1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * AMCC SoC PPC4xx Crypto Driver
4 *
5 * Copyright (c) 2008 Applied Micro Circuits Corporation.
6 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 *
8 * This file implements AMCC crypto offload Linux device driver for use with
9 * Linux CryptoAPI.
10 */
11
12#include <linux/kernel.h>
13#include <linux/interrupt.h>
14#include <linux/spinlock_types.h>
15#include <linux/random.h>
16#include <linux/scatterlist.h>
17#include <linux/crypto.h>
18#include <linux/dma-mapping.h>
19#include <linux/platform_device.h>
20#include <linux/init.h>
21#include <linux/module.h>
22#include <linux/of_address.h>
23#include <linux/of_irq.h>
24#include <linux/of_platform.h>
25#include <linux/slab.h>
26#include <asm/dcr.h>
27#include <asm/dcr-regs.h>
28#include <asm/cacheflush.h>
29#include <crypto/aead.h>
30#include <crypto/aes.h>
31#include <crypto/ctr.h>
32#include <crypto/gcm.h>
33#include <crypto/sha1.h>
34#include <crypto/rng.h>
35#include <crypto/scatterwalk.h>
36#include <crypto/skcipher.h>
37#include <crypto/internal/aead.h>
38#include <crypto/internal/rng.h>
39#include <crypto/internal/skcipher.h>
40#include "crypto4xx_reg_def.h"
41#include "crypto4xx_core.h"
42#include "crypto4xx_sa.h"
43#include "crypto4xx_trng.h"
44
45#define PPC4XX_SEC_VERSION_STR			"0.5"
46
47/*
48 * PPC4xx Crypto Engine Initialization Routine
49 */
50static void crypto4xx_hw_init(struct crypto4xx_device *dev)
51{
52	union ce_ring_size ring_size;
53	union ce_ring_control ring_ctrl;
54	union ce_part_ring_size part_ring_size;
55	union ce_io_threshold io_threshold;
56	u32 rand_num;
57	union ce_pe_dma_cfg pe_dma_cfg;
58	u32 device_ctrl;
59
60	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
61	/* setup pe dma, include reset sg, pdr and pe, then release reset */
62	pe_dma_cfg.w = 0;
63	pe_dma_cfg.bf.bo_sgpd_en = 1;
64	pe_dma_cfg.bf.bo_data_en = 0;
65	pe_dma_cfg.bf.bo_sa_en = 1;
66	pe_dma_cfg.bf.bo_pd_en = 1;
67	pe_dma_cfg.bf.dynamic_sa_en = 1;
68	pe_dma_cfg.bf.reset_sg = 1;
69	pe_dma_cfg.bf.reset_pdr = 1;
70	pe_dma_cfg.bf.reset_pe = 1;
71	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
72	/* un reset pe,sg and pdr */
73	pe_dma_cfg.bf.pe_mode = 0;
74	pe_dma_cfg.bf.reset_sg = 0;
75	pe_dma_cfg.bf.reset_pdr = 0;
76	pe_dma_cfg.bf.reset_pe = 0;
77	pe_dma_cfg.bf.bo_td_en = 0;
78	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
79	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
80	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
81	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
82	get_random_bytes(&rand_num, sizeof(rand_num));
83	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
84	get_random_bytes(&rand_num, sizeof(rand_num));
85	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
86	ring_size.w = 0;
87	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
88	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
89	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
90	ring_ctrl.w = 0;
91	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
92	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
93	device_ctrl |= PPC4XX_DC_3DES_EN;
94	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
95	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
96	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
97	part_ring_size.w = 0;
98	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
99	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
100	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
101	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
102	io_threshold.w = 0;
103	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
104	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
105	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
106	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
107	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
108	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
109	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
110	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
111	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
112	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
113	/* un reset pe,sg and pdr */
114	pe_dma_cfg.bf.pe_mode = 1;
115	pe_dma_cfg.bf.reset_sg = 0;
116	pe_dma_cfg.bf.reset_pdr = 0;
117	pe_dma_cfg.bf.reset_pe = 0;
118	pe_dma_cfg.bf.bo_td_en = 0;
119	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
120	/*clear all pending interrupt*/
121	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
122	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
123	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
124	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
125	if (dev->is_revb) {
126		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
127		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
128		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
129		       dev->ce_base + CRYPTO4XX_INT_EN);
130	} else {
131		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
132	}
133}
134
135int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
136{
137	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
138	if (ctx->sa_in == NULL)
139		return -ENOMEM;
140
141	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
142	if (ctx->sa_out == NULL) {
143		kfree(ctx->sa_in);
144		ctx->sa_in = NULL;
145		return -ENOMEM;
146	}
147
148	ctx->sa_len = size;
149
150	return 0;
151}
152
153void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
154{
155	kfree(ctx->sa_in);
156	ctx->sa_in = NULL;
157	kfree(ctx->sa_out);
158	ctx->sa_out = NULL;
159	ctx->sa_len = 0;
160}
161
162/*
163 * alloc memory for the gather ring
164 * no need to alloc buf for the ring
165 * gdr_tail, gdr_head and gdr_count are initialized by this function
166 */
167static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
168{
169	int i;
170	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
171				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
172				      &dev->pdr_pa, GFP_KERNEL);
173	if (!dev->pdr)
174		return -ENOMEM;
175
176	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
