1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2016 Broadcom
4 */
5
6/*
7 * This file works with the SPU2 version of the SPU. SPU2 has different message
8 * formats than the previous version of the SPU. All SPU message format
9 * differences should be hidden in the spux.c,h files.
10 */
11
12#include <linux/kernel.h>
13#include <linux/string.h>
14
15#include "util.h"
16#include "spu.h"
17#include "spu2.h"
18
19#define SPU2_TX_STATUS_LEN  0	/* SPU2 has no STATUS in input packet */
20
21/*
22 * Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0
23 * register. Defaults to 2.
24 */
25#define SPU2_RX_STATUS_LEN  2
26
27enum spu2_proto_sel {
28	SPU2_PROTO_RESV = 0,
29	SPU2_MACSEC_SECTAG8_ECB = 1,
30	SPU2_MACSEC_SECTAG8_SCB = 2,
31	SPU2_MACSEC_SECTAG16 = 3,
32	SPU2_MACSEC_SECTAG16_8_XPN = 4,
33	SPU2_IPSEC = 5,
34	SPU2_IPSEC_ESN = 6,
35	SPU2_TLS_CIPHER = 7,
36	SPU2_TLS_AEAD = 8,
37	SPU2_DTLS_CIPHER = 9,
38	SPU2_DTLS_AEAD = 10
39};
40
41static char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256",
42	"DES", "3DES"
43};
44
45static char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB",
46	"XTS", "CCM", "GCM"
47};
48
49static char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256",
50	"Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384",
51	"SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256",
52	"SHA3-384", "SHA3-512"
53};
54
55static char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC",
56	"Rabin", "CCM", "GCM", "Reserved"
57};
58
59static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type)
60{
61	if (cipher_type >= SPU2_CIPHER_TYPE_LAST)
62		return "Reserved";
63	return spu2_cipher_type_names[cipher_type];
64}
65
66static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)
67{
68	if (cipher_mode >= SPU2_CIPHER_MODE_LAST)
69		return "Reserved";
70	return spu2_cipher_mode_names[cipher_mode];
71}
72
73static char *spu2_hash_type_name(enum spu2_hash_type hash_type)
74{
75	if (hash_type >= SPU2_HASH_TYPE_LAST)
76		return "Reserved";
77	return spu2_hash_type_names[hash_type];
78}
79
80static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode)
81{
82	if (hash_mode >= SPU2_HASH_MODE_LAST)
83		return "Reserved";
84	return spu2_hash_mode_names[hash_mode];
85}
86
87/*
88 * Convert from a software cipher mode value to the corresponding value
89 * for SPU2.
90 */
91static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,
92				  enum spu2_cipher_mode *spu2_mode)
93{
94	switch (cipher_mode) {
95	case CIPHER_MODE_ECB:
96		*spu2_mode = SPU2_CIPHER_MODE_ECB;
97		break;
98	case CIPHER_MODE_CBC:
99		*spu2_mode = SPU2_CIPHER_MODE_CBC;
100		break;
101	case CIPHER_MODE_OFB:
102		*spu2_mode = SPU2_CIPHER_MODE_OFB;
103		break;
104	case CIPHER_MODE_CFB:
105		*spu2_mode = SPU2_CIPHER_MODE_CFB;
106		break;
107	case CIPHER_MODE_CTR:
108		*spu2_mode = SPU2_CIPHER_MODE_CTR;
109		break;
110	case CIPHER_MODE_CCM:
111		*spu2_mode = SPU2_CIPHER_MODE_CCM;
112		break;
113	case CIPHER_MODE_GCM:
114		*spu2_mode = SPU2_CIPHER_MODE_GCM;
115		break;
116	case CIPHER_MODE_XTS:
117		*spu2_mode = SPU2_CIPHER_MODE_XTS;
118		break;
119	default:
120		return -EINVAL;
121	}
122	return 0;
123}
124
125/**
126 * spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2
127 * cipher type and mode.
128 * @cipher_alg:  [in]  cipher algorithm value from software enumeration
129 * @cipher_mode: [in]  cipher mode value from software enumeration
130 * @cipher_type: [in]  cipher type value from software enumeration
131 * @spu2_type:   [out] cipher type value used by spu2 hardware
132 * @spu2_mode:   [out] cipher mode value used by spu2 hardware
133 *
134 * Return:  0 if successful
135 */
136static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,
137			     enum spu_cipher_mode cipher_mode,
138			     enum spu_cipher_type cipher_type,
139			     enum spu2_cipher_type *spu2_type,
140			     enum spu2_cipher_mode *spu2_mode)
141{
142	int err;
143
144	err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode);
145	if (err) {
146		flow_log("Invalid cipher mode %d\n", cipher_mode);
147		return err;
148	}
149
150	switch (cipher_alg) {
151	case CIPHER_ALG_NONE:
152		*spu2_type = SPU2_CIPHER_TYPE_NONE;
153		break;
154	case CIPHER_ALG_RC4:
155		/* SPU2 does not support RC4 */
156		err = -EINVAL;
157		*spu2_type = SPU2_CIPHER_TYPE_NONE;
158		break;
159	case CIPHER_ALG_DES:
160		*spu2_type = SPU2_CIPHER_TYPE_DES;
161		break;
162	case CIPHER_ALG_3DES:
163		*spu2_type = SPU2_CIPHER_TYPE_3DES;
164		break;
165	case CIPHER_ALG_AES:
166		switch (cipher_type) {
167		case CIPHER_TYPE_AES128:
168			*spu2_type = SPU2_CIPHER_TYPE_AES128;
169			break;
170		case CIPHER_TYPE_AES192:
171			*spu2_type = SPU2_CIPHER_TYPE_AES192;
172			break;
173		case CIPHER_TYPE_AES256:
174			*spu2_type = SPU2_CIPHER_TYPE_AES256;
175			break;
176		default:
177			err = -EINVAL;
178		}
179		break;
180	case CIPHER_ALG_LAST:
181	default:
182		err = -EINVAL;
183		break;
184	}
185
186	if (err)
187		flow_log("Invalid cipher alg %d or type %d\n",
188			 cipher_alg, cipher_type);
189	return err;
190}
191
192/*
193 * Convert from a software hash mode value to the corresponding value
194 * for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value.
