1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Cryptographic API.
4 *
5 * Support for ATMEL SHA1/SHA256 HW acceleration.
6 *
7 * Copyright (c) 2012 Eukr��a Electromatique - ATMEL
8 * Author: Nicolas Royer <nicolas@eukrea.com>
9 *
10 * Some ideas are from omap-sham.c drivers.
11 */
12
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/err.h>
18#include <linux/clk.h>
19#include <linux/io.h>
20#include <linux/hw_random.h>
21#include <linux/platform_device.h>
22
23#include <linux/device.h>
24#include <linux/dmaengine.h>
25#include <linux/init.h>
26#include <linux/errno.h>
27#include <linux/interrupt.h>
28#include <linux/irq.h>
29#include <linux/scatterlist.h>
30#include <linux/dma-mapping.h>
31#include <linux/mod_devicetable.h>
32#include <linux/delay.h>
33#include <linux/crypto.h>
34#include <crypto/scatterwalk.h>
35#include <crypto/algapi.h>
36#include <crypto/sha1.h>
37#include <crypto/sha2.h>
38#include <crypto/hash.h>
39#include <crypto/internal/hash.h>
40#include "atmel-sha-regs.h"
41#include "atmel-authenc.h"
42
43#define ATMEL_SHA_PRIORITY	300
44
45/* SHA flags */
46#define SHA_FLAGS_BUSY			BIT(0)
47#define	SHA_FLAGS_FINAL			BIT(1)
48#define SHA_FLAGS_DMA_ACTIVE	BIT(2)
49#define SHA_FLAGS_OUTPUT_READY	BIT(3)
50#define SHA_FLAGS_INIT			BIT(4)
51#define SHA_FLAGS_CPU			BIT(5)
52#define SHA_FLAGS_DMA_READY		BIT(6)
53#define SHA_FLAGS_DUMP_REG	BIT(7)
54
55/* bits[11:8] are reserved. */
56
57#define SHA_FLAGS_FINUP		BIT(16)
58#define SHA_FLAGS_SG		BIT(17)
59#define SHA_FLAGS_ERROR		BIT(23)
60#define SHA_FLAGS_PAD		BIT(24)
61#define SHA_FLAGS_RESTORE	BIT(25)
62#define SHA_FLAGS_IDATAR0	BIT(26)
63#define SHA_FLAGS_WAIT_DATARDY	BIT(27)
64
65#define SHA_OP_INIT	0
66#define SHA_OP_UPDATE	1
67#define SHA_OP_FINAL	2
68#define SHA_OP_DIGEST	3
69
70#define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
71
72#define ATMEL_SHA_DMA_THRESHOLD		56
73
74struct atmel_sha_caps {
75	bool	has_dma;
76	bool	has_dualbuff;
77	bool	has_sha224;
78	bool	has_sha_384_512;
79	bool	has_uihv;
80	bool	has_hmac;
81};
82
83struct atmel_sha_dev;
84
85/*
86 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
87 * tested by the ahash_prepare_alg() function.
88 */
89struct atmel_sha_reqctx {
90	struct atmel_sha_dev	*dd;
91	unsigned long	flags;
92	unsigned long	op;
93
94	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
95	u64	digcnt[2];
96	size_t	bufcnt;
97	size_t	buflen;
98	dma_addr_t	dma_addr;
99
100	/* walk state */
101	struct scatterlist	*sg;
102	unsigned int	offset;	/* offset in current sg */
103	unsigned int	total;	/* total request */
104
105	size_t block_size;
106	size_t hash_size;
107
108	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
109};
110
111typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
112
113struct atmel_sha_ctx {
114	struct atmel_sha_dev	*dd;
115	atmel_sha_fn_t		start;
116
117	unsigned long		flags;
118};
119
120#define ATMEL_SHA_QUEUE_LENGTH	50
121
122struct atmel_sha_dma {
123	struct dma_chan			*chan;
124	struct dma_slave_config dma_conf;
125	struct scatterlist	*sg;
126	int			nents;
127	unsigned int		last_sg_length;
128};
129
130struct atmel_sha_dev {
131	struct list_head	list;
132	unsigned long		phys_base;
133	struct device		*dev;
134	struct clk			*iclk;
135	int					irq;
136	void __iomem		*io_base;
137
138	spinlock_t		lock;
139	struct tasklet_struct	done_task;
140	struct tasklet_struct	queue_task;
141
142	unsigned long		flags;
143	struct crypto_queue	queue;
144	struct ahash_request	*req;
145	bool			is_async;
146	bool			force_complete;
147	atmel_sha_fn_t		resume;
148	atmel_sha_fn_t		cpu_transfer_complete;
149
150	struct atmel_sha_dma	dma_lch_in;
151
152	struct atmel_sha_caps	caps;
153
154	struct scatterlist	tmp;
155
156	u32	hw_version;
157};
158
159struct atmel_sha_drv {
160	struct list_head	dev_list;
161	spinlock_t		lock;
162};
163
164static struct atmel_sha_drv atmel_sha = {
165	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
166	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
167};
168
169#ifdef VERBOSE_DEBUG
170static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
171{
172	switch (offset) {
173	case SHA_CR:
174		return "CR";
175
176	case SHA_MR:
177		return "MR";
178
179	case SHA_IER:
180		return "IER";
181
182	case SHA_IDR:
183		return "IDR";
184
185	case SHA_IMR:
186		return "IMR";
187
188	case SHA_ISR:
189		return "ISR";
190
191	case SHA_MSR:
192		return "MSR";
193
194	case SHA_BCR:
195		return "BCR";
196
197	case SHA_REG_DIN(0):
198	case SHA_REG_DIN(1):
199	case SHA_REG_DIN(2):
200	case SHA_REG_DIN(3):
201	case SHA_REG_DIN(4):
202	case SHA_REG_DIN(5):
203	case SHA_REG_DIN(6):
204	case SHA_REG_DIN(7):
205	case SHA_REG_DIN(8):
206	case SHA_REG_DIN(9):
207	case SHA_REG_DIN(10):
208	case SHA_REG_DIN(11):
209	case SHA_REG_DIN(12):
210	case SHA_REG_DIN(13):
211	case SHA_REG_DIN(14):
212	case SHA_REG_DIN(15):
213		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
214		break;
215
216	case SHA_REG_DIGEST(0):
217	case SHA_REG_DIGEST(1):
218	case SHA_REG_DIGEST(2):
219	case SHA_REG_DIGEST(3):
220	case SHA_REG_DIGEST(4):
221	case SHA_REG_DIGEST(5):
222	case SHA_REG_DIGEST(6):
223	case SHA_REG_DIGEST(7):
224	case SHA_REG_DIGEST(8):
225	case SHA_REG_DIGEST(9):
226	case SHA_REG_DIGEST(10):
227	case SHA_REG_DIGEST(11):
228	case SHA_REG_DIGEST(12):
229	case SHA_REG_DIGEST(13):
230	case SHA_REG_DIGEST(14):
231	case SHA_REG_DIGEST(15):
232		if (wr)
233			snprintf(tmp, sz, "IDATAR[%u]",
234				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
235		else
236			snprintf(tmp, sz, "ODATAR[%u]",
237				 (offset - SHA_REG_DIGEST(0)) >> 2);
238		break;
239
240	case SHA_HW_VERSION:
241		return "HWVER";
242
243	default:
244		snprintf(tmp, sz, "0x%02x", offset);
245		break;
246	}
247
248	return tmp;
249}
250
251#endif /* VERBOSE_DEBUG */
252
253static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
254{
255	u32 value = readl_relaxed(dd->io_base + offset);
256
257#ifdef VERBOSE_DEBUG
258	if (dd->flags & SHA_FLAGS_DUMP_REG) {
259		char tmp[16];
260
261		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
262			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
263	}
264#endif /* VERBOSE_DEBUG */
265
266	return value;
267}
268
269static inline void atmel_sha_write(struct atmel_sha_dev *dd,
270					u32 offset, u32 value)
271{
272#ifdef VERBOSE_DEBUG
273	if (dd->flags & SHA_FLAGS_DUMP_REG) {
274		char tmp[16];
275
276		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
277			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
278	}
279#endif /* VERBOSE_DEBUG */
280
281	writel_relaxed(value, dd->io_base + offset);
282}
283
284static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
285{
286	struct ahash_request *req = dd->req;
287
288	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
289		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
290		       SHA_FLAGS_DUMP_REG);
291
292	clk_disable(dd->iclk);
293
294	if ((dd->is_async || dd->force_complete) && req->base.complete)
295		ahash_request_complete(req, err);
296
297	/* handle new request */
298	tasklet_schedule(&dd->queue_task);
299
300	return err;
301}
302
303static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
304{
305	size_t count;
306
307	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
308		count = min(ctx->sg->length - ctx->offset, ctx->total);
309		count = min(count, ctx->buflen - ctx->bufcnt);
310
311		if (count <= 0) {
312			/*
313			* Check if count <= 0 because the buffer is full or
314			* because the sg length is 0. In the latest case,
315			* check if there is another sg in the list, a 0 length
316			* sg doesn't necessarily mean the end of the sg list.
317			*/
318			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
319				ctx->sg = sg_next(ctx->sg);
320				continue;
321			} else {
322				break;
323			}
324		}
325
326		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
327			ctx->offset, count, 0);
328
329		ctx->bufcnt += count;
330		ctx->offset += count;
331		ctx->total -= count;
332
333		if (ctx->offset == ctx->sg->length) {
334			ctx->sg = sg_next(ctx->sg);
335			if (ctx->sg)
336				ctx->offset = 0;
337			else
338				ctx->total = 0;
339		}
340	}
341
342	return 0;
343}
344
345/*
346 * The purpose of this padding is to ensure that the padded message is a
347 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
348 * The bit "1" is appended at the end of the message followed by
349 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
350 * 128 bits block (SHA384/SHA512) equals to the message length in bits
351 * is appended.