177				 GFP_KERNEL);
178	if (!dev->pdr_uinfo) {
179		dma_free_coherent(dev->core_dev->device,
180				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181				  dev->pdr,
182				  dev->pdr_pa);
183		return -ENOMEM;
184	}
185	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
186				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
187				   &dev->shadow_sa_pool_pa,
188				   GFP_KERNEL);
189	if (!dev->shadow_sa_pool)
190		return -ENOMEM;
191
192	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
193			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
194			 &dev->shadow_sr_pool_pa, GFP_KERNEL);
195	if (!dev->shadow_sr_pool)
196		return -ENOMEM;
197	for (i = 0; i < PPC4XX_NUM_PD; i++) {
198		struct ce_pd *pd = &dev->pdr[i];
199		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
200
201		pd->sa = dev->shadow_sa_pool_pa +
202			sizeof(union shadow_sa_buf) * i;
203
204		/* alloc 256 bytes which is enough for any kind of dynamic sa */
205		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
206
207		/* alloc state record */
208		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
209		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
210		    sizeof(struct sa_state_record) * i;
211	}
212
213	return 0;
214}
215
216static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
217{
218	if (dev->pdr)
219		dma_free_coherent(dev->core_dev->device,
220				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
221				  dev->pdr, dev->pdr_pa);
222
223	if (dev->shadow_sa_pool)
224		dma_free_coherent(dev->core_dev->device,
225			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
226			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
227
228	if (dev->shadow_sr_pool)
229		dma_free_coherent(dev->core_dev->device,
230			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
231			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
232
233	kfree(dev->pdr_uinfo);
234}
235
236static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
237{
238	u32 retval;
239	u32 tmp;
240
241	retval = dev->pdr_head;
242	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
243
244	if (tmp == dev->pdr_tail)
245		return ERING_WAS_FULL;
246
247	dev->pdr_head = tmp;
248
249	return retval;
250}
251
252static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
253{
254	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
255	u32 tail;
256	unsigned long flags;
257
258	spin_lock_irqsave(&dev->core_dev->lock, flags);
259	pd_uinfo->state = PD_ENTRY_FREE;
260
261	if (dev->pdr_tail != PPC4XX_LAST_PD)
262		dev->pdr_tail++;
263	else
264		dev->pdr_tail = 0;
265	tail = dev->pdr_tail;
266	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
267
268	return tail;
269}
270
271/*
272 * alloc memory for the gather ring
273 * no need to alloc buf for the ring
274 * gdr_tail, gdr_head and gdr_count are initialized by this function
275 */
276static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
277{
278	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
279				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
280				      &dev->gdr_pa, GFP_KERNEL);
281	if (!dev->gdr)
282		return -ENOMEM;
283
284	return 0;
285}
286
287static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
288{
289	if (dev->gdr)
290		dma_free_coherent(dev->core_dev->device,
291			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
292			  dev->gdr, dev->gdr_pa);
293}
294
295/*
296 * when this function is called.
297 * preemption or interrupt must be disabled
298 */
299static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
300{
301	u32 retval;
302	u32 tmp;
303
304	if (n >= PPC4XX_NUM_GD)
305		return ERING_WAS_FULL;
306
307	retval = dev->gdr_head;
308	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
309	if (dev->gdr_head > dev->gdr_tail) {
310		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
311			return ERING_WAS_FULL;
312	} else if (dev->gdr_head < dev->gdr_tail) {
313		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
314			return ERING_WAS_FULL;
315	}
316	dev->gdr_head = tmp;
317
318	return retval;
319}
320
321static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
322{
323	unsigned long flags;
324
325	spin_lock_irqsave(&dev->core_dev->lock, flags);
326	if (dev->gdr_tail == dev->gdr_head) {
327		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
328		return 0;
329	}
330
331	if (dev->gdr_tail != PPC4XX_LAST_GD)
332		dev->gdr_tail++;
333	else
334		dev->gdr_tail = 0;
335
336	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337
338	return 0;
339}
340
341static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
342					      dma_addr_t *gd_dma, u32 idx)
343{
344	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
345
346	return &dev->gdr[idx];
347}
348
349/*
350 * alloc memory for the scatter ring
351 * need to alloc buf for the ring
352 * sdr_tail, sdr_head and sdr_count are initialized by this function
353 */
354static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
355{
356	int i;
357
358	dev->scatter_buffer_va =
359		dma_alloc_coherent(dev->core_dev->device,
360			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
361			&dev->scatter_buffer_pa, GFP_KERNEL);
362	if (!dev->scatter_buffer_va)
363		return -ENOMEM;
364
365	/* alloc memory for scatter descriptor ring */
366	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
367				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
368				      &dev->sdr_pa, GFP_KERNEL);
369	if (!dev->sdr)
370		return -ENOMEM;
371
372	for (i = 0; i < PPC4XX_NUM_SD; i++) {
373		dev->sdr[i].ptr = dev->scatter_buffer_pa +
374				  PPC4XX_SD_BUFFER_SIZE * i;
375	}
376
377	return 0;
378}
379
380static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
381{
382	if (dev->sdr)
383		dma_free_coherent(dev->core_dev->device,
384				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
385				  dev->sdr, dev->sdr_pa);
386
387	if (dev->scatter_buffer_va)
388		dma_free_coherent(dev->core_dev->device,
389				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
390				  dev->scatter_buffer_va,
391				  dev->scatter_buffer_pa);
392}
393
394/*
395 * when this function is called.
