops++;
558
559	/* Zero out all the fields of the command desc */
560	memset(&desc, 0, Q_DESC_SIZE);
561
562	CCP5_CMD_ENGINE(&desc) = CCP_ENGINE_ECC;
563
564	CCP5_CMD_SOC(&desc) = 0;
565	CCP5_CMD_IOC(&desc) = 1;
566	CCP5_CMD_INIT(&desc) = 0;
567	CCP5_CMD_EOM(&desc) = 1;
568	CCP5_CMD_PROT(&desc) = 0;
569
570	function.raw = 0;
571	function.ecc.mode = op->u.ecc.function;
572	CCP5_CMD_FUNCTION(&desc) = function.raw;
573
574	CCP5_CMD_LEN(&desc) = op->src.u.dma.length;
575
576	CCP5_CMD_SRC_LO(&desc) = ccp_addr_lo(&op->src.u.dma);
577	CCP5_CMD_SRC_HI(&desc) = ccp_addr_hi(&op->src.u.dma);
578	CCP5_CMD_SRC_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
579
580	CCP5_CMD_DST_LO(&desc) = ccp_addr_lo(&op->dst.u.dma);
581	CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
582	CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
583
584	return ccp5_do_cmd(&desc, op->cmd_q);
585}
586
587static int ccp_find_lsb_regions(struct ccp_cmd_queue *cmd_q, u64 status)
588{
589	int q_mask = 1 << cmd_q->id;
590	int queues = 0;
591	int j;
592
593	/* Build a bit mask to know which LSBs this queue has access to.
594	 * Don't bother with segment 0 as it has special privileges.
595	 */
596	for (j = 1; j < MAX_LSB_CNT; j++) {
597		if (status & q_mask)
598			bitmap_set(cmd_q->lsbmask, j, 1);
599		status >>= LSB_REGION_WIDTH;
600	}
601	queues = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
602	dev_dbg(cmd_q->ccp->dev, "Queue %d can access %d LSB regions\n",
603		 cmd_q->id, queues);
604
605	return queues ? 0 : -EINVAL;
606}
607
608static int ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
609					int lsb_cnt, int n_lsbs,
610					unsigned long *lsb_pub)
611{
612	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
613	int bitno;
614	int qlsb_wgt;
615	int i;
616
617	/* For each queue:
618	 * If the count of potential LSBs available to a queue matches the
619	 * ordinal given to us in lsb_cnt:
620	 * Copy the mask of possible LSBs for this queue into "qlsb";
621	 * For each bit in qlsb, see if the corresponding bit in the
622	 * aggregation mask is set; if so, we have a match.
623	 *     If we have a match, clear the bit in the aggregation to
624	 *     mark it as no longer available.
625	 *     If there is no match, clear the bit in qlsb and keep looking.
626	 */
627	for (i = 0; i < ccp->cmd_q_count; i++) {
628		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
629
630		qlsb_wgt = bitmap_weight(cmd_q->lsbmask, MAX_LSB_CNT);
631
632		if (qlsb_wgt == lsb_cnt) {
633			bitmap_copy(qlsb, cmd_q->lsbmask, MAX_LSB_CNT);
634
635			bitno = find_first_bit(qlsb, MAX_LSB_CNT);
636			while (bitno < MAX_LSB_CNT) {
637				if (test_bit(bitno, lsb_pub)) {
638					/* We found an available LSB
639					 * that this queue can access
640					 */
641					cmd_q->lsb = bitno;
642					bitmap_clear(lsb_pub, bitno, 1);
643					dev_dbg(ccp->dev,
644						 "Queue %d gets LSB %d\n",
645						 i, bitno);
646					break;
647				}
648				bitmap_clear(qlsb, bitno, 1);
649				bitno = find_first_bit(qlsb, MAX_LSB_CNT);
650			}
651			if (bitno >= MAX_LSB_CNT)
652				return -EINVAL;
653			n_lsbs--;
654		}
655	}
656	return n_lsbs;
657}
658
659/* For each queue, from the most- to least-constrained:
660 * find an LSB that can be assigned to the queue. If there are N queues that
661 * can only use M LSBs, where N > M, fail; otherwise, every queue will get a
662 * dedicated LSB. Remaining LSB regions become a shared resource.
