1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Cryptographic Coprocessor (CCP) AES CMAC crypto API support
4 *
5 * Copyright (C) 2013,2018 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
9
10#include <linux/module.h>
11#include <linux/sched.h>
12#include <linux/delay.h>
13#include <linux/scatterlist.h>
14#include <linux/crypto.h>
15#include <crypto/algapi.h>
16#include <crypto/aes.h>
17#include <crypto/hash.h>
18#include <crypto/internal/hash.h>
19#include <crypto/scatterwalk.h>
20
21#include "ccp-crypto.h"
22
23static int ccp_aes_cmac_complete(struct crypto_async_request *async_req,
24				 int ret)
25{
26	struct ahash_request *req = ahash_request_cast(async_req);
27	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
28	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
29	unsigned int digest_size = crypto_ahash_digestsize(tfm);
30
31	if (ret)
32		goto e_free;
33
34	if (rctx->hash_rem) {
35		/* Save remaining data to buffer */
36		unsigned int offset = rctx->nbytes - rctx->hash_rem;
37
38		scatterwalk_map_and_copy(rctx->buf, rctx->src,
39					 offset, rctx->hash_rem, 0);
40		rctx->buf_count = rctx->hash_rem;
41	} else {
42		rctx->buf_count = 0;
43	}
44
45	/* Update result area if supplied */
46	if (req->result && rctx->final)
47		memcpy(req->result, rctx->iv, digest_size);
48
49e_free:
50	sg_free_table(&rctx->data_sg);
51
52	return ret;
53}
54
55static int ccp_do_cmac_update(struct ahash_request *req, unsigned int nbytes,
56			      unsigned int final)
57{
58	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
59	struct ccp_ctx *ctx = crypto_ahash_ctx_dma(tfm);
60	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
61	struct scatterlist *sg, *cmac_key_sg = NULL;
62	unsigned int block_size =
63		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
64	unsigned int need_pad, sg_count;
65	gfp_t gfp;
66	u64 len;
67	int ret;
68
69	if (!ctx->u.aes.key_len)
70		return -EINVAL;
71
72	if (nbytes)
73		rctx->null_msg = 0;
74
75	len = (u64)rctx->buf_count + (u64)nbytes;
76
77	if (!final && (len <= block_size)) {
78		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
79					 0, nbytes, 0);
80		rctx->buf_count += nbytes;
81
82		return 0;
83	}
84
85	rctx->src = req->src;
86	rctx->nbytes = nbytes;
87
88	rctx->final = final;
89	rctx->hash_rem = final ? 0 : len & (block_size - 1);
90	rctx->hash_cnt = len - rctx->hash_rem;
91	if (!final && !rctx->hash_rem) {
92		/* CCP can't do zero length final, so keep some data around */
93		rctx->hash_cnt -= block_size;
94		rctx->hash_rem = block_size;
95	}
96
97	if (final && (rctx->null_msg || (len & (block_size - 1))))
98		need_pad = 1;
99	else
100		need_pad = 0;
101
102	sg_init_one(&rctx->iv_sg, rctx->iv, sizeof(rctx->iv));
103
104	/* Build the data scatterlist table - allocate enough entries for all
105	 * possible data pieces (buffer, input data, padding)
106	 */
107	sg_count = (nbytes) ? sg_nents(req->src) + 2 : 2;
108	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
109		GFP_KERNEL : GFP_ATOMIC;
110	ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
111	if (ret)
112		return ret;
113
114	sg = NULL;
115	if (rctx->buf_count) {
116		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
117		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
118		if (!sg) {
119			ret = -EINVAL;
120			goto e_free;
121		}
122	}
123
124	if (nbytes) {
125		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
126		if (!sg) {
127			ret = -EINVAL;
128			goto e_free;
129		}
130	}
131
132	if (need_pad) {
133		int pad_length = block_size - (len & (block_size - 1));
134
135		rctx->hash_cnt += pad_length;
136
137		memset(rctx->pad, 0, sizeof(rctx->pad));
138		rctx->pad[0] = 0x80;
139		sg_init_one(&rctx->pad_sg, rctx->pad, pad_length);