396 * preemption or interrupt must be disabled
397 */
398static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
399{
400	u32 retval;
401	u32 tmp;
402
403	if (n >= PPC4XX_NUM_SD)
404		return ERING_WAS_FULL;
405
406	retval = dev->sdr_head;
407	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
408	if (dev->sdr_head > dev->gdr_tail) {
409		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
410			return ERING_WAS_FULL;
411	} else if (dev->sdr_head < dev->sdr_tail) {
412		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
413			return ERING_WAS_FULL;
414	} /* the head = tail, or empty case is already take cared */
415	dev->sdr_head = tmp;
416
417	return retval;
418}
419
420static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
421{
422	unsigned long flags;
423
424	spin_lock_irqsave(&dev->core_dev->lock, flags);
425	if (dev->sdr_tail == dev->sdr_head) {
426		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
427		return 0;
428	}
429	if (dev->sdr_tail != PPC4XX_LAST_SD)
430		dev->sdr_tail++;
431	else
432		dev->sdr_tail = 0;
433	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
434
435	return 0;
436}
437
438static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
439					      dma_addr_t *sd_dma, u32 idx)
440{
441	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
442
443	return &dev->sdr[idx];
444}
445
446static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
447				      struct ce_pd *pd,
448				      struct pd_uinfo *pd_uinfo,
449				      u32 nbytes,
450				      struct scatterlist *dst)
451{
452	unsigned int first_sd = pd_uinfo->first_sd;
453	unsigned int last_sd;
454	unsigned int overflow = 0;
455	unsigned int to_copy;
456	unsigned int dst_start = 0;
457
458	/*
459	 * Because the scatter buffers are all neatly organized in one
460	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
461	 * be instructed to copy a range of buffers in one go.
462	 */
463
464	last_sd = (first_sd + pd_uinfo->num_sd);
465	if (last_sd > PPC4XX_LAST_SD) {
466		last_sd = PPC4XX_LAST_SD;
467		overflow = last_sd % PPC4XX_NUM_SD;
468	}
469
470	while (nbytes) {
471		void *buf = dev->scatter_buffer_va +
472			first_sd * PPC4XX_SD_BUFFER_SIZE;
473
474		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
475				      (1 + last_sd - first_sd));
476		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
477		nbytes -= to_copy;
478
479		if (overflow) {
480			first_sd = 0;
481			last_sd = overflow;
482			dst_start += to_copy;
483			overflow = 0;
484		}
485	}
486}
487
488static void crypto4xx_copy_digest_to_dst(void *dst,
489					struct pd_uinfo *pd_uinfo,
490					struct crypto4xx_ctx *ctx)
491{
492	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
493
494	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
495		memcpy(dst, pd_uinfo->sr_va->save_digest,
496		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
497	}
498}
499
500static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
501				  struct pd_uinfo *pd_uinfo)
502{
503	int i;
504	if (pd_uinfo->num_gd) {
505		for (i = 0; i < pd_uinfo->num_gd; i++)
506			crypto4xx_put_gd_to_gdr(dev);
507		pd_uinfo->first_gd = 0xffffffff;
508		pd_uinfo->num_gd = 0;
509	}
510	if (pd_uinfo->num_sd) {
511		for (i = 0; i < pd_uinfo->num_sd; i++)
512			crypto4xx_put_sd_to_sdr(dev);
513
514		pd_uinfo->first_sd = 0xffffffff;
515		pd_uinfo->num_sd = 0;
516	}
517}
518
519static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
520				     struct pd_uinfo *pd_uinfo,
521				     struct ce_pd *pd)
522{
523	struct skcipher_request *req;
524	struct scatterlist *dst;
525
526	req = skcipher_request_cast(pd_uinfo->async_req);
527
528	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
529		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
530					  req->cryptlen, req->dst);
531	} else {
532		dst = pd_uinfo->dest_va;
533		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
534			       DMA_FROM_DEVICE);
535	}
536
537	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
538		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
539
540		crypto4xx_memcpy_from_le32((u32 *)req->iv,
541			pd_uinfo->sr_va->save_iv,
542			crypto_skcipher_ivsize(skcipher));
543	}
544
545	crypto4xx_ret_sg_desc(dev, pd_uinfo);
546
547	if (pd_uinfo->state & PD_ENTRY_BUSY)
548		skcipher_request_complete(req, -EINPROGRESS);
549	skcipher_request_complete(req, 0);
550}
551
552static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
553				struct pd_uinfo *pd_uinfo)
554{
555	struct crypto4xx_ctx *ctx;
556	struct ahash_request *ahash_req;
557
558	ahash_req = ahash_request_cast(pd_uinfo->async_req);
559	ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(ahash_req));
560
561	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, ctx);
562	crypto4xx_ret_sg_desc(dev, pd_uinfo);
563
564	if (pd_uinfo->state & PD_ENTRY_BUSY)
565		ahash_request_complete(ahash_req, -EINPROGRESS);
566	ahash_request_complete(ahash_req, 0);
567}
568
569static void crypto4xx_aead_done(struct crypto4xx_device *dev,
570				struct pd_uinfo *pd_uinfo,
571				struct ce_pd *pd)
572{
573	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
574		struct aead_request, base);
575	struct scatterlist *dst = pd_uinfo->dest_va;