195 */
196static int spu2_hash_mode_xlate(enum hash_mode hash_mode,
197				enum spu2_hash_mode *spu2_mode)
198{
199	switch (hash_mode) {
200	case HASH_MODE_XCBC:
201		*spu2_mode = SPU2_HASH_MODE_XCBC_MAC;
202		break;
203	case HASH_MODE_CMAC:
204		*spu2_mode = SPU2_HASH_MODE_CMAC;
205		break;
206	case HASH_MODE_HMAC:
207		*spu2_mode = SPU2_HASH_MODE_HMAC;
208		break;
209	case HASH_MODE_CCM:
210		*spu2_mode = SPU2_HASH_MODE_CCM;
211		break;
212	case HASH_MODE_GCM:
213		*spu2_mode = SPU2_HASH_MODE_GCM;
214		break;
215	default:
216		return -EINVAL;
217	}
218	return 0;
219}
220
221/**
222 * spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type
223 * and mode.
224 * @hash_alg:  [in] hash algorithm value from software enumeration
225 * @hash_mode: [in] hash mode value from software enumeration
226 * @hash_type: [in] hash type value from software enumeration
227 * @ciph_type: [in] cipher type value from software enumeration
228 * @spu2_type: [out] hash type value used by SPU2 hardware
229 * @spu2_mode: [out] hash mode value used by SPU2 hardware
230 *
231 * Return:  0 if successful
232 */
233static int
234spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode,
235		enum hash_type hash_type, enum spu_cipher_type ciph_type,
236		enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode)
237{
238	int err;
239
240	err = spu2_hash_mode_xlate(hash_mode, spu2_mode);
241	if (err) {
242		flow_log("Invalid hash mode %d\n", hash_mode);
243		return err;
244	}
245
246	switch (hash_alg) {
247	case HASH_ALG_NONE:
248		*spu2_type = SPU2_HASH_TYPE_NONE;
249		break;
250	case HASH_ALG_MD5:
251		*spu2_type = SPU2_HASH_TYPE_MD5;
252		break;
253	case HASH_ALG_SHA1:
254		*spu2_type = SPU2_HASH_TYPE_SHA1;
255		break;
256	case HASH_ALG_SHA224:
257		*spu2_type = SPU2_HASH_TYPE_SHA224;
258		break;
259	case HASH_ALG_SHA256:
260		*spu2_type = SPU2_HASH_TYPE_SHA256;
261		break;
262	case HASH_ALG_SHA384:
263		*spu2_type = SPU2_HASH_TYPE_SHA384;
264		break;
265	case HASH_ALG_SHA512:
266		*spu2_type = SPU2_HASH_TYPE_SHA512;
267		break;
268	case HASH_ALG_AES:
269		switch (ciph_type) {
270		case CIPHER_TYPE_AES128:
271			*spu2_type = SPU2_HASH_TYPE_AES128;
272			break;
273		case CIPHER_TYPE_AES192:
274			*spu2_type = SPU2_HASH_TYPE_AES192;
275			break;
276		case CIPHER_TYPE_AES256:
277			*spu2_type = SPU2_HASH_TYPE_AES256;
278			break;
279		default:
280			err = -EINVAL;
281		}
282		break;
283	case HASH_ALG_SHA3_224:
284		*spu2_type = SPU2_HASH_TYPE_SHA3_224;
285		break;
286	case HASH_ALG_SHA3_256:
287		*spu2_type = SPU2_HASH_TYPE_SHA3_256;
288		break;
289	case HASH_ALG_SHA3_384:
290		*spu2_type = SPU2_HASH_TYPE_SHA3_384;
291		break;
292	case HASH_ALG_SHA3_512:
293		*spu2_type = SPU2_HASH_TYPE_SHA3_512;
294		break;
295	case HASH_ALG_LAST:
296	default:
297		err = -EINVAL;
298		break;
299	}
300
301	if (err)
302		flow_log("Invalid hash alg %d or type %d\n",
303			 hash_alg, hash_type);
304	return err;
305}
306
307/* Dump FMD ctrl0. The ctrl0 input is in host byte order */
308static void spu2_dump_fmd_ctrl0(u64 ctrl0)
309{
310	enum spu2_cipher_type ciph_type;
311	enum spu2_cipher_mode ciph_mode;
312	enum spu2_hash_type hash_type;
313	enum spu2_hash_mode hash_mode;
314	char *ciph_name;
315	char *ciph_mode_name;
316	char *hash_name;
317	char *hash_mode_name;
318	u8 cfb;
319	u8 proto;
320
321	packet_log(" FMD CTRL0 %#16llx\n", ctrl0);
322	if (ctrl0 & SPU2_CIPH_ENCRYPT_EN)
323		packet_log("  encrypt\n");
324	else
325		packet_log("  decrypt\n");
326
327	ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT;
328	ciph_name = spu2_ciph_type_name(ciph_type);
329	packet_log("  Cipher type: %s\n", ciph_name);
330
331	if (ciph_type != SPU2_CIPHER_TYPE_NONE) {
332		ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT;
333		ciph_mode_name = spu2_ciph_mode_name(ciph_mode);
334		packet_log("  Cipher mode: %s\n", ciph_mode_name);
335	}
336
337	cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT;
338	packet_log("  CFB %#x\n", cfb);
339
340	proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT;
341	packet_log("  protocol %#x\n", proto);
342
343	if (ctrl0 & SPU2_HASH_FIRST)
344		packet_log("  hash first\n");
345	else
346		packet_log("  cipher first\n");
347
348	if (ctrl0 & SPU2_CHK_TAG)
349		packet_log("  check tag\n");
350
351	hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT;
352	hash_name = spu2_hash_type_name(hash_type);
353	packet_log("  Hash type: %s\n", hash_name);
354
355	if (hash_type != SPU2_HASH_TYPE_NONE) {
356		hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT;
357		hash_mode_name = spu2_hash_mode_name(hash_mode);
358		packet_log("  Hash mode: %s\n", hash_mode_name);
359	}
360
361	if (ctrl0 & SPU2_CIPH_PAD_EN) {
362		packet_log("  Cipher pad: %#2llx\n",
363			   (ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT);
364	}
365}
366
367/* Dump FMD ctrl1. The ctrl1 input is in host byte order */
368static void spu2_dump_fmd_ctrl1(u64 ctrl1)
369{
370	u8 hash_key_len;
371	u8 ciph_key_len;
372	u8 ret_iv_len;
373	u8 iv_offset;
374	u8 iv_len;
375	u8 hash_tag_len;
376	u8 ret_md;
377
378	packet_log(" FMD CTRL1 %#16llx\n", ctrl1);
379	if (ctrl1 & SPU2_TAG_LOC)
380		packet_log("  Tag after payload\n");
381