663 * If we have fewer LSBs than queues, all LSB regions become shared resources.
664 */
665static int ccp_assign_lsbs(struct ccp_device *ccp)
666{
667	DECLARE_BITMAP(lsb_pub, MAX_LSB_CNT);
668	DECLARE_BITMAP(qlsb, MAX_LSB_CNT);
669	int n_lsbs = 0;
670	int bitno;
671	int i, lsb_cnt;
672	int rc = 0;
673
674	bitmap_zero(lsb_pub, MAX_LSB_CNT);
675
676	/* Create an aggregate bitmap to get a total count of available LSBs */
677	for (i = 0; i < ccp->cmd_q_count; i++)
678		bitmap_or(lsb_pub,
679			  lsb_pub, ccp->cmd_q[i].lsbmask,
680			  MAX_LSB_CNT);
681
682	n_lsbs = bitmap_weight(lsb_pub, MAX_LSB_CNT);
683
684	if (n_lsbs >= ccp->cmd_q_count) {
685		/* We have enough LSBS to give every queue a private LSB.
686		 * Brute force search to start with the queues that are more
687		 * constrained in LSB choice. When an LSB is privately
688		 * assigned, it is removed from the public mask.
689		 * This is an ugly N squared algorithm with some optimization.
690		 */
691		for (lsb_cnt = 1;
692		     n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
693		     lsb_cnt++) {
694			rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
695							  lsb_pub);
696			if (rc < 0)
697				return -EINVAL;
698			n_lsbs = rc;
699		}
700	}
701
702	rc = 0;
703	/* What's left of the LSBs, according to the public mask, now become
704	 * shared. Any zero bits in the lsb_pub mask represent an LSB region
705	 * that can't be used as a shared resource, so mark the LSB slots for
706	 * them as "in use".
707	 */
708	bitmap_copy(qlsb, lsb_pub, MAX_LSB_CNT);
709
710	bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
711	while (bitno < MAX_LSB_CNT) {
712		bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
713		bitmap_set(qlsb, bitno, 1);
714		bitno = find_first_zero_bit(qlsb, MAX_LSB_CNT);
715	}
716
717	return rc;
718}
719
720static void ccp5_disable_queue_interrupts(struct ccp_device *ccp)
721{
722	unsigned int i;
723
724	for (i = 0; i < ccp->cmd_q_count; i++)
725		iowrite32(0x0, ccp->cmd_q[i].reg_int_enable);
726}
727
728static void ccp5_enable_queue_interrupts(struct ccp_device *ccp)
729{
730	unsigned int i;
731
732	for (i = 0; i < ccp->cmd_q_count; i++)
733		iowrite32(SUPPORTED_INTERRUPTS, ccp->cmd_q[i].reg_int_enable);
734}
735
736static void ccp5_irq_bh(unsigned long data)
737{
738	struct ccp_device *ccp = (struct ccp_device *)data;
739	u32 status;
740	unsigned int i;
741
742	for (i = 0; i < ccp->cmd_q_count; i++) {
743		struct ccp_cmd_queue *cmd_q = &ccp->cmd_q[i];
744
745		status = ioread32(cmd_q->reg_interrupt_status);
746
747		if (status) {
748			cmd_q->int_status = status;
749			cmd_q->q_status = ioread32(cmd_q->reg_status);
750			cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
751
752			/* On error, only save the first error value */
753			if ((status & INT_ERROR) && !cmd_q->cmd_error)
754				cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
755