576	size_t cp_len = crypto_aead_authsize(
577		crypto_aead_reqtfm(aead_req));
578	u32 icv[AES_BLOCK_SIZE];
579	int err = 0;
580
581	if (pd_uinfo->sa_va->sa_command_0.bf.scatter) {
582		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
583					  pd->pd_ctl_len.bf.pkt_len,
584					  dst);
585	} else {
586		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
587				DMA_FROM_DEVICE);
588	}
589
590	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
591		/* append icv at the end */
592		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
593					   sizeof(icv));
594
595		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
596					 cp_len, 1);
597	} else {
598		/* check icv at the end */
599		scatterwalk_map_and_copy(icv, aead_req->src,
600			aead_req->assoclen + aead_req->cryptlen -
601			cp_len, cp_len, 0);
602
603		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
604
605		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
606			err = -EBADMSG;
607	}
608
609	crypto4xx_ret_sg_desc(dev, pd_uinfo);
610
611	if (pd->pd_ctl.bf.status & 0xff) {
612		if (!__ratelimit(&dev->aead_ratelimit)) {
613			if (pd->pd_ctl.bf.status & 2)
614				pr_err("pad fail error\n");
615			if (pd->pd_ctl.bf.status & 4)
616				pr_err("seqnum fail\n");
617			if (pd->pd_ctl.bf.status & 8)
618				pr_err("error _notify\n");
619			pr_err("aead return err status = 0x%02x\n",
620				pd->pd_ctl.bf.status & 0xff);
621			pr_err("pd pad_ctl = 0x%08x\n",
622				pd->pd_ctl.bf.pd_pad_ctl);
623		}
624		err = -EINVAL;
625	}
626
627	if (pd_uinfo->state & PD_ENTRY_BUSY)
628		aead_request_complete(aead_req, -EINPROGRESS);
629
630	aead_request_complete(aead_req, err);
631}
632
633static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
634{
635	struct ce_pd *pd = &dev->pdr[idx];
636	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
637
638	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
639	case CRYPTO_ALG_TYPE_SKCIPHER:
640		crypto4xx_cipher_done(dev, pd_uinfo, pd);
641		break;
642	case CRYPTO_ALG_TYPE_AEAD:
643		crypto4xx_aead_done(dev, pd_uinfo, pd);
644		break;
645	case CRYPTO_ALG_TYPE_AHASH:
646		crypto4xx_ahash_done(dev, pd_uinfo);
647		break;
648	}
649}
650
651static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
652{
653	crypto4xx_destroy_pdr(core_dev->dev);
654	crypto4xx_destroy_gdr(core_dev->dev);
655	crypto4xx_destroy_sdr(core_dev->dev);
656	iounmap(core_dev->dev->ce_base);
657	kfree(core_dev->dev);
658	kfree(core_dev);
659}
660
661static u32 get_next_gd(u32 current)
662{
663	if (current != PPC4XX_LAST_GD)
664		return current + 1;
665	else
666		return 0;
667}
668
669static u32 get_next_sd(u32 current)
670{
671	if (current != PPC4XX_LAST_SD)
672		return current + 1;
673	else
674		return 0;
675}
676
677int crypto4xx_build_pd(struct crypto_async_request *req,
678		       struct crypto4xx_ctx *ctx,
679		       struct scatterlist *src,
680		       struct scatterlist *dst,
681		       const unsigned int datalen,
682		       const __le32 *iv, const u32 iv_len,
683		       const struct dynamic_sa_ctl *req_sa,
684		       const unsigned int sa_len,
685		       const unsigned int assoclen,
686		       struct scatterlist *_dst)
687{
688	struct crypto4xx_device *dev = ctx->dev;
689	struct dynamic_sa_ctl *sa;
690	struct ce_gd *gd;
691	struct ce_pd *pd;
692	u32 num_gd, num_sd;
693	u32 fst_gd = 0xffffffff;
694	u32 fst_sd = 0xffffffff;
695	u32 pd_entry;
696	unsigned long flags;
697	struct pd_uinfo *pd_uinfo;
698	unsigned int nbytes = datalen;
699	size_t offset_to_sr_ptr;
700	u32 gd_idx = 0;
701	int tmp;
702	bool is_busy, force_sd;
703
704	/*
705	 * There's a very subtile/disguised "bug" in the hardware that
706	 * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption
707	 * of the hardware spec:
708	 * *drum roll* the AES/(T)DES OFB and CFB modes are listed as
709	 * operation modes for >>> "Block ciphers" <<<.
710	 *
711	 * To workaround this issue and stop the hardware from causing
712	 * "overran dst buffer" on crypttexts that are not a multiple
713	 * of 16 (AES_BLOCK_SIZE), we force the driver to use the
714	 * scatter buffers.
715	 */
716	force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB
717		|| req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB)
718		&& (datalen % AES_BLOCK_SIZE);
719
720	/* figure how many gd are needed */
721	tmp = sg_nents_for_len(src, assoclen + datalen);
722	if (tmp < 0) {
723		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
724		return tmp;
725	}
726	if (tmp == 1)
727		tmp = 0;
728	num_gd = tmp;
729
730	if (assoclen) {
731		nbytes += assoclen;
732		dst = scatterwalk_ffwd(_dst, dst, assoclen);
733	}
734
735	/* figure how many sd are needed */
736	if (sg_is_last(dst) && force_sd == false) {
737		num_sd = 0;
738	} else {
739		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
740			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
741			if (datalen % PPC4XX_SD_BUFFER_SIZE)
742				num_sd++;
743		} else {
744			num_sd = 1;
745		}
746	}
747
748	/*
749	 * The follow section of code needs to be protected
750	 * The gather ring and scatter ring needs to be consecutive
751	 * In case of run out of any kind of descriptor, the descriptor
752	 * already got must be return the original place.