352 *
353 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
354 *  - if message length < 56 bytes then padlen = 56 - message length
355 *  - else padlen = 64 + 56 - message length
356 *
357 * For SHA384/SHA512, padlen is calculated as followed:
358 *  - if message length < 112 bytes then padlen = 112 - message length
359 *  - else padlen = 128 + 112 - message length
360 */
361static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
362{
363	unsigned int index, padlen;
364	__be64 bits[2];
365	u64 size[2];
366
367	size[0] = ctx->digcnt[0];
368	size[1] = ctx->digcnt[1];
369
370	size[0] += ctx->bufcnt;
371	if (size[0] < ctx->bufcnt)
372		size[1]++;
373
374	size[0] += length;
375	if (size[0]  < length)
376		size[1]++;
377
378	bits[1] = cpu_to_be64(size[0] << 3);
379	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
380
381	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
382	case SHA_FLAGS_SHA384:
383	case SHA_FLAGS_SHA512:
384		index = ctx->bufcnt & 0x7f;
385		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
386		*(ctx->buffer + ctx->bufcnt) = 0x80;
387		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
388		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
389		ctx->bufcnt += padlen + 16;
390		ctx->flags |= SHA_FLAGS_PAD;
391		break;
392
393	default:
394		index = ctx->bufcnt & 0x3f;
395		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
396		*(ctx->buffer + ctx->bufcnt) = 0x80;
397		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
398		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
399		ctx->bufcnt += padlen + 8;
400		ctx->flags |= SHA_FLAGS_PAD;
401		break;
402	}
403}
404
405static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
406{
407	struct atmel_sha_dev *dd = NULL;
408	struct atmel_sha_dev *tmp;
409
410	spin_lock_bh(&atmel_sha.lock);
411	if (!tctx->dd) {
412		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
413			dd = tmp;
414			break;
415		}
416		tctx->dd = dd;
417	} else {
418		dd = tctx->dd;
419	}
420
421	spin_unlock_bh(&atmel_sha.lock);
422
423	return dd;
424}
425
426static int atmel_sha_init(struct ahash_request *req)
427{
428	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
429	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
430	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
431	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
432
433	ctx->dd = dd;
434
435	ctx->flags = 0;
436
437	dev_dbg(dd->dev, "init: digest size: %u\n",
438		crypto_ahash_digestsize(tfm));
439
440	switch (crypto_ahash_digestsize(tfm)) {
441	case SHA1_DIGEST_SIZE:
442		ctx->flags |= SHA_FLAGS_SHA1;
443		ctx->block_size = SHA1_BLOCK_SIZE;
444		break;
445	case SHA224_DIGEST_SIZE:
446		ctx->flags |= SHA_FLAGS_SHA224;
447		ctx->block_size = SHA224_BLOCK_SIZE;
448		break;
449	case SHA256_DIGEST_SIZE:
450		ctx->flags |= SHA_FLAGS_SHA256;
451		ctx->block_size = SHA256_BLOCK_SIZE;
452		break;
453	case SHA384_DIGEST_SIZE:
454		ctx->flags |= SHA_FLAGS_SHA384;
455		ctx->block_size = SHA384_BLOCK_SIZE;
456		break;
457	case SHA512_DIGEST_SIZE:
458		ctx->flags |= SHA_FLAGS_SHA512;
459		ctx->block_size = SHA512_BLOCK_SIZE;
460		break;
461	default:
462		return -EINVAL;
463	}
464
465	ctx->bufcnt = 0;
466	ctx->digcnt[0] = 0;
467	ctx->digcnt[1] = 0;
468	ctx->buflen = SHA_BUFFER_LEN;
469
470	return 0;
471}
472
473static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
474{
475	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
476	u32 valmr = SHA_MR_MODE_AUTO;
477	unsigned int i, hashsize = 0;
478
479	if (likely(dma)) {
480		if (!dd->caps.has_dma)
481			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
482		valmr = SHA_MR_MODE_PDC;
483		if (dd->caps.has_dualbuff)
484			valmr |= SHA_MR_DUALBUFF;
485	} else {
486		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
487	}
488
489	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
490	case SHA_FLAGS_SHA1:
491		valmr |= SHA_MR_ALGO_SHA1;
492		hashsize = SHA1_DIGEST_SIZE;
493		break;
494
495	case SHA_FLAGS_SHA224:
496		valmr |= SHA_MR_ALGO_SHA224;
497		hashsize = SHA256_DIGEST_SIZE;
498		break;
499
500	case SHA_FLAGS_SHA256:
501		valmr |= SHA_MR_ALGO_SHA256;
502		hashsize = SHA256_DIGEST_SIZE;
503		break;
504
505	case SHA_FLAGS_SHA384:
506		valmr |= SHA_MR_ALGO_SHA384;
507		hashsize = SHA512_DIGEST_SIZE;
508		break;
509
510	case SHA_FLAGS_SHA512:
511		valmr |= SHA_MR_ALGO_SHA512;
512		hashsize = SHA512_DIGEST_SIZE;
513		break;
514
515	default:
516		break;
517	}
518
519	/* Setting CR_FIRST only for the first iteration */
520	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
521		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
522	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
523		const u32 *hash = (const u32 *)ctx->digest;
524
525		/*
526		 * Restore the hardware context: update the User Initialize
527		 * Hash Value (UIHV) with the value saved when the latest
528		 * 'update' operation completed on this very same crypto
529		 * request.
530		 */
531		ctx->flags &= ~SHA_FLAGS_RESTORE;
532		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
533		for (i = 0; i < hashsize / sizeof(u32); ++i)
534			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
535		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
536		valmr |= SHA_MR_UIHV;
537	}
538	/*
539	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
540	 * process concurrent requests: the internal registers used to store
541	 * the hash/digest are still set to the partial digest output values
542	 * computed during the latest round.
543	 */
544
545	atmel_sha_write(dd, SHA_MR, valmr);
546}
547
548static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
549						atmel_sha_fn_t resume)
550{
551	u32 isr = atmel_sha_read(dd, SHA_ISR);
552
553	if (unlikely(isr & SHA_INT_DATARDY))
554		return resume(dd);
555
556	dd->resume = resume;
557	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
558	return -EINPROGRESS;
559}
560
561static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
562			      size_t length, int final)
563{
564	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
565	int count, len32;
566	const u32 *buffer = (const u32 *)buf;
567
568	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
569		ctx->digcnt[1], ctx->digcnt[0], length, final);
570
571	atmel_sha_write_ctrl(dd, 0);
572
573	/* should be non-zero before next lines to disable clocks later */
574	ctx->digcnt[0] += length;
575	if (ctx->digcnt[0] < length)
576		ctx->digcnt[1]++;
577
578	if (final)
579		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
580
581	len32 = DIV_ROUND_UP(length, sizeof(u32));
582
583	dd->flags |= SHA_FLAGS_CPU;
584
585	for (count = 0; count < len32; count++)
586		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
587
588	return -EINPROGRESS;
589}
590
591static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
592		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
593{
594	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
595	int len32;
596
597	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
598		ctx->digcnt[1], ctx->digcnt[0], length1, final);
599
600	len32 = DIV_ROUND_UP(length1, sizeof(u32));
601	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
602	atmel_sha_write(dd, SHA_TPR, dma_addr1);
603	atmel_sha_write(dd, SHA_TCR, len32);
604
605	len32 = DIV_ROUND_UP(length2, sizeof(u32));
606	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
607	atmel_sha_write(dd, SHA_TNCR, len32);
608
609	atmel_sha_write_ctrl(dd, 1);
610
611	/* should be non-zero before next lines to disable clocks later */
612	ctx->digcnt[0] += length1;
613	if (ctx->digcnt[0] < length1)
614		ctx->digcnt[1]++;
615
616	if (final)
617		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
618
619	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
620
621	/* Start DMA transfer */
622	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
623
624	return -EINPROGRESS;
625}
626
627static void atmel_sha_dma_callback(void *data)
628{
629	struct atmel_sha_dev *dd = data;
630
631	dd->is_async = true;
632
633	/* dma_lch_in - completed - wait DATRDY */
634	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
635}
636
637static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
638		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
639{
640	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
641	struct dma_async_tx_descriptor	*in_desc;
642	struct scatterlist sg[2];
643
644	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
645		ctx->digcnt[1], ctx->digcnt[0], length1, final);
646
647	dd->dma_lch_in.dma_conf.src_maxburst = 16;
648	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
649
650	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
651
652	if (length2) {
653		sg_init_table(sg, 2);
654		sg_dma_address(&sg[0]) = dma_addr1;
655		sg_dma_len(&sg[0]) = length1;
656		sg_dma_address(&sg[1]) = dma_addr2;
657		sg_dma_len(&sg[1]) = length2;
658		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
659			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660	} else {
661		sg_init_table(sg, 1);
662		sg_dma_address(&sg[0]) = dma_addr1;
663		sg_dma_len(&sg[0]) = length1;
664		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
665			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
666	}
667	if (!in_desc)
668		return atmel_sha_complete(dd, -EINVAL);
669
670	in_desc->callback = atmel_sha_dma_callback;
671	in_desc->callback_param = dd;
672
673	atmel_sha_write_ctrl(dd, 1);
674
675	/* should be non-zero before next lines to disable clocks later */
676	ctx->digcnt[0] += length1;
677	if (ctx->digcnt[0] < length1)
678		ctx->digcnt[1]++;
679
680	if (final)
681		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
682
683	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
684
685	/* Start DMA transfer */
686	dmaengine_submit(in_desc);
687	dma_async_issue_pending(dd->dma_lch_in.chan);
688
689	return -EINPROGRESS;
690}
691
692static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
693		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
694{
695	if (dd->caps.has_dma)
696		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
697				dma_addr2, length2, final);
698	else
699		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
700				dma_addr2, length2, final);
701}
702
703static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
704{
705	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
706	int bufcnt;
707
708	atmel_sha_append_sg(ctx);
709	atmel_sha_fill_padding(ctx, 0);
710	bufcnt = ctx->bufcnt;
711	ctx->bufcnt = 0;
712
713	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
714}
715
716static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
717					struct atmel_sha_reqctx *ctx,
718					size_t length, int final)
719{