140		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->pad_sg);
141		if (!sg) {
142			ret = -EINVAL;
143			goto e_free;
144		}
145	}
146	if (sg) {
147		sg_mark_end(sg);
148		sg = rctx->data_sg.sgl;
149	}
150
151	/* Initialize the K1/K2 scatterlist */
152	if (final)
153		cmac_key_sg = (need_pad) ? &ctx->u.aes.k2_sg
154					 : &ctx->u.aes.k1_sg;
155
156	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
157	INIT_LIST_HEAD(&rctx->cmd.entry);
158	rctx->cmd.engine = CCP_ENGINE_AES;
159	rctx->cmd.u.aes.type = ctx->u.aes.type;
160	rctx->cmd.u.aes.mode = ctx->u.aes.mode;
161	rctx->cmd.u.aes.action = CCP_AES_ACTION_ENCRYPT;
162	rctx->cmd.u.aes.key = &ctx->u.aes.key_sg;
163	rctx->cmd.u.aes.key_len = ctx->u.aes.key_len;
164	rctx->cmd.u.aes.iv = &rctx->iv_sg;
165	rctx->cmd.u.aes.iv_len = AES_BLOCK_SIZE;
166	rctx->cmd.u.aes.src = sg;
167	rctx->cmd.u.aes.src_len = rctx->hash_cnt;
168	rctx->cmd.u.aes.dst = NULL;
169	rctx->cmd.u.aes.cmac_key = cmac_key_sg;
170	rctx->cmd.u.aes.cmac_key_len = ctx->u.aes.kn_len;
171	rctx->cmd.u.aes.cmac_final = final;
172
173	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
174
175	return ret;
176
177e_free:
178	sg_free_table(&rctx->data_sg);
179
180	return ret;
181}
182
183static int ccp_aes_cmac_init(struct ahash_request *req)
184{
185	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
186
187	memset(rctx, 0, sizeof(*rctx));
188
189	rctx->null_msg = 1;
190
191	return 0;
192}
193
194static int ccp_aes_cmac_update(struct ahash_request *req)
195{
196	return ccp_do_cmac_update(req, req->nbytes, 0);
197}
198
199static int ccp_aes_cmac_final(struct ahash_request *req)
200{
201	return ccp_do_cmac_update(req, 0, 1);
202}
203
204static int ccp_aes_cmac_finup(struct ahash_request *req)
205{
206	return ccp_do_cmac_update(req, req->nbytes, 1);
207}
208
209static int ccp_aes_cmac_digest(struct ahash_request *req)
210{
211	int ret;
212
213	ret = ccp_aes_cmac_init(req);
214	if (ret)
215		return ret;
216
217	return ccp_aes_cmac_finup(req);
218}
219
220static int ccp_aes_cmac_export(struct ahash_request *req, void *out)
221{
222	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
223	struct ccp_aes_cmac_exp_ctx state;
224
225	/* Don't let anything leak to 'out' */
226	memset(&state, 0, sizeof(state));
227
228	state.null_msg = rctx->null_msg;
229	memcpy(state.iv, rctx->iv, sizeof(state.iv));
230	state.buf_count = rctx->buf_count;
231	memcpy(state.buf, rctx->buf, sizeof(state.buf));
232
233	/* 'out' may not be aligned so memcpy from local variable */
234	memcpy(out, &state, sizeof(state));
235
236	return 0;
237}
238
239static int ccp_aes_cmac_import(struct ahash_request *req, const void *in)
240{
241	struct ccp_aes_cmac_req_ctx *rctx = ahash_request_ctx_dma(req);
242	struct ccp_aes_cmac_exp_ctx state;
243
244	/* 'in' may not be aligned so memcpy to local variable */
245	memcpy(&state, in, sizeof(state));
246
247	memset(rctx, 0, sizeof(*rctx));
248	rctx->null_msg = state.null_msg;
249	memcpy(rctx->iv, state.iv, sizeof(rctx->iv));
250	rctx->buf_count = state.buf_count;
251	memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
252
253	return 0;
254}
255
256static int ccp_aes_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
257			       unsigned int key_len)
258{
259	struct ccp_ctx *ctx = crypto_ahash_ctx_dma(tfm);
260	struct ccp_crypto_ahash_alg *alg =
261		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
262	u64 k0_hi, k0_lo, k1_hi, k1_lo, k2_hi, k2_lo;
263	u64 rb_hi = 0x00, rb_lo = 0x87;
264	struct crypto_aes_ctx aes;
265	__be64 *gk;
266	int ret;
267
268	switch (key_len) {
269	case AES_KEYSIZE_128:
270		ctx->u.aes.type = CCP_AES_TYPE_128;
271		break;
272	case AES_KEYSIZE_192:
273		ctx->u.aes.type = CCP_AES_TYPE_192;
274		break;