753	 */
754	spin_lock_irqsave(&dev->core_dev->lock, flags);
755	/*
756	 * Let the caller know to slow down, once more than 13/16ths = 81%
757	 * of the available data contexts are being used simultaneously.
758	 *
759	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
760	 * 31 more contexts. Before new requests have to be rejected.
761	 */
762	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
763		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
764			((PPC4XX_NUM_PD * 13) / 16);
765	} else {
766		/*
767		 * To fix contention issues between ipsec (no blacklog) and
768		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
769		 * data contexts.
770		 */
771		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
772			((PPC4XX_NUM_PD * 15) / 16);
773
774		if (is_busy) {
775			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
776			return -EBUSY;
777		}
778	}
779
780	if (num_gd) {
781		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
782		if (fst_gd == ERING_WAS_FULL) {
783			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
784			return -EAGAIN;
785		}
786	}
787	if (num_sd) {
788		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
789		if (fst_sd == ERING_WAS_FULL) {
790			if (num_gd)
791				dev->gdr_head = fst_gd;
792			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
793			return -EAGAIN;
794		}
795	}
796	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
797	if (pd_entry == ERING_WAS_FULL) {
798		if (num_gd)
799			dev->gdr_head = fst_gd;
800		if (num_sd)
801			dev->sdr_head = fst_sd;
802		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
803		return -EAGAIN;
804	}
805	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
806
807	pd = &dev->pdr[pd_entry];
808	pd->sa_len = sa_len;
809
810	pd_uinfo = &dev->pdr_uinfo[pd_entry];
811	pd_uinfo->num_gd = num_gd;
812	pd_uinfo->num_sd = num_sd;
813	pd_uinfo->dest_va = dst;
814	pd_uinfo->async_req = req;
815
816	if (iv_len)
817		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
818
819	sa = pd_uinfo->sa_va;
820	memcpy(sa, req_sa, sa_len * 4);
821
822	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
823	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
824	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
825
826	if (num_gd) {
827		dma_addr_t gd_dma;
828		struct scatterlist *sg;
829
830		/* get first gd we are going to use */
831		gd_idx = fst_gd;
832		pd_uinfo->first_gd = fst_gd;
833		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
834		pd->src = gd_dma;
835		/* enable gather */
836		sa->sa_command_0.bf.gather = 1;
837		/* walk the sg, and setup gather array */
838
839		sg = src;
840		while (nbytes) {
841			size_t len;
842
843			len = min(sg->length, nbytes);
844			gd->ptr = dma_map_page(dev->core_dev->device,
845				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
846			gd->ctl_len.len = len;
847			gd->ctl_len.done = 0;
848			gd->ctl_len.ready = 1;
849			if (len >= nbytes)
850				break;
851
852			nbytes -= sg->length;
853			gd_idx = get_next_gd(gd_idx);
854			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
855			sg = sg_next(sg);
856		}
857	} else {
858		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
859				src->offset, min(nbytes, src->length),
860				DMA_TO_DEVICE);
861		/*
862		 * Disable gather in sa command
863		 */
864		sa->sa_command_0.bf.gather = 0;
865		/*
866		 * Indicate gather array is not used
867		 */
868		pd_uinfo->first_gd = 0xffffffff;
869	}
870	if (!num_sd) {
871		/*
872		 * we know application give us dst a whole piece of memory
873		 * no need to use scatter ring.
874		 */
875		pd_uinfo->first_sd = 0xffffffff;
876		sa->sa_command_0.bf.scatter = 0;
877		pd->dest = (u32)dma_map_page(dev->core_dev->device,
878					     sg_page(dst), dst->offset,
879					     min(datalen, dst->length),
880					     DMA_TO_DEVICE);
881	} else {
882		dma_addr_t sd_dma;
883		struct ce_sd *sd = NULL;
884
885		u32 sd_idx = fst_sd;
886		nbytes = datalen;
887		sa->sa_command_0.bf.scatter = 1;
888		pd_uinfo->first_sd = fst_sd;
889		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
890		pd->dest = sd_dma;
891		/* setup scatter descriptor */
892		sd->ctl.done = 0;
893		sd->ctl.rdy = 1;
894		/* sd->ptr should be setup by sd_init routine*/
895		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
896			nbytes -= PPC4XX_SD_BUFFER_SIZE;
897		else
898			nbytes = 0;
899		while (nbytes) {
900			sd_idx = get_next_sd(sd_idx);
901			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
902			/* setup scatter descriptor */
903			sd->ctl.done = 0;
904			sd->ctl.rdy = 1;
905			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
906				nbytes -= PPC4XX_SD_BUFFER_SIZE;
907			} else {
908				/*
909				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
910				 * which is more than nbytes, so done.