756			cmd_q->int_rcvd = 1;
757
758			/* Acknowledge the interrupt and wake the kthread */
759			iowrite32(status, cmd_q->reg_interrupt_status);
760			wake_up_interruptible(&cmd_q->int_queue);
761		}
762	}
763	ccp5_enable_queue_interrupts(ccp);
764}
765
766static irqreturn_t ccp5_irq_handler(int irq, void *data)
767{
768	struct ccp_device *ccp = (struct ccp_device *)data;
769
770	ccp5_disable_queue_interrupts(ccp);
771	ccp->total_interrupts++;
772	if (ccp->use_tasklet)
773		tasklet_schedule(&ccp->irq_tasklet);
774	else
775		ccp5_irq_bh((unsigned long)ccp);
776	return IRQ_HANDLED;
777}
778
779static int ccp5_init(struct ccp_device *ccp)
780{
781	struct device *dev = ccp->dev;
782	struct ccp_cmd_queue *cmd_q;
783	struct dma_pool *dma_pool;
784	char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
785	unsigned int qmr, i;
786	u64 status;
787	u32 status_lo, status_hi;
788	int ret;
789
790	/* Find available queues */
791	qmr = ioread32(ccp->io_regs + Q_MASK_REG);
792	/*
793	 * Check for a access to the registers.  If this read returns
794	 * 0xffffffff, it's likely that the system is running a broken
795	 * BIOS which disallows access to the device. Stop here and fail
796	 * the initialization (but not the load, as the PSP could get
797	 * properly initialized).
798	 */
799	if (qmr == 0xffffffff) {
800		dev_notice(dev, "ccp: unable to access the device: you might be running a broken BIOS.\n");
801		return 1;
802	}
803
804	for (i = 0; (i < MAX_HW_QUEUES) && (ccp->cmd_q_count < ccp->max_q_count); i++) {
805		if (!(qmr & (1 << i)))
806			continue;
807
808		/* Allocate a dma pool for this queue */
809		snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
810			 ccp->name, i);
811		dma_pool = dma_pool_create(dma_pool_name, dev,
812					   CCP_DMAPOOL_MAX_SIZE,
813					   CCP_DMAPOOL_ALIGN, 0);
814		if (!dma_pool) {
815			dev_err(dev, "unable to allocate dma pool\n");
816			ret = -ENOMEM;
817			goto e_pool;
818		}
819
820		cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
821		ccp->cmd_q_count++;
822
823		cmd_q->ccp = ccp;
824		cmd_q->id = i;
825		cmd_q->dma_pool = dma_pool;
826		mutex_init(&cmd_q->q_mutex);
827
828		/* Page alignment satisfies our needs for N <= 128 */
829		BUILD_BUG_ON(COMMANDS_PER_QUEUE > 128);
830		cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
831		cmd_q->qbase = dmam_alloc_coherent(dev, cmd_q->qsize,
832						   &cmd_q->qbase_dma,
833						   GFP_KERNEL);
834		if (!cmd_q->qbase) {
835			dev_err(dev, "unable to allocate command queue\n");
836			ret = -ENOMEM;
837			goto e_pool;
838		}
839
840		cmd_q->qidx = 0;
841		/* Preset some register values and masks that are queue
842		 * number dependent
843		 */
844		cmd_q->reg_control = ccp->io_regs +
845				     CMD5_Q_STATUS_INCR * (i + 1);
846		cmd_q->reg_tail_lo = cmd_q->reg_control + CMD5_Q_TAIL_LO_BASE;
847		cmd_q->reg_head_lo = cmd_q->reg_control + CMD5_Q_HEAD_LO_BASE;