720	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
721				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
722	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
723		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
724				ctx->block_size);
725		return atmel_sha_complete(dd, -EINVAL);
726	}
727
728	ctx->flags &= ~SHA_FLAGS_SG;
729
730	/* next call does not fail... so no unmap in the case of error */
731	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
732}
733
734static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
735{
736	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
737	unsigned int final;
738	size_t count;
739
740	atmel_sha_append_sg(ctx);
741
742	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
743
744	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
745		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
746
747	if (final)
748		atmel_sha_fill_padding(ctx, 0);
749
750	if (final || (ctx->bufcnt == ctx->buflen)) {
751		count = ctx->bufcnt;
752		ctx->bufcnt = 0;
753		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
754	}
755
756	return 0;
757}
758
759static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
760{
761	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
762	unsigned int length, final, tail;
763	struct scatterlist *sg;
764	unsigned int count;
765
766	if (!ctx->total)
767		return 0;
768
769	if (ctx->bufcnt || ctx->offset)
770		return atmel_sha_update_dma_slow(dd);
771
772	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
773		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
774
775	sg = ctx->sg;
776
777	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
778		return atmel_sha_update_dma_slow(dd);
779
780	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
781		/* size is not ctx->block_size aligned */
782		return atmel_sha_update_dma_slow(dd);
783
784	length = min(ctx->total, sg->length);
785
786	if (sg_is_last(sg)) {
787		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
788			/* not last sg must be ctx->block_size aligned */
789			tail = length & (ctx->block_size - 1);
790			length -= tail;
791		}
792	}
793
794	ctx->total -= length;
795	ctx->offset = length; /* offset where to start slow */
796
797	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
798
799	/* Add padding */
800	if (final) {
801		tail = length & (ctx->block_size - 1);
802		length -= tail;
803		ctx->total += tail;
804		ctx->offset = length; /* offset where to start slow */
805
806		sg = ctx->sg;
807		atmel_sha_append_sg(ctx);
808
809		atmel_sha_fill_padding(ctx, length);
810
811		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
812			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
813		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
814			dev_err(dd->dev, "dma %zu bytes error\n",
815				ctx->buflen + ctx->block_size);
816			return atmel_sha_complete(dd, -EINVAL);
817		}
818
819		if (length == 0) {
820			ctx->flags &= ~SHA_FLAGS_SG;
821			count = ctx->bufcnt;
822			ctx->bufcnt = 0;
823			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
824					0, final);
825		} else {
826			ctx->sg = sg;
827			if (!dma_map_sg(dd->dev, ctx->sg, 1,
828				DMA_TO_DEVICE)) {
829					dev_err(dd->dev, "dma_map_sg  error\n");
830					return atmel_sha_complete(dd, -EINVAL);
831			}
832
833			ctx->flags |= SHA_FLAGS_SG;
834
835			count = ctx->bufcnt;
836			ctx->bufcnt = 0;
837			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
838					length, ctx->dma_addr, count, final);
839		}
840	}
841
842	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
843		dev_err(dd->dev, "dma_map_sg  error\n");
844		return atmel_sha_complete(dd, -EINVAL);
845	}
846
847	ctx->flags |= SHA_FLAGS_SG;
848
849	/* next call does not fail... so no unmap in the case of error */
850	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
851								0, final);
852}
853
854static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
855{
856	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
857
858	if (ctx->flags & SHA_FLAGS_SG) {
859		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
860		if (ctx->sg->length == ctx->offset) {
861			ctx->sg = sg_next(ctx->sg);
862			if (ctx->sg)
863				ctx->offset = 0;
864		}
865		if (ctx->flags & SHA_FLAGS_PAD) {
866			dma_unmap_single(dd->dev, ctx->dma_addr,
867				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
868		}
869	} else {
870		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
871						ctx->block_size, DMA_TO_DEVICE);
872	}
873}
874
875static int atmel_sha_update_req(struct atmel_sha_dev *dd)
876{
877	struct ahash_request *req = dd->req;
878	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
879	int err;
880
881	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
882		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
883
884	if (ctx->flags & SHA_FLAGS_CPU)
885		err = atmel_sha_update_cpu(dd);
886	else
887		err = atmel_sha_update_dma_start(dd);
888
889	/* wait for dma completion before can take more data */
890	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
891			err, ctx->digcnt[1], ctx->digcnt[0]);
892
893	return err;
894}
895
896static int atmel_sha_final_req(struct atmel_sha_dev *dd)
897{
898	struct ahash_request *req = dd->req;
899	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
900	int err = 0;
901	int count;
902
903	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
904		atmel_sha_fill_padding(ctx, 0);
905		count = ctx->bufcnt;
906		ctx->bufcnt = 0;
907		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
908	}
909	/* faster to handle last block with cpu */
910	else {
911		atmel_sha_fill_padding(ctx, 0);
912		count = ctx->bufcnt;
913		ctx->bufcnt = 0;
914		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
915	}
916
917	dev_dbg(dd->dev, "final_req: err: %d\n", err);
918
919	return err;
920}
921
922static void atmel_sha_copy_hash(struct ahash_request *req)
923{
924	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
925	u32 *hash = (u32 *)ctx->digest;
926	unsigned int i, hashsize;
927
928	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
929	case SHA_FLAGS_SHA1:
930		hashsize = SHA1_DIGEST_SIZE;
931		break;
932
933	case SHA_FLAGS_SHA224:
934	case SHA_FLAGS_SHA256:
935		hashsize = SHA256_DIGEST_SIZE;
936		break;
937
938	case SHA_FLAGS_SHA384:
939	case SHA_FLAGS_SHA512:
940		hashsize = SHA512_DIGEST_SIZE;
941		break;
942
943	default:
944		/* Should not happen... */
945		return;
946	}
947
948	for (i = 0; i < hashsize / sizeof(u32); ++i)
949		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
950	ctx->flags |= SHA_FLAGS_RESTORE;
951}
952
953static void atmel_sha_copy_ready_hash(struct ahash_request *req)
954{
955	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
956
957	if (!req->result)
958		return;
959
960	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
961	default:
962	case SHA_FLAGS_SHA1:
963		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
964		break;
965
966	case SHA_FLAGS_SHA224:
967		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
968		break;
969
970	case SHA_FLAGS_SHA256:
971		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
972		break;
973
974	case SHA_FLAGS_SHA384:
975		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
976		break;
977
978	case SHA_FLAGS_SHA512:
979		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
980		break;
981	}
982}
983
984static int atmel_sha_finish(struct ahash_request *req)
985{
986	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
987	struct atmel_sha_dev *dd = ctx->dd;
988
989	if (ctx->digcnt[0] || ctx->digcnt[1])
990		atmel_sha_copy_ready_hash(req);
991
992	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
993		ctx->digcnt[0], ctx->bufcnt);
994
995	return 0;
996}
997
998static void atmel_sha_finish_req(struct ahash_request *req, int err)
999{
1000	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001	struct atmel_sha_dev *dd = ctx->dd;
1002
1003	if (!err) {
1004		atmel_sha_copy_hash(req);
1005		if (SHA_FLAGS_FINAL & dd->flags)
1006			err = atmel_sha_finish(req);
1007	} else {
1008		ctx->flags |= SHA_FLAGS_ERROR;
1009	}
1010
1011	/* atomic operation is not needed here */
1012	(void)atmel_sha_complete(dd, err);
1013}
1014
1015static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016{
1017	int err;
1018
1019	err = clk_enable(dd->iclk);
1020	if (err)
1021		return err;
1022
1023	if (!(SHA_FLAGS_INIT & dd->flags)) {
1024		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025		dd->flags |= SHA_FLAGS_INIT;
1026	}
1027
1028	return 0;
1029}
1030
1031static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032{
1033	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034}
1035
1036static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037{
1038	int err;
1039
1040	err = atmel_sha_hw_init(dd);
1041	if (err)
1042		return err;
1043
1044	dd->hw_version = atmel_sha_get_version(dd);
1045
1046	dev_info(dd->dev,
1047			"version: 0x%x\n", dd->hw_version);
1048
1049	clk_disable(dd->iclk);
1050
1051	return 0;
1052}
1053
1054static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055				  struct ahash_request *req)
1056{
1057	struct crypto_async_request *async_req, *backlog;
1058	struct atmel_sha_ctx *ctx;
1059	unsigned long flags;
1060	bool start_async;
1061	int err = 0, ret = 0;
1062
1063	spin_lock_irqsave(&dd->lock, flags);
1064	if (req)
1065		ret = ahash_enqueue_request(&dd->queue, req);
1066
1067	if (SHA_FLAGS_BUSY & dd->flags) {
1068		spin_unlock_irqrestore(&dd->lock, flags);
1069		return ret;
1070	}
1071
1072	backlog = crypto_get_backlog(&dd->queue);
1073	async_req = crypto_dequeue_request(&dd->queue);
1074	if (async_req)
1075		dd->flags |= SHA_FLAGS_BUSY;
1076
1077	spin_unlock_irqrestore(&dd->lock, flags);
1078
1079	if (!async_req)
1080		return ret;
1081
1082	if (backlog)
1083		crypto_request_complete(backlog, -EINPROGRESS);
1084
1085	ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087	dd->req = ahash_request_cast(async_req);
1088	start_async = (dd->req != req);
1089	dd->is_async = start_async;
1090	dd->force_complete = false;
1091
1092	/* WARNING: ctx->start() MAY change dd->is_async. */
1093	err = ctx->start(dd);
1094	return (start_async) ? ret : err;
1095}
1096
1097static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099static int atmel_sha_start(struct atmel_sha_dev *dd)
1100{
1101	struct ahash_request *req = dd->req;
1102	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103	int err;
1104
1105	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
1106						ctx->op, req->nbytes);
1107
1108	err = atmel_sha_hw_init(dd);
1109	if (err)
1110		return atmel_sha_complete(dd, err);
1111
1112	/*
1113	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115	 *                its job later in the done_task.