911				 */
912				nbytes = 0;
913			}
914		}
915	}
916
917	pd->pd_ctl.w = PD_CTL_HOST_READY |
918		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) ||
919		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
920			PD_CTL_HASH_FINAL : 0);
921	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
922	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
923
924	wmb();
925	/* write any value to push engine to read a pd */
926	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
927	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
928	return is_busy ? -EBUSY : -EINPROGRESS;
929}
930
931/*
932 * Algorithm Registration Functions
933 */
934static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
935			       struct crypto4xx_ctx *ctx)
936{
937	ctx->dev = amcc_alg->dev;
938	ctx->sa_in = NULL;
939	ctx->sa_out = NULL;
940	ctx->sa_len = 0;
941}
942
943static int crypto4xx_sk_init(struct crypto_skcipher *sk)
944{
945	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
946	struct crypto4xx_alg *amcc_alg;
947	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
948
949	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
950		ctx->sw_cipher.cipher =
951			crypto_alloc_sync_skcipher(alg->base.cra_name, 0,
952					      CRYPTO_ALG_NEED_FALLBACK);
953		if (IS_ERR(ctx->sw_cipher.cipher))
954			return PTR_ERR(ctx->sw_cipher.cipher);
955	}
956
957	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
958	crypto4xx_ctx_init(amcc_alg, ctx);
959	return 0;
960}
961
962static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
963{
964	crypto4xx_free_sa(ctx);
965}
966
967static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
968{
969	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
970
971	crypto4xx_common_exit(ctx);
972	if (ctx->sw_cipher.cipher)
973		crypto_free_sync_skcipher(ctx->sw_cipher.cipher);
974}
975
976static int crypto4xx_aead_init(struct crypto_aead *tfm)
977{
978	struct aead_alg *alg = crypto_aead_alg(tfm);
979	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
980	struct crypto4xx_alg *amcc_alg;
981
982	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
983						CRYPTO_ALG_NEED_FALLBACK |
984						CRYPTO_ALG_ASYNC);
985	if (IS_ERR(ctx->sw_cipher.aead))
986		return PTR_ERR(ctx->sw_cipher.aead);
987
988	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
989	crypto4xx_ctx_init(amcc_alg, ctx);
990	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
991				crypto_aead_reqsize(ctx->sw_cipher.aead),
992				sizeof(struct crypto4xx_aead_reqctx)));
993	return 0;
994}
995
996static void crypto4xx_aead_exit(struct crypto_aead *tfm)
997{
998	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
999
1000	crypto4xx_common_exit(ctx);
1001	crypto_free_aead(ctx->sw_cipher.aead);
1002}
1003
1004static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1005				  struct crypto4xx_alg_common *crypto_alg,
1006				  int array_size)
1007{
1008	struct crypto4xx_alg *alg;
1009	int i;
1010	int rc = 0;
1011
1012	for (i = 0; i < array_size; i++) {
1013		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1014		if (!alg)
1015			return -ENOMEM;
1016
1017		alg->alg = crypto_alg[i];
1018		alg->dev = sec_dev;
1019
1020		switch (alg->alg.type) {
1021		case CRYPTO_ALG_TYPE_AEAD:
1022			rc = crypto_register_aead(&alg->alg.u.aead);
1023			break;
1024
1025		case CRYPTO_ALG_TYPE_AHASH:
1026			rc = crypto_register_ahash(&alg->alg.u.hash);
1027			break;
1028
1029		case CRYPTO_ALG_TYPE_RNG:
1030			rc = crypto_register_rng(&alg->alg.u.rng);
1031			break;
1032
1033		default:
1034			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1035			break;
1036		}
1037
1038		if (rc)
1039			kfree(alg);
1040		else
1041			list_add_tail(&alg->entry, &sec_dev->alg_list);
1042	}
1043
1044	return 0;
1045}
1046
1047static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1048{
1049	struct crypto4xx_alg *alg, *tmp;
1050
1051	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1052		list_del(&alg->entry);
1053		switch (alg->alg.type) {
1054		case CRYPTO_ALG_TYPE_AHASH:
1055			crypto_unregister_ahash(&alg->alg.u.hash);
1056			break;
1057
1058		case CRYPTO_ALG_TYPE_AEAD:
1059			crypto_unregister_aead(&alg->alg.u.aead);
1060			break;
1061
1062		case CRYPTO_ALG_TYPE_RNG:
1063			crypto_unregister_rng(&alg->alg.u.rng);
1064			break;
1065
1066		default:
1067			crypto_unregister_skcipher(&alg->alg.u.cipher);
1068		}
1069		kfree(alg);
1070	}
1071}
1072
1073static void crypto4xx_bh_tasklet_cb(unsigned long data)
1074{
1075	struct device *dev = (struct device *)data;
1076	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1077	struct pd_uinfo *pd_uinfo;
1078	struct ce_pd *pd;
1079	u32 tail = core_dev->dev->pdr_tail;
1080	u32 head = core_dev->dev->pdr_head;
1081
1082	do {
1083		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1084		pd = &core_dev->dev->pdr[tail];
1085		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1086		     ((READ_ONCE(pd->pd_ctl.w) &
1087		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1088		       PD_CTL_PE_DONE)) {
1089			crypto4xx_pd_done(core_dev->dev, tail);
1090			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1091		} else {
1092			/* if tail not done, break */
1093			break;
1094		}
1095	} while (head != tail);
1096}
1097
1098/*
1099 * Top Half of isr.