382	packet_log("  Msg includes ");
383	if (ctrl1 & SPU2_HAS_FR_DATA)
384		packet_log("FD ");
385	if (ctrl1 & SPU2_HAS_AAD1)
386		packet_log("AAD1 ");
387	if (ctrl1 & SPU2_HAS_NAAD)
388		packet_log("NAAD ");
389	if (ctrl1 & SPU2_HAS_AAD2)
390		packet_log("AAD2 ");
391	if (ctrl1 & SPU2_HAS_ESN)
392		packet_log("ESN ");
393	packet_log("\n");
394
395	hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
396	packet_log("  Hash key len %u\n", hash_key_len);
397
398	ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
399	packet_log("  Cipher key len %u\n", ciph_key_len);
400
401	if (ctrl1 & SPU2_GENIV)
402		packet_log("  Generate IV\n");
403
404	if (ctrl1 & SPU2_HASH_IV)
405		packet_log("  IV included in hash\n");
406
407	if (ctrl1 & SPU2_RET_IV)
408		packet_log("  Return IV in output before payload\n");
409
410	ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT;
411	packet_log("  Length of returned IV %u bytes\n",
412		   ret_iv_len ? ret_iv_len : 16);
413
414	iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT;
415	packet_log("  IV offset %u\n", iv_offset);
416
417	iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
418	packet_log("  Input IV len %u bytes\n", iv_len);
419
420	hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT;
421	packet_log("  Hash tag length %u bytes\n", hash_tag_len);
422
423	packet_log("  Return ");
424	ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT;
425	if (ret_md)
426		packet_log("FMD ");
427	if (ret_md == SPU2_RET_FMD_OMD)
428		packet_log("OMD ");
429	else if (ret_md == SPU2_RET_FMD_OMD_IV)
430		packet_log("OMD IV ");
431	if (ctrl1 & SPU2_RETURN_FD)
432		packet_log("FD ");
433	if (ctrl1 & SPU2_RETURN_AAD1)
434		packet_log("AAD1 ");
435	if (ctrl1 & SPU2_RETURN_NAAD)
436		packet_log("NAAD ");
437	if (ctrl1 & SPU2_RETURN_AAD2)
438		packet_log("AAD2 ");
439	if (ctrl1 & SPU2_RETURN_PAY)
440		packet_log("Payload");
441	packet_log("\n");
442}
443
444/* Dump FMD ctrl2. The ctrl2 input is in host byte order */
445static void spu2_dump_fmd_ctrl2(u64 ctrl2)
446{
447	packet_log(" FMD CTRL2 %#16llx\n", ctrl2);
448
449	packet_log("  AAD1 offset %llu length %llu bytes\n",
450		   ctrl2 & SPU2_AAD1_OFFSET,
451		   (ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT);
452	packet_log("  AAD2 offset %llu\n",
453		   (ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT);
454	packet_log("  Payload offset %llu\n",
455		   (ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT);
456}
457
458/* Dump FMD ctrl3. The ctrl3 input is in host byte order */
459static void spu2_dump_fmd_ctrl3(u64 ctrl3)
460{
461	packet_log(" FMD CTRL3 %#16llx\n", ctrl3);
462
463	packet_log("  Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN);
464	packet_log("  TLS length %llu bytes\n",
465		   (ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT);
466}
467
468static void spu2_dump_fmd(struct SPU2_FMD *fmd)
469{
470	spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0));
471	spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1));
472	spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2));
473	spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3));
474}
475
476static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len,
477			  u16 hash_iv_len, u16 ciph_iv_len)
478{
479	u8 *ptr = omd;
480
481	packet_log(" OMD:\n");
482
483	if (hash_key_len) {
484		packet_log("  Hash Key Length %u bytes\n", hash_key_len);
485		packet_dump("  KEY: ", ptr, hash_key_len);
486		ptr += hash_key_len;
487	}
488
489	if (ciph_key_len) {
490		packet_log("  Cipher Key Length %u bytes\n", ciph_key_len);
491		packet_dump("  KEY: ", ptr, ciph_key_len);
492		ptr += ciph_key_len;
493	}
494
495	if (hash_iv_len) {
496		packet_log("  Hash IV Length %u bytes\n", hash_iv_len);
497		packet_dump("  hash IV: ", ptr, hash_iv_len);
498		ptr += ciph_key_len;
499	}
500
501	if (ciph_iv_len) {
502		packet_log("  Cipher IV Length %u bytes\n", ciph_iv_len);
503		packet_dump("  cipher IV: ", ptr, ciph_iv_len);
504	}
505}
506
507/* Dump a SPU2 header for debug */
508void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len)
509{
510	struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf;
511	u8 *omd;
512	u64 ctrl1;
513	u16 hash_key_len;
514	u16 ciph_key_len;
515	u16 hash_iv_len;
516	u16 ciph_iv_len;
517	u16 omd_len;
518
519	packet_log("\n");
520	packet_log("SPU2 message header %p len: %u\n", buf, buf_len);
521
522	spu2_dump_fmd(fmd);
523	omd = (u8 *)(fmd + 1);
524
525	ctrl1 = le64_to_cpu(fmd->ctrl1);
526	hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
527	ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
528	hash_iv_len = 0;
529	ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
530	spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len,
531		      ciph_iv_len);
532
533	/* Double check sanity */
534	omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len;
535	if (FMD_SIZE + omd_len != buf_len) {
536		packet_log
537		    (" Packet parsed incorrectly. buf_len %u, sum of MD %zu\n",
538		     buf_len, FMD_SIZE + omd_len);
539	}
540	packet_log("\n");
541}
542
543/**
544 * spu2_fmd_init() - At setkey time, initialize the fixed meta data for
545 * subsequent skcipher requests for this context.