1116	 *                This is the main path.
1117	 *
1118	 * 0: the SHA driver can continue its job then release the hardware
1119	 *    later, if needed, with atmel_sha_finish_req().
1120	 *    This is the alternate path.
1121	 *
1122	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123	 *      been called, hence the hardware has been released.
1124	 *      The SHA driver must stop its job without calling
1125	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126	 *      called a second time.
1127	 *
1128	 * Please note that currently, atmel_sha_final_req() never returns 0.
1129	 */
1130
1131	dd->resume = atmel_sha_done;
1132	if (ctx->op == SHA_OP_UPDATE) {
1133		err = atmel_sha_update_req(dd);
1134		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135			/* no final() after finup() */
1136			err = atmel_sha_final_req(dd);
1137	} else if (ctx->op == SHA_OP_FINAL) {
1138		err = atmel_sha_final_req(dd);
1139	}
1140
1141	if (!err)
1142		/* done_task will not finish it, so do it here */
1143		atmel_sha_finish_req(req, err);
1144
1145	dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147	return err;
1148}
1149
1150static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151{
1152	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154	struct atmel_sha_dev *dd = tctx->dd;
1155
1156	ctx->op = op;
1157
1158	return atmel_sha_handle_queue(dd, req);
1159}
1160
1161static int atmel_sha_update(struct ahash_request *req)
1162{
1163	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165	if (!req->nbytes)
1166		return 0;
1167
1168	ctx->total = req->nbytes;
1169	ctx->sg = req->src;
1170	ctx->offset = 0;
1171
1172	if (ctx->flags & SHA_FLAGS_FINUP) {
1173		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174			/* faster to use CPU for short transfers */
1175			ctx->flags |= SHA_FLAGS_CPU;
1176	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177		atmel_sha_append_sg(ctx);
1178		return 0;
1179	}
1180	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181}
1182
1183static int atmel_sha_final(struct ahash_request *req)
1184{
1185	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187	ctx->flags |= SHA_FLAGS_FINUP;
1188
1189	if (ctx->flags & SHA_FLAGS_ERROR)
1190		return 0; /* uncompleted hash is not needed */
1191
1192	if (ctx->flags & SHA_FLAGS_PAD)
1193		/* copy ready hash (+ finalize hmac) */
1194		return atmel_sha_finish(req);
1195
1196	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197}
1198
1199static int atmel_sha_finup(struct ahash_request *req)
1200{
1201	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202	int err1, err2;
1203
1204	ctx->flags |= SHA_FLAGS_FINUP;
1205
1206	err1 = atmel_sha_update(req);
1207	if (err1 == -EINPROGRESS ||
1208	    (err1 == -EBUSY && (ahash_request_flags(req) &
1209				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210		return err1;
1211
1212	/*
1213	 * final() has to be always called to cleanup resources
1214	 * even if udpate() failed, except EINPROGRESS
1215	 */
1216	err2 = atmel_sha_final(req);
1217
1218	return err1 ?: err2;
1219}
1220
1221static int atmel_sha_digest(struct ahash_request *req)
1222{
1223	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224}
1225
1226
1227static int atmel_sha_export(struct ahash_request *req, void *out)
1228{
1229	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231	memcpy(out, ctx, sizeof(*ctx));
1232	return 0;
1233}
1234
1235static int atmel_sha_import(struct ahash_request *req, const void *in)
1236{
1237	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239	memcpy(ctx, in, sizeof(*ctx));
1240	return 0;
1241}
1242
1243static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244{
1245	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248				 sizeof(struct atmel_sha_reqctx));
1249	ctx->start = atmel_sha_start;
1250
1251	return 0;
1252}
1253
1254static void atmel_sha_alg_init(struct ahash_alg *alg)
1255{
1256	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259	alg->halg.base.cra_module = THIS_MODULE;
1260	alg->halg.base.cra_init = atmel_sha_cra_init;
1261
1262	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263
1264	alg->init = atmel_sha_init;
1265	alg->update = atmel_sha_update;
1266	alg->final = atmel_sha_final;
1267	alg->finup = atmel_sha_finup;
1268	alg->digest = atmel_sha_digest;
1269	alg->export = atmel_sha_export;
1270	alg->import = atmel_sha_import;
1271}
1272
1273static struct ahash_alg sha_1_256_algs[] = {
1274{
1275	.halg.base.cra_name		= "sha1",
1276	.halg.base.cra_driver_name	= "atmel-sha1",
1277	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
1278
1279	.halg.digestsize = SHA1_DIGEST_SIZE,
1280},
1281{
1282	.halg.base.cra_name		= "sha256",
1283	.halg.base.cra_driver_name	= "atmel-sha256",
1284	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
1285
1286	.halg.digestsize = SHA256_DIGEST_SIZE,
1287},
1288};
1289
1290static struct ahash_alg sha_224_alg = {
1291	.halg.base.cra_name		= "sha224",
1292	.halg.base.cra_driver_name	= "atmel-sha224",
1293	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
1294
1295	.halg.digestsize = SHA224_DIGEST_SIZE,
1296};
1297
1298static struct ahash_alg sha_384_512_algs[] = {
1299{
1300	.halg.base.cra_name		= "sha384",
1301	.halg.base.cra_driver_name	= "atmel-sha384",
1302	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
1303
1304	.halg.digestsize = SHA384_DIGEST_SIZE,
1305},
1306{
1307	.halg.base.cra_name		= "sha512",
1308	.halg.base.cra_driver_name	= "atmel-sha512",
1309	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
1310
1311	.halg.digestsize = SHA512_DIGEST_SIZE,
1312},
1313};
1314
1315static void atmel_sha_queue_task(unsigned long data)
1316{
1317	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1318
1319	atmel_sha_handle_queue(dd, NULL);
1320}
1321
1322static int atmel_sha_done(struct atmel_sha_dev *dd)
1323{
1324	int err = 0;
1325
1326	if (SHA_FLAGS_CPU & dd->flags) {
1327		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1328			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1329			goto finish;
1330		}
1331	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1332		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1333			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1334			atmel_sha_update_dma_stop(dd);
1335		}
1336		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1337			/* hash or semi-hash ready */
1338			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1339						SHA_FLAGS_OUTPUT_READY);
1340			err = atmel_sha_update_dma_start(dd);
1341			if (err != -EINPROGRESS)
1342				goto finish;
1343		}
1344	}
1345	return err;
1346
1347finish:
1348	/* finish curent request */
1349	atmel_sha_finish_req(dd->req, err);
1350
1351	return err;
1352}
1353
1354static void atmel_sha_done_task(unsigned long data)
1355{
1356	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1357
1358	dd->is_async = true;
1359	(void)dd->resume(dd);
1360}
1361
1362static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1363{
1364	struct atmel_sha_dev *sha_dd = dev_id;
1365	u32 reg;
1366
1367	reg = atmel_sha_read(sha_dd, SHA_ISR);
1368	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1369		atmel_sha_write(sha_dd, SHA_IDR, reg);
1370		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1371			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1372			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1373				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1374			tasklet_schedule(&sha_dd->done_task);
1375		} else {
1376			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1377		}
1378		return IRQ_HANDLED;
1379	}
1380
1381	return IRQ_NONE;
1382}
1383
1384
1385/* DMA transfer functions */
1386
1387static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1388					struct scatterlist *sg,
1389					size_t len)
1390{
1391	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1392	struct ahash_request *req = dd->req;
1393	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1394	size_t bs = ctx->block_size;
1395	int nents;
1396
1397	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1398		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1399			return false;
1400
1401		/*
1402		 * This is the last sg, the only one that is allowed to
1403		 * have an unaligned length.