275	case AES_KEYSIZE_256:
276		ctx->u.aes.type = CCP_AES_TYPE_256;
277		break;
278	default:
279		return -EINVAL;
280	}
281	ctx->u.aes.mode = alg->mode;
282
283	/* Set to zero until complete */
284	ctx->u.aes.key_len = 0;
285
286	/* Set the key for the AES cipher used to generate the keys */
287	ret = aes_expandkey(&aes, key, key_len);
288	if (ret)
289		return ret;
290
291	/* Encrypt a block of zeroes - use key area in context */
292	memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
293	aes_encrypt(&aes, ctx->u.aes.key, ctx->u.aes.key);
294	memzero_explicit(&aes, sizeof(aes));
295
296	/* Generate K1 and K2 */
297	k0_hi = be64_to_cpu(*((__be64 *)ctx->u.aes.key));
298	k0_lo = be64_to_cpu(*((__be64 *)ctx->u.aes.key + 1));
299
300	k1_hi = (k0_hi << 1) | (k0_lo >> 63);
301	k1_lo = k0_lo << 1;
302	if (ctx->u.aes.key[0] & 0x80) {
303		k1_hi ^= rb_hi;
304		k1_lo ^= rb_lo;
305	}
306	gk = (__be64 *)ctx->u.aes.k1;
307	*gk = cpu_to_be64(k1_hi);
308	gk++;
309	*gk = cpu_to_be64(k1_lo);
310
311	k2_hi = (k1_hi << 1) | (k1_lo >> 63);
312	k2_lo = k1_lo << 1;
313	if (ctx->u.aes.k1[0] & 0x80) {
314		k2_hi ^= rb_hi;
315		k2_lo ^= rb_lo;
316	}
317	gk = (__be64 *)ctx->u.aes.k2;
318	*gk = cpu_to_be64(k2_hi);
319	gk++;
320	*gk = cpu_to_be64(k2_lo);
321
322	ctx->u.aes.kn_len = sizeof(ctx->u.aes.k1);
323	sg_init_one(&ctx->u.aes.k1_sg, ctx->u.aes.k1, sizeof(ctx->u.aes.k1));
324	sg_init_one(&ctx->u.aes.k2_sg, ctx->u.aes.k2, sizeof(ctx->u.aes.k2));
325
326	/* Save the supplied key */
327	memset(ctx->u.aes.key, 0, sizeof(ctx->u.aes.key));
328	memcpy(ctx->u.aes.key, key, key_len);
329	ctx->u.aes.key_len = key_len;
330	sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
331
332	return ret;
333}
334
335static int ccp_aes_cmac_cra_init(struct crypto_tfm *tfm)
336{
337	struct ccp_ctx *ctx = crypto_tfm_ctx_dma(tfm);
338	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
339
340	ctx->complete = ccp_aes_cmac_complete;
341	ctx->u.aes.key_len = 0;
342
343	crypto_ahash_set_reqsize_dma(ahash,
344				     sizeof(struct ccp_aes_cmac_req_ctx));
345
346	return 0;
347}
348
349int ccp_register_aes_cmac_algs(struct list_head *head)
350{
351	struct ccp_crypto_ahash_alg *ccp_alg;
352	struct ahash_alg *alg;
353	struct hash_alg_common *halg;
354	struct crypto_alg *base;
355	int ret;
356
357	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
358	if (!ccp_alg)
359		return -ENOMEM;
360
361	INIT_LIST_HEAD(&ccp_alg->entry);
362	ccp_alg->mode = CCP_AES_MODE_CMAC;
363
364	alg = &ccp_alg->alg;
365	alg->init = ccp_aes_cmac_init;
366	alg->update = ccp_aes_cmac_update;
367	alg->final = ccp_aes_cmac_final;
368	alg->finup = ccp_aes_cmac_finup;
369	alg->digest = ccp_aes_cmac_digest;
370	alg->export = ccp_aes_cmac_export;
371	alg->import = ccp_aes_cmac_import;
372	alg->setkey = ccp_aes_cmac_setkey;
373
374	halg = &alg->halg;
375	halg->digestsize = AES_BLOCK_SIZE;
376	halg->statesize = sizeof(struct ccp_aes_cmac_exp_ctx);
377
378	base = &halg->base;
379	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "cmac(aes)");
380	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "cmac-aes-ccp");
381	base->cra_flags = CRYPTO_ALG_ASYNC |
382			  CRYPTO_ALG_ALLOCATES_MEMORY |
383			  CRYPTO_ALG_KERN_DRIVER_ONLY |
384			  CRYPTO_ALG_NEED_FALLBACK;
385	base->cra_blocksize = AES_BLOCK_SIZE;
386	base->cra_ctxsize = sizeof(struct ccp_ctx) + crypto_dma_padding();
387	base->cra_priority = CCP_CRA_PRIORITY;
388	base->cra_init = ccp_aes_cmac_cra_init;
389	base->cra_module = THIS_MODULE;
390
391	ret = crypto_register_ahash(alg);
392	if (ret) {
393		pr_err("%s ahash algorithm registration error (%d)\n",
394		       base->cra_name, ret);
395		kfree(ccp_alg);
396		return ret;
397	}
398
399	list_add(&ccp_alg->entry, head);
400
401	return 0;
402}
403