546 * @fmd:               Start of FMD field to be written
547 * @spu2_type:         Cipher algorithm
548 * @spu2_mode:         Cipher mode
549 * @cipher_key_len:    Length of cipher key, in bytes
550 * @cipher_iv_len:     Length of cipher initialization vector, in bytes
551 *
552 * Return:  0 (success)
553 */
554static int spu2_fmd_init(struct SPU2_FMD *fmd,
555			 enum spu2_cipher_type spu2_type,
556			 enum spu2_cipher_mode spu2_mode,
557			 u32 cipher_key_len, u32 cipher_iv_len)
558{
559	u64 ctrl0;
560	u64 ctrl1;
561	u64 ctrl2;
562	u64 ctrl3;
563	u32 aad1_offset;
564	u32 aad2_offset;
565	u16 aad1_len = 0;
566	u64 payload_offset;
567
568	ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) |
569	    (spu2_mode << SPU2_CIPH_MODE_SHIFT);
570
571	ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) |
572	    ((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) |
573	    ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY;
574
575	/*
576	 * AAD1 offset is from start of FD. FD length is always 0 for this
577	 * driver. So AAD1_offset is always 0.
578	 */
579	aad1_offset = 0;
580	aad2_offset = aad1_offset;
581	payload_offset = 0;
582	ctrl2 = aad1_offset |
583	    (aad1_len << SPU2_AAD1_LEN_SHIFT) |
584	    (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
585	    (payload_offset << SPU2_PL_OFFSET_SHIFT);
586
587	ctrl3 = 0;
588
589	fmd->ctrl0 = cpu_to_le64(ctrl0);
590	fmd->ctrl1 = cpu_to_le64(ctrl1);
591	fmd->ctrl2 = cpu_to_le64(ctrl2);
592	fmd->ctrl3 = cpu_to_le64(ctrl3);
593
594	return 0;
595}
596
597/**
598 * spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of
599 * SPU request packet.
600 * @fmd:            Start of FMD field to be written
601 * @is_inbound:     true if decrypting. false if encrypting.
602 * @auth_first:     true if alg authenticates before encrypting
603 * @protocol:       protocol selector
604 * @cipher_type:    cipher algorithm
605 * @cipher_mode:    cipher mode
606 * @auth_type:      authentication type
607 * @auth_mode:      authentication mode
608 */
609static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd,
610				 bool is_inbound, bool auth_first,
611				 enum spu2_proto_sel protocol,
612				 enum spu2_cipher_type cipher_type,
613				 enum spu2_cipher_mode cipher_mode,
614				 enum spu2_hash_type auth_type,
615				 enum spu2_hash_mode auth_mode)
616{
617	u64 ctrl0 = 0;
618
619	if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound)
620		ctrl0 |= SPU2_CIPH_ENCRYPT_EN;
621
622	ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) |
623	    ((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT);
624
625	if (protocol)
626		ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT;
627
628	if (auth_first)
629		ctrl0 |= SPU2_HASH_FIRST;
630
631	if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE))
632		ctrl0 |= SPU2_CHK_TAG;
633
634	ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) |
635		  ((u64)auth_mode << SPU2_HASH_MODE_SHIFT));
636
637	fmd->ctrl0 = cpu_to_le64(ctrl0);
638}
639
640/**
641 * spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of
642 * SPU request packet.
643 * @fmd:            Start of FMD field to be written
644 * @is_inbound:     true if decrypting. false if encrypting.
645 * @assoc_size:     Length of additional associated data, in bytes
646 * @auth_key_len:   Length of authentication key, in bytes
647 * @cipher_key_len: Length of cipher key, in bytes
648 * @gen_iv:         If true, hw generates IV and returns in response
649 * @hash_iv:        IV participates in hash. Used for IPSEC and TLS.
650 * @return_iv:      Return IV in output packet before payload
651 * @ret_iv_len:     Length of IV returned from SPU, in bytes
652 * @ret_iv_offset:  Offset into full IV of start of returned IV
653 * @cipher_iv_len:  Length of input cipher IV, in bytes
654 * @digest_size:    Length of digest (aka, hash tag or ICV), in bytes
655 * @return_payload: Return payload in SPU response
656 * @return_md : return metadata in SPU response
657 *
658 * Packet can have AAD2 w/o AAD1. For algorithms currently supported,
659 * associated data goes in AAD2.
660 */
661static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound,
662				 u64 assoc_size,
663				 u64 auth_key_len, u64 cipher_key_len,
664				 bool gen_iv, bool hash_iv, bool return_iv,
665				 u64 ret_iv_len, u64 ret_iv_offset,
666				 u64 cipher_iv_len, u64 digest_size,
667				 bool return_payload, bool return_md)
668{
669	u64 ctrl1 = 0;
670
671	if (is_inbound && digest_size)
672		ctrl1 |= SPU2_TAG_LOC;
673
674	if (assoc_size) {
675		ctrl1 |= SPU2_HAS_AAD2;
676		ctrl1 |= SPU2_RETURN_AAD2;  /* need aad2 for gcm aes esp */
677	}
678
679	if (auth_key_len)
680		ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) &
681			  SPU2_HASH_KEY_LEN);
682
683	if (cipher_key_len)
684		ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) &
685			  SPU2_CIPH_KEY_LEN);
686
687	if (gen_iv)
688		ctrl1 |= SPU2_GENIV;
689
690	if (hash_iv)
691		ctrl1 |= SPU2_HASH_IV;
692
693	if (return_iv) {
694		ctrl1 |= SPU2_RET_IV;
695		ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT;
696		ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT;
697	}
698
699	ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN);
700
701	if (digest_size)
702		ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) &
703			  SPU2_HASH_TAG_LEN);
704
705	/* Let's ask for the output pkt to include FMD, but don't need to
706	 * get keys and IVs back in OMD.
707	 */
708	if (return_md)
709		ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT);
710	else
711		ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT);
712
713	/* Crypto API does not get assoc data back. So no need for AAD2. */
714
715	if (return_payload)
716		ctrl1 |= SPU2_RETURN_PAY;
717
718	fmd->ctrl1 = cpu_to_le64(ctrl1);
719}
720
721/**
722 * spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of
723 * SPU2 header.