1404		 */
1405		if (len <= sg->length) {
1406			dma->nents = nents + 1;
1407			dma->last_sg_length = sg->length;
1408			sg->length = ALIGN(len, sizeof(u32));
1409			return true;
1410		}
1411
1412		/* All other sg lengths MUST be aligned to the block size. */
1413		if (!IS_ALIGNED(sg->length, bs))
1414			return false;
1415
1416		len -= sg->length;
1417	}
1418
1419	return false;
1420}
1421
1422static void atmel_sha_dma_callback2(void *data)
1423{
1424	struct atmel_sha_dev *dd = data;
1425	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1426	struct scatterlist *sg;
1427	int nents;
1428
1429	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1430
1431	sg = dma->sg;
1432	for (nents = 0; nents < dma->nents - 1; ++nents)
1433		sg = sg_next(sg);
1434	sg->length = dma->last_sg_length;
1435
1436	dd->is_async = true;
1437	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1438}
1439
1440static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1441			       struct scatterlist *src,
1442			       size_t len,
1443			       atmel_sha_fn_t resume)
1444{
1445	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1446	struct dma_slave_config *config = &dma->dma_conf;
1447	struct dma_chan *chan = dma->chan;
1448	struct dma_async_tx_descriptor *desc;
1449	dma_cookie_t cookie;
1450	unsigned int sg_len;
1451	int err;
1452
1453	dd->resume = resume;
1454
1455	/*
1456	 * dma->nents has already been initialized by
1457	 * atmel_sha_dma_check_aligned().
1458	 */
1459	dma->sg = src;
1460	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1461	if (!sg_len) {
1462		err = -ENOMEM;
1463		goto exit;
1464	}
1465
1466	config->src_maxburst = 16;
1467	config->dst_maxburst = 16;
1468	err = dmaengine_slave_config(chan, config);
1469	if (err)
1470		goto unmap_sg;
1471
1472	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1473				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1474	if (!desc) {
1475		err = -ENOMEM;
1476		goto unmap_sg;
1477	}
1478
1479	desc->callback = atmel_sha_dma_callback2;
1480	desc->callback_param = dd;
1481	cookie = dmaengine_submit(desc);
1482	err = dma_submit_error(cookie);
1483	if (err)
1484		goto unmap_sg;
1485
1486	dma_async_issue_pending(chan);
1487
1488	return -EINPROGRESS;
1489
1490unmap_sg:
1491	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1492exit:
1493	return atmel_sha_complete(dd, err);
1494}
1495
1496
1497/* CPU transfer functions */
1498
1499static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1500{
1501	struct ahash_request *req = dd->req;
1502	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1503	const u32 *words = (const u32 *)ctx->buffer;
1504	size_t i, num_words;
1505	u32 isr, din, din_inc;
1506
1507	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1508	for (;;) {
1509		/* Write data into the Input Data Registers. */
1510		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1511		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1512			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1513
1514		ctx->offset += ctx->bufcnt;
1515		ctx->total -= ctx->bufcnt;
1516
1517		if (!ctx->total)
1518			break;
1519
1520		/*
1521		 * Prepare next block:
1522		 * Fill ctx->buffer now with the next data to be written into
1523		 * IDATARx: it gives time for the SHA hardware to process
1524		 * the current data so the SHA_INT_DATARDY flag might be set
1525		 * in SHA_ISR when polling this register at the beginning of
1526		 * the next loop.
1527		 */
1528		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1529		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1530					 ctx->offset, ctx->bufcnt, 0);
1531
1532		/* Wait for hardware to be ready again. */
1533		isr = atmel_sha_read(dd, SHA_ISR);
1534		if (!(isr & SHA_INT_DATARDY)) {
1535			/* Not ready yet. */
1536			dd->resume = atmel_sha_cpu_transfer;
1537			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1538			return -EINPROGRESS;
1539		}
1540	}
1541
1542	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1543		return dd->cpu_transfer_complete(dd);
1544
1545	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1546}
1547
1548static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1549			       struct scatterlist *sg,
1550			       unsigned int len,
1551			       bool idatar0_only,
1552			       bool wait_data_ready,
1553			       atmel_sha_fn_t resume)
1554{
1555	struct ahash_request *req = dd->req;
1556	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1557
1558	if (!len)
1559		return resume(dd);
1560
1561	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1562
1563	if (idatar0_only)
1564		ctx->flags |= SHA_FLAGS_IDATAR0;
1565
1566	if (wait_data_ready)
1567		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1568
1569	ctx->sg = sg;
1570	ctx->total = len;
1571	ctx->offset = 0;
1572
1573	/* Prepare the first block to be written. */
1574	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1575	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1576				 ctx->offset, ctx->bufcnt, 0);
1577
1578	dd->cpu_transfer_complete = resume;
1579	return atmel_sha_cpu_transfer(dd);
1580}
1581
1582static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1583			      const void *data, unsigned int datalen,
1584			      bool auto_padding,
1585			      atmel_sha_fn_t resume)
1586{
1587	struct ahash_request *req = dd->req;
1588	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1589	u32 msglen = (auto_padding) ? datalen : 0;
1590	u32 mr = SHA_MR_MODE_AUTO;
1591
1592	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1593		return atmel_sha_complete(dd, -EINVAL);
1594
1595	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1596	atmel_sha_write(dd, SHA_MR, mr);
1597	atmel_sha_write(dd, SHA_MSR, msglen);
1598	atmel_sha_write(dd, SHA_BCR, msglen);
1599	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1600
1601	sg_init_one(&dd->tmp, data, datalen);
1602	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1603}
1604
1605
1606/* hmac functions */
1607
1608struct atmel_sha_hmac_key {
1609	bool			valid;
1610	unsigned int		keylen;
1611	u8			buffer[SHA512_BLOCK_SIZE];
1612	u8			*keydup;
1613};
1614
1615static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1616{
1617	memset(hkey, 0, sizeof(*hkey));
1618}
1619
1620static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1621{
1622	kfree(hkey->keydup);
1623	memset(hkey, 0, sizeof(*hkey));
1624}
1625
1626static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1627					 const u8 *key,
1628					 unsigned int keylen)
1629{
1630	atmel_sha_hmac_key_release(hkey);
1631
1632	if (keylen > sizeof(hkey->buffer)) {
1633		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1634		if (!hkey->keydup)
1635			return -ENOMEM;
1636
1637	} else {
1638		memcpy(hkey->buffer, key, keylen);
1639	}
1640
1641	hkey->valid = true;
1642	hkey->keylen = keylen;
1643	return 0;
1644}
1645
1646static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1647					  const u8 **key,
1648					  unsigned int *keylen)
1649{
1650	if (!hkey->valid)
1651		return false;
1652
1653	*keylen = hkey->keylen;
1654	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1655	return true;
1656}
1657
1658
1659struct atmel_sha_hmac_ctx {
1660	struct atmel_sha_ctx	base;
1661
1662	struct atmel_sha_hmac_key	hkey;
1663	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1664	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1665	atmel_sha_fn_t		resume;
1666};
1667
1668static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1669				atmel_sha_fn_t resume);
1670static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1671				      const u8 *key, unsigned int keylen);
1672static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1673static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1674static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1675static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1676
1677static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1678static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1679static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1680static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1681
1682static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1683				atmel_sha_fn_t resume)
1684{
1685	struct ahash_request *req = dd->req;
1686	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1687	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1688	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1689	unsigned int keylen;
1690	const u8 *key;
1691	size_t bs;
1692
1693	hmac->resume = resume;
1694	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1695	case SHA_FLAGS_SHA1:
1696		ctx->block_size = SHA1_BLOCK_SIZE;
1697		ctx->hash_size = SHA1_DIGEST_SIZE;
1698		break;
1699
1700	case SHA_FLAGS_SHA224:
1701		ctx->block_size = SHA224_BLOCK_SIZE;
1702		ctx->hash_size = SHA256_DIGEST_SIZE;
1703		break;
1704
1705	case SHA_FLAGS_SHA256:
1706		ctx->block_size = SHA256_BLOCK_SIZE;
1707		ctx->hash_size = SHA256_DIGEST_SIZE;
1708		break;
1709
1710	case SHA_FLAGS_SHA384:
1711		ctx->block_size = SHA384_BLOCK_SIZE;
1712		ctx->hash_size = SHA512_DIGEST_SIZE;
1713		break;
1714
1715	case SHA_FLAGS_SHA512:
1716		ctx->block_size = SHA512_BLOCK_SIZE;
1717		ctx->hash_size = SHA512_DIGEST_SIZE;
1718		break;
1719
1720	default:
1721		return atmel_sha_complete(dd, -EINVAL);
1722	}
1723	bs = ctx->block_size;
1724
1725	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1726		return resume(dd);
1727
1728	/* Compute K' from K. */
1729	if (unlikely(keylen > bs))
1730		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1731
1732	/* Prepare ipad. */
1733	memcpy((u8 *)hmac->ipad, key, keylen);
1734	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1735	return atmel_sha_hmac_compute_ipad_hash(dd);