848		cmd_q->reg_int_enable = cmd_q->reg_control +
849					CMD5_Q_INT_ENABLE_BASE;
850		cmd_q->reg_interrupt_status = cmd_q->reg_control +
851					      CMD5_Q_INTERRUPT_STATUS_BASE;
852		cmd_q->reg_status = cmd_q->reg_control + CMD5_Q_STATUS_BASE;
853		cmd_q->reg_int_status = cmd_q->reg_control +
854					CMD5_Q_INT_STATUS_BASE;
855		cmd_q->reg_dma_status = cmd_q->reg_control +
856					CMD5_Q_DMA_STATUS_BASE;
857		cmd_q->reg_dma_read_status = cmd_q->reg_control +
858					     CMD5_Q_DMA_READ_STATUS_BASE;
859		cmd_q->reg_dma_write_status = cmd_q->reg_control +
860					      CMD5_Q_DMA_WRITE_STATUS_BASE;
861
862		init_waitqueue_head(&cmd_q->int_queue);
863
864		dev_dbg(dev, "queue #%u available\n", i);
865	}
866
867	if (ccp->cmd_q_count == 0) {
868		dev_notice(dev, "no command queues available\n");
869		ret = 1;
870		goto e_pool;
871	}
872
873	/* Turn off the queues and disable interrupts until ready */
874	ccp5_disable_queue_interrupts(ccp);
875	for (i = 0; i < ccp->cmd_q_count; i++) {
876		cmd_q = &ccp->cmd_q[i];
877
878		cmd_q->qcontrol = 0; /* Start with nothing */
879		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
880
881		ioread32(cmd_q->reg_int_status);
882		ioread32(cmd_q->reg_status);
883
884		/* Clear the interrupt status */
885		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
886	}
887
888	dev_dbg(dev, "Requesting an IRQ...\n");
889	/* Request an irq */
890	ret = sp_request_ccp_irq(ccp->sp, ccp5_irq_handler, ccp->name, ccp);
891	if (ret) {
892		dev_err(dev, "unable to allocate an IRQ\n");
893		goto e_pool;
894	}
895	/* Initialize the ISR tasklet */
896	if (ccp->use_tasklet)
897		tasklet_init(&ccp->irq_tasklet, ccp5_irq_bh,
898			     (unsigned long)ccp);
899
900	dev_dbg(dev, "Loading LSB map...\n");
901	/* Copy the private LSB mask to the public registers */
902	status_lo = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
903	status_hi = ioread32(ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
904	iowrite32(status_lo, ccp->io_regs + LSB_PUBLIC_MASK_LO_OFFSET);
905	iowrite32(status_hi, ccp->io_regs + LSB_PUBLIC_MASK_HI_OFFSET);
906	status = ((u64)status_hi<<30) | (u64)status_lo;
907
908	dev_dbg(dev, "Configuring virtual queues...\n");
909	/* Configure size of each virtual queue accessible to host */
910	for (i = 0; i < ccp->cmd_q_count; i++) {
911		u32 dma_addr_lo;
912		u32 dma_addr_hi;
913
914		cmd_q = &ccp->cmd_q[i];
915
916		cmd_q->qcontrol &= ~(CMD5_Q_SIZE << CMD5_Q_SHIFT);
917		cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD5_Q_SHIFT;
918
919		cmd_q->qdma_tail = cmd_q->qbase_dma;
920		dma_addr_lo = low_address(cmd_q->qdma_tail);
921		iowrite32((u32)dma_addr_lo, cmd_q->reg_tail_lo);
922		iowrite32((u32)dma_addr_lo, cmd_q->reg_head_lo);
923
924		dma_addr_hi = high_address(cmd_q->qdma_tail);
925		cmd_q->qcontrol |= (dma_addr_hi << 16);
926		iowrite32(cmd_q->qcontrol, cmd_q->reg_control);
927
928		/* Find the LSB regions accessible to the queue */