724 * @fmd:            Start of FMD field to be written
725 * @cipher_offset:  Number of bytes from Start of Packet (end of FD field) where
726 *                  data to be encrypted or decrypted begins
727 * @auth_key_len:   Length of authentication key, in bytes
728 * @auth_iv_len:    Length of authentication initialization vector, in bytes
729 * @cipher_key_len: Length of cipher key, in bytes
730 * @cipher_iv_len:  Length of cipher IV, in bytes
731 */
732static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset,
733				 u64 auth_key_len, u64 auth_iv_len,
734				 u64 cipher_key_len, u64 cipher_iv_len)
735{
736	u64 ctrl2;
737	u64 aad1_offset;
738	u64 aad2_offset;
739	u16 aad1_len = 0;
740	u64 payload_offset;
741
742	/* AAD1 offset is from start of FD. FD length always 0. */
743	aad1_offset = 0;
744
745	aad2_offset = aad1_offset;
746	payload_offset = cipher_offset;
747	ctrl2 = aad1_offset |
748	    (aad1_len << SPU2_AAD1_LEN_SHIFT) |
749	    (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
750	    (payload_offset << SPU2_PL_OFFSET_SHIFT);
751
752	fmd->ctrl2 = cpu_to_le64(ctrl2);
753}
754
755/**
756 * spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD
757 * @fmd:          Fixed meta data. First field in SPU2 msg header.
758 * @payload_len:  Length of payload, in bytes
759 */
760static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len)
761{
762	u64 ctrl3;
763
764	ctrl3 = payload_len & SPU2_PL_LEN;
765
766	fmd->ctrl3 = cpu_to_le64(ctrl3);
767}
768
769/**
770 * spu2_ctx_max_payload() - Determine the maximum length of the payload for a
771 * SPU message for a given cipher and hash alg context.
772 * @cipher_alg:		The cipher algorithm
773 * @cipher_mode:	The cipher mode
774 * @blocksize:		The size of a block of data for this algo
775 *
776 * For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of
777 * FMD and just keeps computing until it receives a DMA descriptor with the EOF
778 * flag set. So we consider the max payload to be infinite. AES CCM is an
779 * exception.
780 *
781 * Return: Max payload length in bytes
782 */
783u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,
784			 enum spu_cipher_mode cipher_mode,
785			 unsigned int blocksize)
786{
787	if ((cipher_alg == CIPHER_ALG_AES) &&
788	    (cipher_mode == CIPHER_MODE_CCM)) {
789		u32 excess = SPU2_MAX_PAYLOAD % blocksize;
790
791		return SPU2_MAX_PAYLOAD - excess;
792	} else {
793		return SPU_MAX_PAYLOAD_INF;
794	}
795}
796
797/**
798 * spu2_payload_length() -  Given a SPU2 message header, extract the payload
799 * length.
800 * @spu_hdr:  Start of SPU message header (FMD)
801 *
802 * Return: payload length, in bytes
803 */
804u32 spu2_payload_length(u8 *spu_hdr)
805{
806	struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr;
807	u32 pl_len;
808	u64 ctrl3;
809
810	ctrl3 = le64_to_cpu(fmd->ctrl3);
811	pl_len = ctrl3 & SPU2_PL_LEN;
812
813	return pl_len;
814}
815
816/**
817 * spu2_response_hdr_len() - Determine the expected length of a SPU response
818 * header.
819 * @auth_key_len:  Length of authentication key, in bytes
820 * @enc_key_len:   Length of encryption key, in bytes
821 * @is_hash:       Unused
822 *
823 * For SPU2, includes just FMD. OMD is never requested.
824 *
825 * Return: Length of FMD, in bytes
826 */
827u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash)
828{
829	return FMD_SIZE;
830}
831
832/**
833 * spu2_hash_pad_len() - Calculate the length of hash padding required to extend
834 * data to a full block size.
835 * @hash_alg:        hash algorithm
836 * @hash_mode:       hash mode
837 * @chunksize:       length of data, in bytes
838 * @hash_block_size: size of a hash block, in bytes
839 *
840 * SPU2 hardware does all hash padding
841 *
842 * Return:  length of hash pad in bytes
843 */
844u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode,
845		      u32 chunksize, u16 hash_block_size)
846{
847	return 0;
848}
849
850/**
851 * spu2_gcm_ccm_pad_len() -  Determine the length of GCM/CCM padding for either
852 * the AAD field or the data.
853 * @cipher_mode:  Unused
854 * @data_size:    Unused
855 *
856 * Return:  0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required.
857 */
858u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,
859			 unsigned int data_size)
860{
861	return 0;
862}
863
864/**
865 * spu2_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch
866 * associated data in a SPU2 output packet.
867 * @cipher_mode:   cipher mode
868 * @assoc_len:     length of additional associated data, in bytes
869 * @iv_len:        length of initialization vector, in bytes
870 * @is_encrypt:    true if encrypting. false if decrypt.
871 *
872 * Return: Length of buffer to catch associated data in response
873 */
874u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,
875			unsigned int assoc_len, unsigned int iv_len,
876			bool is_encrypt)
877{
878	u32 resp_len = assoc_len;
879
880	if (is_encrypt)
881		/* gcm aes esp has to write 8-byte IV in response */
882		resp_len += iv_len;
883	return resp_len;
884}
885
886/**
887 * spu2_aead_ivlen() - Calculate the length of the AEAD IV to be included
888 * in a SPU request after the AAD and before the payload.
889 * @cipher_mode:  cipher mode
890 * @iv_len:   initialization vector length in bytes
891 *
892 * For SPU2, AEAD IV is included in OMD and does not need to be repeated
893 * prior to the payload.
894 *
895 * Return: Length of AEAD IV in bytes
896 */
897u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len)
898{
899	return 0;
900}
901
902/**
903 * spu2_hash_type() - Determine the type of hash operation.
904 * @src_sent:  The number of bytes in the current request that have already
905 *             been sent to the SPU to be hashed.
906 *
907 * SPU2 always does a FULL hash operation
908 */
909enum hash_type spu2_hash_type(u32 src_sent)
910{
911	return HASH_TYPE_FULL;
912}
913
914/**
915 * spu2_digest_size() - Determine the size of a hash digest to expect the SPU to
916 * return.
917 * @alg_digest_size: Number of bytes in the final digest for the given algo
918 * @alg:             The hash algorithm
919 * @htype:           Type of hash operation (init, update, full, etc)
920 *
921 */
922u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg,
923		     enum hash_type htype)
924{
925	return alg_digest_size;
926}
927
928/**
929 * spu2_create_request() - Build a SPU2 request message header, includint FMD and
930 * OMD.