1736}
1737
1738static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1739				      const u8 *key, unsigned int keylen)
1740{
1741	return atmel_sha_cpu_hash(dd, key, keylen, true,
1742				  atmel_sha_hmac_prehash_key_done);
1743}
1744
1745static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1746{
1747	struct ahash_request *req = dd->req;
1748	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1749	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1750	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1751	size_t ds = crypto_ahash_digestsize(tfm);
1752	size_t bs = ctx->block_size;
1753	size_t i, num_words = ds / sizeof(u32);
1754
1755	/* Prepare ipad. */
1756	for (i = 0; i < num_words; ++i)
1757		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1758	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1759	return atmel_sha_hmac_compute_ipad_hash(dd);
1760}
1761
1762static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1763{
1764	struct ahash_request *req = dd->req;
1765	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1766	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1767	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1768	size_t bs = ctx->block_size;
1769	size_t i, num_words = bs / sizeof(u32);
1770
1771	unsafe_memcpy(hmac->opad, hmac->ipad, bs,
1772		      "fortified memcpy causes -Wrestrict warning");
1773	for (i = 0; i < num_words; ++i) {
1774		hmac->ipad[i] ^= 0x36363636;
1775		hmac->opad[i] ^= 0x5c5c5c5c;
1776	}
1777
1778	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1779				  atmel_sha_hmac_compute_opad_hash);
1780}
1781
1782static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1783{
1784	struct ahash_request *req = dd->req;
1785	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1786	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1787	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1788	size_t bs = ctx->block_size;
1789	size_t hs = ctx->hash_size;
1790	size_t i, num_words = hs / sizeof(u32);
1791
1792	for (i = 0; i < num_words; ++i)
1793		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1794	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1795				  atmel_sha_hmac_setup_done);
1796}
1797
1798static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1799{
1800	struct ahash_request *req = dd->req;
1801	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1802	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1803	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1804	size_t hs = ctx->hash_size;
1805	size_t i, num_words = hs / sizeof(u32);
1806
1807	for (i = 0; i < num_words; ++i)
1808		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1809	atmel_sha_hmac_key_release(&hmac->hkey);
1810	return hmac->resume(dd);
1811}
1812
1813static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1814{
1815	struct ahash_request *req = dd->req;
1816	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1817	int err;
1818
1819	err = atmel_sha_hw_init(dd);
1820	if (err)
1821		return atmel_sha_complete(dd, err);
1822
1823	switch (ctx->op) {
1824	case SHA_OP_INIT:
1825		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1826		break;
1827
1828	case SHA_OP_UPDATE:
1829		dd->resume = atmel_sha_done;
1830		err = atmel_sha_update_req(dd);
1831		break;
1832
1833	case SHA_OP_FINAL:
1834		dd->resume = atmel_sha_hmac_final;
1835		err = atmel_sha_final_req(dd);
1836		break;
1837
1838	case SHA_OP_DIGEST:
1839		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1840		break;
1841
1842	default:
1843		return atmel_sha_complete(dd, -EINVAL);
1844	}
1845
1846	return err;
1847}
1848
1849static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1850				 unsigned int keylen)
1851{
1852	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1853
1854	return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
1855}
1856
1857static int atmel_sha_hmac_init(struct ahash_request *req)
1858{
1859	int err;
1860
1861	err = atmel_sha_init(req);
1862	if (err)
1863		return err;
1864
1865	return atmel_sha_enqueue(req, SHA_OP_INIT);
1866}
1867
1868static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1869{
1870	struct ahash_request *req = dd->req;
1871	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1872	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1873	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1874	size_t bs = ctx->block_size;
1875	size_t hs = ctx->hash_size;
1876
1877	ctx->bufcnt = 0;
1878	ctx->digcnt[0] = bs;
1879	ctx->digcnt[1] = 0;
1880	ctx->flags |= SHA_FLAGS_RESTORE;
1881	memcpy(ctx->digest, hmac->ipad, hs);
1882	return atmel_sha_complete(dd, 0);
1883}
1884
1885static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1886{
1887	struct ahash_request *req = dd->req;
1888	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1889	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1890	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1891	u32 *digest = (u32 *)ctx->digest;
1892	size_t ds = crypto_ahash_digestsize(tfm);
1893	size_t bs = ctx->block_size;
1894	size_t hs = ctx->hash_size;
1895	size_t i, num_words;
1896	u32 mr;
1897
1898	/* Save d = SHA((K' + ipad) | msg). */
1899	num_words = ds / sizeof(u32);
1900	for (i = 0; i < num_words; ++i)
1901		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1902
1903	/* Restore context to finish computing SHA((K' + opad) | d). */
1904	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1905	num_words = hs / sizeof(u32);
1906	for (i = 0; i < num_words; ++i)
1907		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1908
1909	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1910	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1911	atmel_sha_write(dd, SHA_MR, mr);
1912	atmel_sha_write(dd, SHA_MSR, bs + ds);
1913	atmel_sha_write(dd, SHA_BCR, ds);
1914	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1915
1916	sg_init_one(&dd->tmp, digest, ds);
1917	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1918				   atmel_sha_hmac_final_done);
1919}
1920
1921static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1922{
1923	/*
1924	 * req->result might not be sizeof(u32) aligned, so copy the
1925	 * digest into ctx->digest[] before memcpy() the data into
1926	 * req->result.
1927	 */
1928	atmel_sha_copy_hash(dd->req);
1929	atmel_sha_copy_ready_hash(dd->req);
1930	return atmel_sha_complete(dd, 0);
1931}
1932
1933static int atmel_sha_hmac_digest(struct ahash_request *req)
1934{
1935	int err;
1936
1937	err = atmel_sha_init(req);
1938	if (err)
1939		return err;
1940
1941	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1942}
1943
1944static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1945{
1946	struct ahash_request *req = dd->req;
1947	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1948	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1949	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1950	struct scatterlist *sgbuf;
1951	size_t hs = ctx->hash_size;
1952	size_t i, num_words = hs / sizeof(u32);
1953	bool use_dma = false;
1954	u32 mr;
1955
1956	/* Special case for empty message. */
1957	if (!req->nbytes) {
1958		req->nbytes = 0;
1959		ctx->bufcnt = 0;
1960		ctx->digcnt[0] = 0;
1961		ctx->digcnt[1] = 0;
1962		switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1963		case SHA_FLAGS_SHA1:
1964		case SHA_FLAGS_SHA224:
1965		case SHA_FLAGS_SHA256:
1966			atmel_sha_fill_padding(ctx, 64);
1967			break;
1968
1969		case SHA_FLAGS_SHA384:
1970		case SHA_FLAGS_SHA512:
1971			atmel_sha_fill_padding(ctx, 128);
1972			break;
1973		}
1974		sg_init_one(&dd->tmp, ctx->buffer, ctx->bufcnt);
1975	}
1976
1977	/* Check DMA threshold and alignment. */
1978	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1979	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1980		use_dma = true;
1981
1982	/* Write both initial hash values to compute a HMAC. */
1983	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1984	for (i = 0; i < num_words; ++i)
1985		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1986
1987	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1988	for (i = 0; i < num_words; ++i)
1989		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1990
1991	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
1992	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1993	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1994	if (use_dma)
1995		mr |= SHA_MR_MODE_IDATAR0;
1996	else
1997		mr |= SHA_MR_MODE_AUTO;
1998	atmel_sha_write(dd, SHA_MR, mr);
1999
2000	atmel_sha_write(dd, SHA_MSR, req->nbytes);
2001	atmel_sha_write(dd, SHA_BCR, req->nbytes);
2002
2003	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2004
2005	/* Special case for empty message. */
2006	if (!req->nbytes) {
2007		sgbuf = &dd->tmp;
2008		req->nbytes = ctx->bufcnt;
2009	} else {
2010		sgbuf = req->src;
2011	}
2012
2013	/* Process data. */
2014	if (use_dma)
2015		return atmel_sha_dma_start(dd, sgbuf, req->nbytes,
2016					   atmel_sha_hmac_final_done);
2017
2018	return atmel_sha_cpu_start(dd, sgbuf, req->nbytes, false, true,
2019				   atmel_sha_hmac_final_done);
2020}
2021
2022static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2023{
2024	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2025
2026	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2027				 sizeof(struct atmel_sha_reqctx));
2028	hmac->base.start = atmel_sha_hmac_start;
2029	atmel_sha_hmac_key_init(&hmac->hkey);
2030
2031	return 0;
2032}
2033
2034static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2035{
2036	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2037
2038	atmel_sha_hmac_key_release(&hmac->hkey);
2039}
2040
2041static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2042{