929		ccp_find_lsb_regions(cmd_q, status);
930		cmd_q->lsb = -1; /* Unassigned value */
931	}
932
933	dev_dbg(dev, "Assigning LSBs...\n");
934	ret = ccp_assign_lsbs(ccp);
935	if (ret) {
936		dev_err(dev, "Unable to assign LSBs (%d)\n", ret);
937		goto e_irq;
938	}
939
940	/* Optimization: pre-allocate LSB slots for each queue */
941	for (i = 0; i < ccp->cmd_q_count; i++) {
942		ccp->cmd_q[i].sb_key = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
943		ccp->cmd_q[i].sb_ctx = ccp_lsb_alloc(&ccp->cmd_q[i], 2);
944	}
945
946	dev_dbg(dev, "Starting threads...\n");
947	/* Create a kthread for each queue */
948	for (i = 0; i < ccp->cmd_q_count; i++) {
949		struct task_struct *kthread;
950
951		cmd_q = &ccp->cmd_q[i];
952
953		kthread = kthread_run(ccp_cmd_queue_thread, cmd_q,
954				      "%s-q%u", ccp->name, cmd_q->id);
955		if (IS_ERR(kthread)) {
956			dev_err(dev, "error creating queue thread (%ld)\n",
957				PTR_ERR(kthread));
958			ret = PTR_ERR(kthread);
959			goto e_kthread;
960		}
961
962		cmd_q->kthread = kthread;
963	}
964
965	dev_dbg(dev, "Enabling interrupts...\n");
966	ccp5_enable_queue_interrupts(ccp);
967
968	dev_dbg(dev, "Registering device...\n");
969	/* Put this on the unit list to make it available */
970	ccp_add_device(ccp);
971
972	ret = ccp_register_rng(ccp);
973	if (ret)
974		goto e_kthread;
975
976	/* Register the DMA engine support */
977	ret = ccp_dmaengine_register(ccp);
978	if (ret)
979		goto e_hwrng;
980
981#ifdef CONFIG_CRYPTO_DEV_CCP_DEBUGFS
982	/* Set up debugfs entries */
983	ccp5_debugfs_setup(ccp);
984#endif
985
986	return 0;
987
988e_hwrng:
989	ccp_unregister_rng(ccp);
990
991e_kthread:
992	for (i = 0; i < ccp->cmd_q_count; i++)
993		if (ccp->cmd_q[i].kthread)
994			kthread_stop(ccp->cmd_q[i].kthread);
995
996e_irq:
997	sp_free_ccp_irq(ccp->sp, ccp);
998
999e_pool:
1000	for (i = 0; i < ccp->cmd_q_count; i++)
1001		dma_pool_destroy(ccp->cmd_q[i].dma_pool);
1002
1003	return ret;
1004}
1005
1006static void ccp5_destroy(struct ccp_device *ccp)
1007{
1008	struct ccp_cmd_queue *cmd_q;
1009	struct ccp_cmd *cmd;
1010	unsigned int i;
1011
1012	/* Unregister the DMA engine */
1013	ccp_dmaengine_unregister(ccp);
1014
1015	/* Unregister the RNG */
1016	ccp_unregister_rng(ccp);
1017
1018	/* Remove this device from the list of available units first */
1019	ccp_del_device(ccp);
1020
1021#ifdef CONFIG_CRYPTO_DEV_CCP_DEBUGFS
1022	/* We're in the process of tearing down the entire driver;
1023	 * when all the devices are gone clean up debugfs
1024	 */
1025	if (ccp_present())
1026		ccp5_debugfs_destroy();
1027#endif
1028
1029	/* Disable and clear interrupts */
1030	ccp5_disable_queue_interrupts(ccp);
1031	for (i = 0; i < ccp->cmd_q_count; i++) {
1032		cmd_q = &ccp->cmd_q[i];
1033
1034		/* Turn off the run bit */
1035		iowrite32(cmd_q->qcontrol & ~CMD5_Q_RUN, cmd_q->reg_control);
1036
1037		/* Clear the interrupt status */