931 * @spu_hdr: Start of buffer where SPU request header is to be written
932 * @req_opts: SPU request message options
933 * @cipher_parms: Parameters related to cipher algorithm
934 * @hash_parms:   Parameters related to hash algorithm
935 * @aead_parms:   Parameters related to AEAD operation
936 * @data_size:    Length of data to be encrypted or authenticated. If AEAD, does
937 *		  not include length of AAD.
938 *
939 * Construct the message starting at spu_hdr. Caller should allocate this buffer
940 * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long.
941 *
942 * Return: the length of the SPU header in bytes. 0 if an error occurs.
943 */
944u32 spu2_create_request(u8 *spu_hdr,
945			struct spu_request_opts *req_opts,
946			struct spu_cipher_parms *cipher_parms,
947			struct spu_hash_parms *hash_parms,
948			struct spu_aead_parms *aead_parms,
949			unsigned int data_size)
950{
951	struct SPU2_FMD *fmd;
952	u8 *ptr;
953	unsigned int buf_len;
954	int err;
955	enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
956	enum spu2_cipher_mode spu2_ciph_mode;
957	enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE;
958	enum spu2_hash_mode spu2_auth_mode;
959	bool return_md = true;
960	enum spu2_proto_sel proto = SPU2_PROTO_RESV;
961
962	/* size of the payload */
963	unsigned int payload_len =
964	    hash_parms->prebuf_len + data_size + hash_parms->pad_len -
965	    ((req_opts->is_aead && req_opts->is_inbound) ?
966	     hash_parms->digestsize : 0);
967
968	/* offset of prebuf or data from start of AAD2 */
969	unsigned int cipher_offset = aead_parms->assoc_size +
970			aead_parms->aad_pad_len + aead_parms->iv_len;
971
972	/* total size of the data following OMD (without STAT word padding) */
973	unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size,
974						 aead_parms->iv_len,
975						 hash_parms->prebuf_len,
976						 data_size,
977						 aead_parms->aad_pad_len,
978						 aead_parms->data_pad_len,
979						 hash_parms->pad_len);
980	unsigned int assoc_size = aead_parms->assoc_size;
981
982	if (req_opts->is_aead &&
983	    (cipher_parms->alg == CIPHER_ALG_AES) &&
984	    (cipher_parms->mode == CIPHER_MODE_GCM))
985		/*
986		 * On SPU 2, aes gcm cipher first on encrypt, auth first on
987		 * decrypt
988		 */
989		req_opts->auth_first = req_opts->is_inbound;
990
991	/* and do opposite for ccm (auth 1st on encrypt) */
992	if (req_opts->is_aead &&
993	    (cipher_parms->alg == CIPHER_ALG_AES) &&
994	    (cipher_parms->mode == CIPHER_MODE_CCM))
995		req_opts->auth_first = !req_opts->is_inbound;
996
997	flow_log("%s()\n", __func__);
998	flow_log("  in:%u authFirst:%u\n",
999		 req_opts->is_inbound, req_opts->auth_first);
1000	flow_log("  cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
1001		 cipher_parms->mode, cipher_parms->type);
1002	flow_log("  is_esp: %s\n", req_opts->is_esp ? "yes" : "no");
1003	flow_log("    key: %d\n", cipher_parms->key_len);
1004	flow_dump("    key: ", cipher_parms->key_buf, cipher_parms->key_len);
1005	flow_log("    iv: %d\n", cipher_parms->iv_len);
1006	flow_dump("    iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
1007	flow_log("  auth alg:%u mode:%u type %u\n",
1008		 hash_parms->alg, hash_parms->mode, hash_parms->type);
1009	flow_log("  digestsize: %u\n", hash_parms->digestsize);
1010	flow_log("  authkey: %d\n", hash_parms->key_len);
1011	flow_dump("  authkey: ", hash_parms->key_buf, hash_parms->key_len);
1012	flow_log("  assoc_size:%u\n", assoc_size);
1013	flow_log("  prebuf_len:%u\n", hash_parms->prebuf_len);
1014	flow_log("  data_size:%u\n", data_size);
1015	flow_log("  hash_pad_len:%u\n", hash_parms->pad_len);
1016	flow_log("  real_db_size:%u\n", real_db_size);
1017	flow_log("  cipher_offset:%u payload_len:%u\n",
1018		 cipher_offset, payload_len);
1019	flow_log("  aead_iv: %u\n", aead_parms->iv_len);
1020
1021	/* Convert to spu2 values for cipher alg, hash alg */
1022	err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
1023				cipher_parms->type,
1024				&spu2_ciph_type, &spu2_ciph_mode);
1025
1026	/* If we are doing GCM hashing only - either via rfc4543 transform
1027	 * or because we happen to do GCM with AAD only and no payload - we
1028	 * need to configure hardware to use hash key rather than cipher key
1029	 * and put data into payload.  This is because unlike SPU-M, running
1030	 * GCM cipher with 0 size payload is not permitted.