2043	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2044	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2045	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2046	alg->halg.base.cra_module = THIS_MODULE;
2047	alg->halg.base.cra_init	= atmel_sha_hmac_cra_init;
2048	alg->halg.base.cra_exit	= atmel_sha_hmac_cra_exit;
2049
2050	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2051
2052	alg->init = atmel_sha_hmac_init;
2053	alg->update = atmel_sha_update;
2054	alg->final = atmel_sha_final;
2055	alg->digest = atmel_sha_hmac_digest;
2056	alg->setkey = atmel_sha_hmac_setkey;
2057	alg->export = atmel_sha_export;
2058	alg->import = atmel_sha_import;
2059}
2060
2061static struct ahash_alg sha_hmac_algs[] = {
2062{
2063	.halg.base.cra_name		= "hmac(sha1)",
2064	.halg.base.cra_driver_name	= "atmel-hmac-sha1",
2065	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
2066
2067	.halg.digestsize = SHA1_DIGEST_SIZE,
2068},
2069{
2070	.halg.base.cra_name		= "hmac(sha224)",
2071	.halg.base.cra_driver_name	= "atmel-hmac-sha224",
2072	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
2073
2074	.halg.digestsize = SHA224_DIGEST_SIZE,
2075},
2076{
2077	.halg.base.cra_name		= "hmac(sha256)",
2078	.halg.base.cra_driver_name	= "atmel-hmac-sha256",
2079	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
2080
2081	.halg.digestsize = SHA256_DIGEST_SIZE,
2082},
2083{
2084	.halg.base.cra_name		= "hmac(sha384)",
2085	.halg.base.cra_driver_name	= "atmel-hmac-sha384",
2086	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
2087
2088	.halg.digestsize = SHA384_DIGEST_SIZE,
2089},
2090{
2091	.halg.base.cra_name		= "hmac(sha512)",
2092	.halg.base.cra_driver_name	= "atmel-hmac-sha512",
2093	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
2094
2095	.halg.digestsize = SHA512_DIGEST_SIZE,
2096},
2097};
2098
2099#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2100/* authenc functions */
2101
2102static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2103static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2104static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2105
2106
2107struct atmel_sha_authenc_ctx {
2108	struct crypto_ahash	*tfm;
2109};
2110
2111struct atmel_sha_authenc_reqctx {
2112	struct atmel_sha_reqctx	base;
2113
2114	atmel_aes_authenc_fn_t	cb;
2115	struct atmel_aes_dev	*aes_dev;
2116
2117	/* _init() parameters. */
2118	struct scatterlist	*assoc;
2119	u32			assoclen;
2120	u32			textlen;
2121
2122	/* _final() parameters. */
2123	u32			*digest;
2124	unsigned int		digestlen;
2125};
2126
2127static void atmel_sha_authenc_complete(void *data, int err)
2128{
2129	struct ahash_request *req = data;
2130	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2131
2132	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2133}
2134
2135static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2136{
2137	struct ahash_request *req = dd->req;
2138	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2139	int err;
2140
2141	/*
2142	 * Force atmel_sha_complete() to call req->base.complete(), ie
2143	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2144	 */
2145	dd->force_complete = true;
2146
2147	err = atmel_sha_hw_init(dd);
2148	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2149}
2150
2151bool atmel_sha_authenc_is_ready(void)
2152{
2153	struct atmel_sha_ctx dummy;
2154
2155	dummy.dd = NULL;
2156	return (atmel_sha_find_dev(&dummy) != NULL);
2157}
2158EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2159
2160unsigned int atmel_sha_authenc_get_reqsize(void)
2161{
2162	return sizeof(struct atmel_sha_authenc_reqctx);
2163}
2164EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2165
2166struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2167{
2168	struct atmel_sha_authenc_ctx *auth;
2169	struct crypto_ahash *tfm;
2170	struct atmel_sha_ctx *tctx;
2171	const char *name;
2172	int err = -EINVAL;
2173
2174	switch (mode & SHA_FLAGS_MODE_MASK) {
2175	case SHA_FLAGS_HMAC_SHA1:
2176		name = "atmel-hmac-sha1";
2177		break;
2178
2179	case SHA_FLAGS_HMAC_SHA224:
2180		name = "atmel-hmac-sha224";
2181		break;
2182
2183	case SHA_FLAGS_HMAC_SHA256:
2184		name = "atmel-hmac-sha256";
2185		break;
2186
2187	case SHA_FLAGS_HMAC_SHA384:
2188		name = "atmel-hmac-sha384";
2189		break;
2190
2191	case SHA_FLAGS_HMAC_SHA512:
2192		name = "atmel-hmac-sha512";
2193		break;
2194
2195	default:
2196		goto error;
2197	}
2198
2199	tfm = crypto_alloc_ahash(name, 0, 0);
2200	if (IS_ERR(tfm)) {
2201		err = PTR_ERR(tfm);
2202		goto error;
2203	}
2204	tctx = crypto_ahash_ctx(tfm);
2205	tctx->start = atmel_sha_authenc_start;
2206	tctx->flags = mode;
2207
2208	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2209	if (!auth) {
2210		err = -ENOMEM;
2211		goto err_free_ahash;
2212	}
2213	auth->tfm = tfm;
2214
2215	return auth;
2216
2217err_free_ahash:
2218	crypto_free_ahash(tfm);
2219error:
2220	return ERR_PTR(err);
2221}
2222EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2223
2224void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2225{
2226	if (auth)
2227		crypto_free_ahash(auth->tfm);
2228	kfree(auth);
2229}
2230EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2231
2232int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2233			     const u8 *key, unsigned int keylen, u32 flags)
2234{
2235	struct crypto_ahash *tfm = auth->tfm;
2236
2237	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2238	crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2239	return crypto_ahash_setkey(tfm, key, keylen);
2240}
2241EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2242
2243int atmel_sha_authenc_schedule(struct ahash_request *req,
2244			       struct atmel_sha_authenc_ctx *auth,
2245			       atmel_aes_authenc_fn_t cb,
2246			       struct atmel_aes_dev *aes_dev)
2247{
2248	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2249	struct atmel_sha_reqctx *ctx = &authctx->base;
2250	struct crypto_ahash *tfm = auth->tfm;
2251	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2252	struct atmel_sha_dev *dd;
2253
2254	/* Reset request context (MUST be done first). */
2255	memset(authctx, 0, sizeof(*authctx));
2256
2257	/* Get SHA device. */
2258	dd = atmel_sha_find_dev(tctx);
2259	if (!dd)
2260		return cb(aes_dev, -ENODEV, false);
2261
2262	/* Init request context. */
2263	ctx->dd = dd;
2264	ctx->buflen = SHA_BUFFER_LEN;
2265	authctx->cb = cb;
2266	authctx->aes_dev = aes_dev;
2267	ahash_request_set_tfm(req, tfm);
2268	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2269
2270	return atmel_sha_handle_queue(dd, req);
2271}
2272EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2273
2274int atmel_sha_authenc_init(struct ahash_request *req,
2275			   struct scatterlist *assoc, unsigned int assoclen,
2276			   unsigned int textlen,
2277			   atmel_aes_authenc_fn_t cb,
2278			   struct atmel_aes_dev *aes_dev)
2279{
2280	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2281	struct atmel_sha_reqctx *ctx = &authctx->base;
2282	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2283	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2284	struct atmel_sha_dev *dd = ctx->dd;
2285
2286	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2287		return atmel_sha_complete(dd, -EINVAL);
2288
2289	authctx->cb = cb;
2290	authctx->aes_dev = aes_dev;
2291	authctx->assoc = assoc;
2292	authctx->assoclen = assoclen;
2293	authctx->textlen = textlen;
2294
2295	ctx->flags = hmac->base.flags;
2296	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2297}
2298EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2299
2300static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2301{
2302	struct ahash_request *req = dd->req;
2303	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2304	struct atmel_sha_reqctx *ctx = &authctx->base;
2305	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2306	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2307	size_t hs = ctx->hash_size;
2308	size_t i, num_words = hs / sizeof(u32);
2309	u32 mr, msg_size;
2310
2311	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2312	for (i = 0; i < num_words; ++i)
2313		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2314
2315	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2316	for (i = 0; i < num_words; ++i)
2317		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2318
2319	mr = (SHA_MR_MODE_IDATAR0 |
2320	      SHA_MR_HMAC |
2321	      SHA_MR_DUALBUFF);
2322	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2323	atmel_sha_write(dd, SHA_MR, mr);
2324
2325	msg_size = authctx->assoclen + authctx->textlen;
2326	atmel_sha_write(dd, SHA_MSR, msg_size);
2327	atmel_sha_write(dd, SHA_BCR, msg_size);
2328
2329	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2330
2331	/* Process assoc data. */
2332	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2333				   true, false,
2334				   atmel_sha_authenc_init_done);
2335}
2336
2337static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2338{
2339	struct ahash_request *req = dd->req;
2340	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2341
2342	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2343}
2344
2345int atmel_sha_authenc_final(struct ahash_request *req,
2346			    u32 *digest, unsigned int digestlen,
2347			    atmel_aes_authenc_fn_t cb,
2348			    struct atmel_aes_dev *aes_dev)
2349{
2350	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2351	struct atmel_sha_reqctx *ctx = &authctx->base;
2352	struct atmel_sha_dev *dd = ctx->dd;
2353
2354	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2355	case SHA_FLAGS_SHA1:
2356		authctx->digestlen = SHA1_DIGEST_SIZE;
2357		break;
2358
2359	case SHA_FLAGS_SHA224:
2360		authctx->digestlen = SHA224_DIGEST_SIZE;
2361		break;
2362
2363	case SHA_FLAGS_SHA256:
2364		authctx->digestlen = SHA256_DIGEST_SIZE;