1100 */
1101static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1102						      u32 clr_val)
1103{
1104	struct device *dev = data;
1105	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1106
1107	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1108	tasklet_schedule(&core_dev->tasklet);
1109
1110	return IRQ_HANDLED;
1111}
1112
1113static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1114{
1115	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1116}
1117
1118static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1119{
1120	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1121		PPC4XX_TMO_ERR_INT);
1122}
1123
1124static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1125				 u8 *data, unsigned int max)
1126{
1127	unsigned int i, curr = 0;
1128	u32 val[2];
1129
1130	do {
1131		/* trigger PRN generation */
1132		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1133		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1134
1135		for (i = 0; i < 1024; i++) {
1136			/* usually 19 iterations are enough */
1137			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1138			     CRYPTO4XX_PRNG_STAT_BUSY))
1139				continue;
1140
1141			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1142			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1143			break;
1144		}
1145		if (i == 1024)
1146			return -ETIMEDOUT;
1147
1148		if ((max - curr) >= 8) {
1149			memcpy(data, &val, 8);
1150			data += 8;
1151			curr += 8;
1152		} else {
1153			/* copy only remaining bytes */
1154			memcpy(data, &val, max - curr);
1155			break;
1156		}
1157	} while (curr < max);
1158
1159	return curr;
1160}
1161
1162static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1163				   const u8 *src, unsigned int slen,
1164				   u8 *dstn, unsigned int dlen)
1165{
1166	struct rng_alg *alg = crypto_rng_alg(tfm);
1167	struct crypto4xx_alg *amcc_alg;
1168	struct crypto4xx_device *dev;
1169	int ret;
1170
1171	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1172	dev = amcc_alg->dev;
1173
1174	mutex_lock(&dev->core_dev->rng_lock);
1175	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1176	mutex_unlock(&dev->core_dev->rng_lock);
1177	return ret;
1178}
1179
1180
1181static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1182			unsigned int slen)
1183{
1184	return 0;
1185}
1186
1187/*
1188 * Supported Crypto Algorithms
1189 */
1190static struct crypto4xx_alg_common crypto4xx_alg[] = {
1191	/* Crypto AES modes */
1192	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1193		.base = {
1194			.cra_name = "cbc(aes)",
1195			.cra_driver_name = "cbc-aes-ppc4xx",
1196			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1197			.cra_flags = CRYPTO_ALG_ASYNC |
1198				CRYPTO_ALG_KERN_DRIVER_ONLY,
1199			.cra_blocksize = AES_BLOCK_SIZE,
1200			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1201			.cra_module = THIS_MODULE,
1202		},
1203		.min_keysize = AES_MIN_KEY_SIZE,
1204		.max_keysize = AES_MAX_KEY_SIZE,
1205		.ivsize	= AES_IV_SIZE,
1206		.setkey = crypto4xx_setkey_aes_cbc,
1207		.encrypt = crypto4xx_encrypt_iv_block,
1208		.decrypt = crypto4xx_decrypt_iv_block,
1209		.init = crypto4xx_sk_init,
1210		.exit = crypto4xx_sk_exit,
1211	} },
1212	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1213		.base = {
1214			.cra_name = "ctr(aes)",
1215			.cra_driver_name = "ctr-aes-ppc4xx",
1216			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1217			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1218				CRYPTO_ALG_ASYNC |
1219				CRYPTO_ALG_KERN_DRIVER_ONLY,
1220			.cra_blocksize = 1,
1221			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1222			.cra_module = THIS_MODULE,
1223		},
1224		.min_keysize = AES_MIN_KEY_SIZE,
1225		.max_keysize = AES_MAX_KEY_SIZE,
1226		.ivsize	= AES_IV_SIZE,
1227		.setkey	= crypto4xx_setkey_aes_ctr,
1228		.encrypt = crypto4xx_encrypt_ctr,
1229		.decrypt = crypto4xx_decrypt_ctr,
1230		.init = crypto4xx_sk_init,
1231		.exit = crypto4xx_sk_exit,
1232	} },
1233	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1234		.base = {
1235			.cra_name = "rfc3686(ctr(aes))",
1236			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1237			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1238			.cra_flags = CRYPTO_ALG_ASYNC |
1239				CRYPTO_ALG_KERN_DRIVER_ONLY,
1240			.cra_blocksize = 1,
1241			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1242			.cra_module = THIS_MODULE,
1243		},
1244		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1245		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1246		.ivsize	= CTR_RFC3686_IV_SIZE,
1247		.setkey = crypto4xx_setkey_rfc3686,
1248		.encrypt = crypto4xx_rfc3686_encrypt,
1249		.decrypt = crypto4xx_rfc3686_decrypt,
1250		.init = crypto4xx_sk_init,
1251		.exit = crypto4xx_sk_exit,
1252	} },
1253	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1254		.base = {
1255			.cra_name = "ecb(aes)",
1256			.cra_driver_name = "ecb-aes-ppc4xx",
1257			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1258			.cra_flags = CRYPTO_ALG_ASYNC |
1259				CRYPTO_ALG_KERN_DRIVER_ONLY,
1260			.cra_blocksize = AES_BLOCK_SIZE,
1261			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1262			.cra_module = THIS_MODULE,
1263		},
1264		.min_keysize = AES_MIN_KEY_SIZE,
1265		.max_keysize = AES_MAX_KEY_SIZE,
1266		.setkey	= crypto4xx_setkey_aes_ecb,
1267		.encrypt = crypto4xx_encrypt_noiv_block,
1268		.decrypt = crypto4xx_decrypt_noiv_block,
1269		.init = crypto4xx_sk_init,
1270		.exit = crypto4xx_sk_exit,
1271	} },
1272
1273	/* AEAD */
1274	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1275		.setkey		= crypto4xx_setkey_aes_ccm,
1276		.setauthsize	= crypto4xx_setauthsize_aead,