1031	 */
1032	if ((req_opts->is_rfc4543) ||
1033	    ((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) &&
1034	    (payload_len == 0))) {
1035		/* Use hashing (only) and set up hash key */
1036		spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
1037		hash_parms->key_len = cipher_parms->key_len;
1038		memcpy(hash_parms->key_buf, cipher_parms->key_buf,
1039		       cipher_parms->key_len);
1040		cipher_parms->key_len = 0;
1041
1042		if (req_opts->is_rfc4543)
1043			payload_len += assoc_size;
1044		else
1045			payload_len = assoc_size;
1046		cipher_offset = 0;
1047		assoc_size = 0;
1048	}
1049
1050	if (err)
1051		return 0;
1052
1053	flow_log("spu2 cipher type %s, cipher mode %s\n",
1054		 spu2_ciph_type_name(spu2_ciph_type),
1055		 spu2_ciph_mode_name(spu2_ciph_mode));
1056
1057	err = spu2_hash_xlate(hash_parms->alg, hash_parms->mode,
1058			      hash_parms->type,
1059			      cipher_parms->type,
1060			      &spu2_auth_type, &spu2_auth_mode);
1061	if (err)
1062		return 0;
1063
1064	flow_log("spu2 hash type %s, hash mode %s\n",
1065		 spu2_hash_type_name(spu2_auth_type),
1066		 spu2_hash_mode_name(spu2_auth_mode));
1067
1068	fmd = (struct SPU2_FMD *)spu_hdr;
1069
1070	spu2_fmd_ctrl0_write(fmd, req_opts->is_inbound, req_opts->auth_first,
1071			     proto, spu2_ciph_type, spu2_ciph_mode,
1072			     spu2_auth_type, spu2_auth_mode);
1073
1074	spu2_fmd_ctrl1_write(fmd, req_opts->is_inbound, assoc_size,
1075			     hash_parms->key_len, cipher_parms->key_len,
1076			     false, false,
1077			     aead_parms->return_iv, aead_parms->ret_iv_len,
1078			     aead_parms->ret_iv_off,
1079			     cipher_parms->iv_len, hash_parms->digestsize,
1080			     !req_opts->bd_suppress, return_md);
1081
1082	spu2_fmd_ctrl2_write(fmd, cipher_offset, hash_parms->key_len, 0,
1083			     cipher_parms->key_len, cipher_parms->iv_len);
1084
1085	spu2_fmd_ctrl3_write(fmd, payload_len);
1086
1087	ptr = (u8 *)(fmd + 1);
1088	buf_len = sizeof(struct SPU2_FMD);
1089
1090	/* Write OMD */
1091	if (hash_parms->key_len) {
1092		memcpy(ptr, hash_parms->key_buf, hash_parms->key_len);
1093		ptr += hash_parms->key_len;
1094		buf_len += hash_parms->key_len;
1095	}
1096	if (cipher_parms->key_len) {
1097		memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len);
1098		ptr += cipher_parms->key_len;
1099		buf_len += cipher_parms->key_len;
1100	}
1101	if (cipher_parms->iv_len) {
1102		memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len);
1103		ptr += cipher_parms->iv_len;
1104		buf_len += cipher_parms->iv_len;
1105	}
1106
1107	packet_dump("  SPU request header: ", spu_hdr, buf_len);
1108
1109	return buf_len;
1110}
1111
1112/**
1113 * spu2_cipher_req_init() - Build an skcipher SPU2 request message header,
1114 * including FMD and OMD.
1115 * @spu_hdr:       Location of start of SPU request (FMD field)
1116 * @cipher_parms:  Parameters describing cipher request
1117 *
1118 * Called at setkey time to initialize a msg header that can be reused for all
1119 * subsequent skcipher requests. Construct the message starting at spu_hdr.
1120 * Caller should allocate this buffer in DMA-able memory at least
1121 * SPU_HEADER_ALLOC_LEN bytes long.
1122 *
1123 * Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an
1124 * error occurs.
1125 */
1126u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms)
1127{
1128	struct SPU2_FMD *fmd;
1129	u8 *omd;
1130	enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE;
1131	enum spu2_cipher_mode spu2_mode;
1132	int err;
1133
1134	flow_log("%s()\n", __func__);
1135	flow_log("  cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
1136		 cipher_parms->mode, cipher_parms->type);
1137	flow_log("  cipher_iv_len: %u\n", cipher_parms->iv_len);
1138	flow_log("    key: %d\n", cipher_parms->key_len);
1139	flow_dump("    key: ", cipher_parms->key_buf, cipher_parms->key_len);
1140
1141	/* Convert to spu2 values */
1142	err = spu2_cipher_xlate(cipher_parms->alg, cipher_parms->mode,
1143				cipher_parms->type, &spu2_type, &spu2_mode);
1144	if (err)
1145		return 0;
1146
1147	flow_log("spu2 cipher type %s, cipher mode %s\n",
1148		 spu2_ciph_type_name(spu2_type),
1149		 spu2_ciph_mode_name(spu2_mode));
1150
1151	/* Construct the FMD header */
1152	fmd = (struct SPU2_FMD *)spu_hdr;
1153	err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_parms->key_len,
1154			    cipher_parms->iv_len);
1155	if (err)
1156		return 0;
1157
1158	/* Write cipher key to OMD */
1159	omd = (u8 *)(fmd + 1);
1160	if (cipher_parms->key_buf && cipher_parms->key_len)
1161		memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len);
1162
1163	packet_dump("  SPU request header: ", spu_hdr,
1164		    FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len);
1165
1166	return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len;
1167}
1168
1169/**
1170 * spu2_cipher_req_finish() - Finish building a SPU request message header for a
1171 * block cipher request.
1172 * @spu_hdr:         Start of the request message header (MH field)
1173 * @spu_req_hdr_len: Length in bytes of the SPU request header
1174 * @is_inbound:      0 encrypt, 1 decrypt
1175 * @cipher_parms:    Parameters describing cipher operation to be performed
1176 * @data_size:       Length of the data in the BD field
1177 *
1178 * Assumes much of the header was already filled in at setkey() time in
1179 * spu_cipher_req_init().
1180 * spu_cipher_req_init() fills in the encryption key.
1181 */
1182void spu2_cipher_req_finish(u8 *spu_hdr,
1183			    u16 spu_req_hdr_len,
1184			    unsigned int is_inbound,
1185			    struct spu_cipher_parms *cipher_parms,
1186			    unsigned int data_size)
1187{
1188	struct SPU2_FMD *fmd;
1189	u8 *omd;		/* start of optional metadata */
1190	u64 ctrl0;
1191	u64 ctrl3;
1192
1193	flow_log("%s()\n", __func__);
1194	flow_log(" in: %u\n", is_inbound);
1195	flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg,
1196		 cipher_parms->type);
1197	flow_log(" iv len: %d\n", cipher_parms->iv_len);
1198	flow_dump("    iv: ", cipher_parms->iv_buf, cipher_parms->iv_len);
1199	flow_log(" data_size: %u\n", data_size);
1200
1201	fmd = (struct SPU2_FMD *)spu_hdr;
1202	omd = (u8 *)(fmd + 1);
1203
1204	/*
1205	 * FMD ctrl0 was initialized at setkey time. update it to indicate
1206	 * whether we are encrypting or decrypting.