2365		break;
2366
2367	case SHA_FLAGS_SHA384:
2368		authctx->digestlen = SHA384_DIGEST_SIZE;
2369		break;
2370
2371	case SHA_FLAGS_SHA512:
2372		authctx->digestlen = SHA512_DIGEST_SIZE;
2373		break;
2374
2375	default:
2376		return atmel_sha_complete(dd, -EINVAL);
2377	}
2378	if (authctx->digestlen > digestlen)
2379		authctx->digestlen = digestlen;
2380
2381	authctx->cb = cb;
2382	authctx->aes_dev = aes_dev;
2383	authctx->digest = digest;
2384	return atmel_sha_wait_for_data_ready(dd,
2385					     atmel_sha_authenc_final_done);
2386}
2387EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2388
2389static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2390{
2391	struct ahash_request *req = dd->req;
2392	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2393	size_t i, num_words = authctx->digestlen / sizeof(u32);
2394
2395	for (i = 0; i < num_words; ++i)
2396		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2397
2398	return atmel_sha_complete(dd, 0);
2399}
2400
2401void atmel_sha_authenc_abort(struct ahash_request *req)
2402{
2403	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2404	struct atmel_sha_reqctx *ctx = &authctx->base;
2405	struct atmel_sha_dev *dd = ctx->dd;
2406
2407	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2408	dd->is_async = false;
2409	dd->force_complete = false;
2410	(void)atmel_sha_complete(dd, 0);
2411}
2412EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2413
2414#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2415
2416
2417static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2418{
2419	int i;
2420
2421	if (dd->caps.has_hmac)
2422		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2423			crypto_unregister_ahash(&sha_hmac_algs[i]);
2424
2425	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2426		crypto_unregister_ahash(&sha_1_256_algs[i]);
2427
2428	if (dd->caps.has_sha224)
2429		crypto_unregister_ahash(&sha_224_alg);
2430
2431	if (dd->caps.has_sha_384_512) {
2432		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2433			crypto_unregister_ahash(&sha_384_512_algs[i]);
2434	}
2435}
2436
2437static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2438{
2439	int err, i, j;
2440
2441	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2442		atmel_sha_alg_init(&sha_1_256_algs[i]);
2443
2444		err = crypto_register_ahash(&sha_1_256_algs[i]);
2445		if (err)
2446			goto err_sha_1_256_algs;
2447	}
2448
2449	if (dd->caps.has_sha224) {
2450		atmel_sha_alg_init(&sha_224_alg);
2451
2452		err = crypto_register_ahash(&sha_224_alg);
2453		if (err)
2454			goto err_sha_224_algs;
2455	}
2456
2457	if (dd->caps.has_sha_384_512) {
2458		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2459			atmel_sha_alg_init(&sha_384_512_algs[i]);
2460
2461			err = crypto_register_ahash(&sha_384_512_algs[i]);
2462			if (err)
2463				goto err_sha_384_512_algs;
2464		}
2465	}
2466
2467	if (dd->caps.has_hmac) {
2468		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2469			atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2470
2471			err = crypto_register_ahash(&sha_hmac_algs[i]);
2472			if (err)
2473				goto err_sha_hmac_algs;
2474		}
2475	}
2476
2477	return 0;
2478
2479	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2480err_sha_hmac_algs:
2481	for (j = 0; j < i; j++)
2482		crypto_unregister_ahash(&sha_hmac_algs[j]);
2483	i = ARRAY_SIZE(sha_384_512_algs);
2484err_sha_384_512_algs:
2485	for (j = 0; j < i; j++)
2486		crypto_unregister_ahash(&sha_384_512_algs[j]);
2487	crypto_unregister_ahash(&sha_224_alg);
2488err_sha_224_algs:
2489	i = ARRAY_SIZE(sha_1_256_algs);
2490err_sha_1_256_algs:
2491	for (j = 0; j < i; j++)
2492		crypto_unregister_ahash(&sha_1_256_algs[j]);
2493
2494	return err;
2495}
2496
2497static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2498{
2499	dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2500	if (IS_ERR(dd->dma_lch_in.chan)) {
2501		return dev_err_probe(dd->dev, PTR_ERR(dd->dma_lch_in.chan),
2502			"DMA channel is not available\n");
2503	}
2504
2505	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2506		SHA_REG_DIN(0);
2507	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2508	dd->dma_lch_in.dma_conf.src_addr_width =
2509		DMA_SLAVE_BUSWIDTH_4_BYTES;
2510	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2511	dd->dma_lch_in.dma_conf.dst_addr_width =
2512		DMA_SLAVE_BUSWIDTH_4_BYTES;
2513	dd->dma_lch_in.dma_conf.device_fc = false;
2514
2515	return 0;
2516}
2517
2518static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2519{
2520	dma_release_channel(dd->dma_lch_in.chan);
2521}
2522
2523static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2524{
2525
2526	dd->caps.has_dma = 0;
2527	dd->caps.has_dualbuff = 0;
2528	dd->caps.has_sha224 = 0;
2529	dd->caps.has_sha_384_512 = 0;
2530	dd->caps.has_uihv = 0;
2531	dd->caps.has_hmac = 0;
2532
2533	/* keep only major version number */
2534	switch (dd->hw_version & 0xff0) {
2535	case 0x700:
2536	case 0x600:
2537	case 0x510:
2538		dd->caps.has_dma = 1;
2539		dd->caps.has_dualbuff = 1;
2540		dd->caps.has_sha224 = 1;
2541		dd->caps.has_sha_384_512 = 1;
2542		dd->caps.has_uihv = 1;
2543		dd->caps.has_hmac = 1;
2544		break;
2545	case 0x420:
2546		dd->caps.has_dma = 1;
2547		dd->caps.has_dualbuff = 1;
2548		dd->caps.has_sha224 = 1;
2549		dd->caps.has_sha_384_512 = 1;
2550		dd->caps.has_uihv = 1;
2551		break;
2552	case 0x410:
2553		dd->caps.has_dma = 1;
2554		dd->caps.has_dualbuff = 1;
2555		dd->caps.has_sha224 = 1;
2556		dd->caps.has_sha_384_512 = 1;
2557		break;
2558	case 0x400:
2559		dd->caps.has_dma = 1;
2560		dd->caps.has_dualbuff = 1;
2561		dd->caps.has_sha224 = 1;
2562		break;
2563	case 0x320:
2564		break;
2565	default:
2566		dev_warn(dd->dev,
2567				"Unmanaged sha version, set minimum capabilities\n");
2568		break;
2569	}
2570}
2571
2572static const struct of_device_id atmel_sha_dt_ids[] = {
2573	{ .compatible = "atmel,at91sam9g46-sha" },
2574	{ /* sentinel */ }
2575};
2576
2577MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2578
2579static int atmel_sha_probe(struct platform_device *pdev)
2580{
2581	struct atmel_sha_dev *sha_dd;
2582	struct device *dev = &pdev->dev;
2583	struct resource *sha_res;
2584	int err;
2585
2586	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2587	if (!sha_dd)
2588		return -ENOMEM;
2589
2590	sha_dd->dev = dev;
2591
2592	platform_set_drvdata(pdev, sha_dd);
2593
2594	INIT_LIST_HEAD(&sha_dd->list);
2595	spin_lock_init(&sha_dd->lock);
2596
2597	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2598					(unsigned long)sha_dd);
2599	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2600					(unsigned long)sha_dd);
2601
2602	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2603
2604	sha_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &sha_res);
2605	if (IS_ERR(sha_dd->io_base)) {
2606		err = PTR_ERR(sha_dd->io_base);
2607		goto err_tasklet_kill;
2608	}
2609	sha_dd->phys_base = sha_res->start;
2610
2611	/* Get the IRQ */
2612	sha_dd->irq = platform_get_irq(pdev,  0);
2613	if (sha_dd->irq < 0) {
2614		err = sha_dd->irq;
2615		goto err_tasklet_kill;
2616	}
2617
2618	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2619			       IRQF_SHARED, "atmel-sha", sha_dd);
2620	if (err) {
2621		dev_err(dev, "unable to request sha irq.\n");
2622		goto err_tasklet_kill;
2623	}
2624
2625	/* Initializing the clock */
2626	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2627	if (IS_ERR(sha_dd->iclk)) {
2628		dev_err(dev, "clock initialization failed.\n");
2629		err = PTR_ERR(sha_dd->iclk);
2630		goto err_tasklet_kill;
2631	}
2632
2633	err = clk_prepare(sha_dd->iclk);
2634	if (err)
2635		goto err_tasklet_kill;
2636
2637	err = atmel_sha_hw_version_init(sha_dd);
2638	if (err)
2639		goto err_iclk_unprepare;
2640
2641	atmel_sha_get_cap(sha_dd);
2642
2643	if (sha_dd->caps.has_dma) {
2644		err = atmel_sha_dma_init(sha_dd);
2645		if (err)
2646			goto err_iclk_unprepare;
2647
2648		dev_info(dev, "using %s for DMA transfers\n",
2649				dma_chan_name(sha_dd->dma_lch_in.chan));
2650	}
2651
2652	spin_lock(&atmel_sha.lock);
2653	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2654	spin_unlock(&atmel_sha.lock);
2655
2656	err = atmel_sha_register_algs(sha_dd);
2657	if (err)
2658		goto err_algs;
2659
2660	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2661			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2662			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2663
2664	return 0;
2665
2666err_algs:
2667	spin_lock(&atmel_sha.lock);
2668	list_del(&sha_dd->list);
2669	spin_unlock(&atmel_sha.lock);
2670	if (sha_dd->caps.has_dma)
2671		atmel_sha_dma_cleanup(sha_dd);
2672err_iclk_unprepare:
2673	clk_unprepare(sha_dd->iclk);
2674err_tasklet_kill:
2675	tasklet_kill(&sha_dd->queue_task);
2676	tasklet_kill(&sha_dd->done_task);
2677
2678	return err;
2679}
2680
2681static void atmel_sha_remove(struct platform_device *pdev)
2682{
2683	struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
2684
2685	spin_lock(&atmel_sha.lock);
2686	list_del(&sha_dd->list);
2687	spin_unlock(&atmel_sha.lock);
2688
2689	atmel_sha_unregister_algs(sha_dd);
2690
2691	tasklet_kill(&sha_dd->queue_task);
2692	tasklet_kill(&sha_dd->done_task);
2693
2694	if (sha_dd->caps.has_dma)
2695		atmel_sha_dma_cleanup(sha_dd);
2696
2697	clk_unprepare(sha_dd->iclk);
2698}
2699
2700static struct platform_driver atmel_sha_driver = {
2701	.probe		= atmel_sha_probe,
2702	.remove_new	= atmel_sha_remove,
2703	.driver		= {
2704		.name	= "atmel_sha",
2705		.of_match_table	= atmel_sha_dt_ids,
2706	},
2707};
2708
2709module_platform_driver(atmel_sha_driver);
2710
2711MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2712MODULE_LICENSE("GPL v2");
2713MODULE_AUTHOR("Nicolas Royer - Eukr��a Electromatique");
2714