1038		iowrite32(SUPPORTED_INTERRUPTS, cmd_q->reg_interrupt_status);
1039		ioread32(cmd_q->reg_int_status);
1040		ioread32(cmd_q->reg_status);
1041	}
1042
1043	/* Stop the queue kthreads */
1044	for (i = 0; i < ccp->cmd_q_count; i++)
1045		if (ccp->cmd_q[i].kthread)
1046			kthread_stop(ccp->cmd_q[i].kthread);
1047
1048	sp_free_ccp_irq(ccp->sp, ccp);
1049
1050	/* Flush the cmd and backlog queue */
1051	while (!list_empty(&ccp->cmd)) {
1052		/* Invoke the callback directly with an error code */
1053		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
1054		list_del(&cmd->entry);
1055		cmd->callback(cmd->data, -ENODEV);
1056	}
1057	while (!list_empty(&ccp->backlog)) {
1058		/* Invoke the callback directly with an error code */
1059		cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
1060		list_del(&cmd->entry);
1061		cmd->callback(cmd->data, -ENODEV);
1062	}
1063}
1064
1065static void ccp5_config(struct ccp_device *ccp)
1066{
1067	/* Public side */
1068	iowrite32(0x0, ccp->io_regs + CMD5_REQID_CONFIG_OFFSET);
1069}
1070
1071static void ccp5other_config(struct ccp_device *ccp)
1072{
1073	int i;
1074	u32 rnd;
1075
1076	/* We own all of the queues on the NTB CCP */
1077
1078	iowrite32(0x00012D57, ccp->io_regs + CMD5_TRNG_CTL_OFFSET);
1079	iowrite32(0x00000003, ccp->io_regs + CMD5_CONFIG_0_OFFSET);
1080	for (i = 0; i < 12; i++) {
1081		rnd = ioread32(ccp->io_regs + TRNG_OUT_REG);
1082		iowrite32(rnd, ccp->io_regs + CMD5_AES_MASK_OFFSET);
1083	}
1084
1085	iowrite32(0x0000001F, ccp->io_regs + CMD5_QUEUE_MASK_OFFSET);
1086	iowrite32(0x00005B6D, ccp->io_regs + CMD5_QUEUE_PRIO_OFFSET);
1087	iowrite32(0x00000000, ccp->io_regs + CMD5_CMD_TIMEOUT_OFFSET);
1088
1089	iowrite32(0x3FFFFFFF, ccp->io_regs + LSB_PRIVATE_MASK_LO_OFFSET);
1090	iowrite32(0x000003FF, ccp->io_regs + LSB_PRIVATE_MASK_HI_OFFSET);
1091
1092	iowrite32(0x00108823, ccp->io_regs + CMD5_CLK_GATE_CTL_OFFSET);
1093
1094	ccp5_config(ccp);
1095}
1096
1097/* Version 5 adds some function, but is essentially the same as v5 */
1098static const struct ccp_actions ccp5_actions = {
1099	.aes = ccp5_perform_aes,
1100	.xts_aes = ccp5_perform_xts_aes,
1101	.sha = ccp5_perform_sha,
1102	.des3 = ccp5_perform_des3,
1103	.rsa = ccp5_perform_rsa,
1104	.passthru = ccp5_perform_passthru,
1105	.ecc = ccp5_perform_ecc,
1106	.sballoc = ccp_lsb_alloc,
1107	.sbfree = ccp_lsb_free,
1108	.init = ccp5_init,
1109	.destroy = ccp5_destroy,
1110	.get_free_slots = ccp5_get_free_slots,
1111};
1112
1113const struct ccp_vdata ccpv5a = {
1114	.version = CCP_VERSION(5, 0),
1115	.setup = ccp5_config,
1116	.perform = &ccp5_actions,
1117	.offset = 0x0,
1118	.rsamax = CCP5_RSA_MAX_WIDTH,
1119};
1120
1121const struct ccp_vdata ccpv5b = {
1122	.version = CCP_VERSION(5, 0),
1123	.dma_chan_attr = DMA_PRIVATE,
1124	.setup = ccp5other_config,
1125	.perform = &ccp5_actions,
1126	.offset = 0x0,
1127	.rsamax = CCP5_RSA_MAX_WIDTH,
1128};
1129