1207	 */
1208	ctrl0 = le64_to_cpu(fmd->ctrl0);
1209	if (is_inbound)
1210		ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN;	/* decrypt */
1211	else
1212		ctrl0 |= SPU2_CIPH_ENCRYPT_EN;	/* encrypt */
1213	fmd->ctrl0 = cpu_to_le64(ctrl0);
1214
1215	if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) {
1216		/* cipher iv provided so put it in here */
1217		memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf,
1218		       cipher_parms->iv_len);
1219	}
1220
1221	ctrl3 = le64_to_cpu(fmd->ctrl3);
1222	data_size &= SPU2_PL_LEN;
1223	ctrl3 |= data_size;
1224	fmd->ctrl3 = cpu_to_le64(ctrl3);
1225
1226	packet_dump("  SPU request header: ", spu_hdr, spu_req_hdr_len);
1227}
1228
1229/**
1230 * spu2_request_pad() - Create pad bytes at the end of the data.
1231 * @pad_start:      Start of buffer where pad bytes are to be written
1232 * @gcm_padding:    Length of GCM padding, in bytes
1233 * @hash_pad_len:   Number of bytes of padding extend data to full block
1234 * @auth_alg:       Authentication algorithm
1235 * @auth_mode:      Authentication mode
1236 * @total_sent:     Length inserted at end of hash pad
1237 * @status_padding: Number of bytes of padding to align STATUS word
1238 *
1239 * There may be three forms of pad:
1240 *  1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment
1241 *  2. hash pad - pad to a block length, with 0x80 data terminator and
1242 *                size at the end
1243 *  3. STAT pad - to ensure the STAT field is 4-byte aligned
1244 */
1245void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len,
1246		      enum hash_alg auth_alg, enum hash_mode auth_mode,
1247		      unsigned int total_sent, u32 status_padding)
1248{
1249	u8 *ptr = pad_start;
1250
1251	/* fix data alignent for GCM */
1252	if (gcm_padding > 0) {
1253		flow_log("  GCM: padding to 16 byte alignment: %u bytes\n",
1254			 gcm_padding);
1255		memset(ptr, 0, gcm_padding);
1256		ptr += gcm_padding;
1257	}
1258
1259	if (hash_pad_len > 0) {
1260		/* clear the padding section */
1261		memset(ptr, 0, hash_pad_len);
1262
1263		/* terminate the data */
1264		*ptr = 0x80;
1265		ptr += (hash_pad_len - sizeof(u64));
1266
1267		/* add the size at the end as required per alg */
1268		if (auth_alg == HASH_ALG_MD5)
1269			*(__le64 *)ptr = cpu_to_le64(total_sent * 8ull);
1270		else		/* SHA1, SHA2-224, SHA2-256 */
1271			*(__be64 *)ptr = cpu_to_be64(total_sent * 8ull);
1272		ptr += sizeof(u64);
1273	}
1274
1275	/* pad to a 4byte alignment for STAT */
1276	if (status_padding > 0) {
1277		flow_log("  STAT: padding to 4 byte alignment: %u bytes\n",
1278			 status_padding);
1279
1280		memset(ptr, 0, status_padding);
1281		ptr += status_padding;
1282	}
1283}
1284
1285/**
1286 * spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS
1287 * tweak field in the packet payload (it uses IV instead)
1288 *
1289 * Return: 0
1290 */
1291u8 spu2_xts_tweak_in_payload(void)
1292{
1293	return 0;
1294}
1295
1296/**
1297 * spu2_tx_status_len() - Return the length of the STATUS field in a SPU
1298 * response message.
1299 *
1300 * Return: Length of STATUS field in bytes.
1301 */
1302u8 spu2_tx_status_len(void)
1303{
1304	return SPU2_TX_STATUS_LEN;
1305}
1306
1307/**
1308 * spu2_rx_status_len() - Return the length of the STATUS field in a SPU
1309 * response message.
1310 *
1311 * Return: Length of STATUS field in bytes.
1312 */
1313u8 spu2_rx_status_len(void)
1314{
1315	return SPU2_RX_STATUS_LEN;
1316}
1317
1318/**
1319 * spu2_status_process() - Process the status from a SPU response message.
1320 * @statp:  start of STATUS word
1321 *
1322 * Return:  0 - if status is good and response should be processed
1323 *         !0 - status indicates an error and response is invalid
1324 */
1325int spu2_status_process(u8 *statp)
1326{
1327	/* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */
1328	u16 status = le16_to_cpu(*(__le16 *)statp);
1329
1330	if (status == 0)
1331		return 0;
1332
1333	flow_log("rx status is %#x\n", status);
1334	if (status == SPU2_INVALID_ICV)
1335		return SPU_INVALID_ICV;
1336
1337	return -EBADMSG;
1338}
1339
1340/**
1341 * spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode.
1342 *
1343 * @digestsize:		Digest size of this request
1344 * @cipher_parms:	(pointer to) cipher parmaeters, includes IV buf & IV len
1345 * @assoclen:		Length of AAD data
1346 * @chunksize:		length of input data to be sent in this req
1347 * @is_encrypt:		true if this is an output/encrypt operation
1348 * @is_esp:		true if this is an ESP / RFC4309 operation
1349 *
1350 */
1351void spu2_ccm_update_iv(unsigned int digestsize,
1352			struct spu_cipher_parms *cipher_parms,
1353			unsigned int assoclen, unsigned int chunksize,
1354			bool is_encrypt, bool is_esp)
1355{
1356	int L;  /* size of length field, in bytes */
1357
1358	/*
1359	 * In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from
1360	 * testmgr contains (L-1) in bottom 3 bits of first byte,
1361	 * per RFC 3610.
1362	 */
1363	if (is_esp)
1364		L = CCM_ESP_L_VALUE;
1365	else
1366		L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >>
1367		      CCM_B0_L_PRIME_SHIFT) + 1;
1368
1369	/* SPU2 doesn't want these length bytes nor the first byte... */
1370	cipher_parms->iv_len -= (1 + L);
1371	memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1],
1372		cipher_parms->iv_len);
1373}
1374
1375/**
1376 * spu2_wordalign_padlen() - SPU2 does not require padding.
1377 * @data_size: length of data field in bytes
1378 *
1379 * Return: length of status field padding, in bytes (always 0 on SPU2)
1380 */
1381u32 spu2_wordalign_padlen(u32 data_size)
1382{
1383	return 0;
1384}
1385