1277		.encrypt	= crypto4xx_encrypt_aes_ccm,
1278		.decrypt	= crypto4xx_decrypt_aes_ccm,
1279		.init		= crypto4xx_aead_init,
1280		.exit		= crypto4xx_aead_exit,
1281		.ivsize		= AES_BLOCK_SIZE,
1282		.maxauthsize    = 16,
1283		.base = {
1284			.cra_name	= "ccm(aes)",
1285			.cra_driver_name = "ccm-aes-ppc4xx",
1286			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1287			.cra_flags	= CRYPTO_ALG_ASYNC |
1288					  CRYPTO_ALG_NEED_FALLBACK |
1289					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1290			.cra_blocksize	= 1,
1291			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1292			.cra_module	= THIS_MODULE,
1293		},
1294	} },
1295	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1296		.setkey		= crypto4xx_setkey_aes_gcm,
1297		.setauthsize	= crypto4xx_setauthsize_aead,
1298		.encrypt	= crypto4xx_encrypt_aes_gcm,
1299		.decrypt	= crypto4xx_decrypt_aes_gcm,
1300		.init		= crypto4xx_aead_init,
1301		.exit		= crypto4xx_aead_exit,
1302		.ivsize		= GCM_AES_IV_SIZE,
1303		.maxauthsize	= 16,
1304		.base = {
1305			.cra_name	= "gcm(aes)",
1306			.cra_driver_name = "gcm-aes-ppc4xx",
1307			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1308			.cra_flags	= CRYPTO_ALG_ASYNC |
1309					  CRYPTO_ALG_NEED_FALLBACK |
1310					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1311			.cra_blocksize	= 1,
1312			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1313			.cra_module	= THIS_MODULE,
1314		},
1315	} },
1316	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1317		.base = {
1318			.cra_name		= "stdrng",
1319			.cra_driver_name        = "crypto4xx_rng",
1320			.cra_priority		= 300,
1321			.cra_ctxsize		= 0,
1322			.cra_module		= THIS_MODULE,
1323		},
1324		.generate               = crypto4xx_prng_generate,
1325		.seed                   = crypto4xx_prng_seed,
1326		.seedsize               = 0,
1327	} },
1328};
1329
1330/*
1331 * Module Initialization Routine
1332 */
1333static int crypto4xx_probe(struct platform_device *ofdev)
1334{
1335	int rc;
1336	struct resource res;
1337	struct device *dev = &ofdev->dev;
1338	struct crypto4xx_core_device *core_dev;
1339	struct device_node *np;
1340	u32 pvr;
1341	bool is_revb = true;
1342
1343	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1344	if (rc)
1345		return -ENODEV;
1346
1347	np = of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto");
1348	if (np) {
1349		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1350		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1351		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1352		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1353	} else {
1354		np = of_find_compatible_node(NULL, NULL, "amcc,ppc405ex-crypto");
1355		if (np) {
1356			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1357				   mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1358			mtdcri(SDR0, PPC405EX_SDR0_SRST,
1359				   mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1360			is_revb = false;
1361		} else {
1362			np = of_find_compatible_node(NULL, NULL, "amcc,ppc460sx-crypto");
1363			if (np) {
1364				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1365					mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1366				mtdcri(SDR0, PPC460SX_SDR0_SRST,
1367					mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1368			} else {
1369				printk(KERN_ERR "Crypto Function Not supported!\n");
1370				return -EINVAL;
1371			}
1372		}
1373	}
1374
1375	of_node_put(np);
1376
1377	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1378	if (!core_dev)
1379		return -ENOMEM;
1380
1381	dev_set_drvdata(dev, core_dev);
1382	core_dev->ofdev = ofdev;
1383	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1384	rc = -ENOMEM;
1385	if (!core_dev->dev)
1386		goto err_alloc_dev;
1387
1388	/*
1389	 * Older version of 460EX/GT have a hardware bug.
1390	 * Hence they do not support H/W based security intr coalescing
1391	 */
1392	pvr = mfspr(SPRN_PVR);
1393	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1394		u32 min = PVR_MIN(pvr);
1395
1396		if (min < 4) {
1397			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1398			is_revb = false;
1399		}
1400	}
1401
1402	core_dev->dev->core_dev = core_dev;
1403	core_dev->dev->is_revb = is_revb;
1404	core_dev->device = dev;
1405	mutex_init(&core_dev->rng_lock);
1406	spin_lock_init(&core_dev->lock);
1407	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1408	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1409	rc = crypto4xx_build_sdr(core_dev->dev);
1410	if (rc)
1411		goto err_build_sdr;
1412	rc = crypto4xx_build_pdr(core_dev->dev);
1413	if (rc)
1414		goto err_build_sdr;
1415
1416	rc = crypto4xx_build_gdr(core_dev->dev);
1417	if (rc)
1418		goto err_build_sdr;
1419
1420	/* Init tasklet for bottom half processing */
1421	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1422		     (unsigned long) dev);
1423
1424	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1425	if (!core_dev->dev->ce_base) {
1426		dev_err(dev, "failed to of_iomap\n");
1427		rc = -ENOMEM;
1428		goto err_iomap;
1429	}
1430
1431	/* Register for Crypto isr, Crypto Engine IRQ */
1432	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1433	rc = request_irq(core_dev->irq, is_revb ?
1434			 crypto4xx_ce_interrupt_handler_revb :
1435			 crypto4xx_ce_interrupt_handler, 0,
1436			 KBUILD_MODNAME, dev);
1437	if (rc)
1438		goto err_request_irq;
1439
1440	/* need to setup pdr, rdr, gdr and sdr before this */
1441	crypto4xx_hw_init(core_dev->dev);
1442
1443	/* Register security algorithms with Linux CryptoAPI */
1444	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1445			       ARRAY_SIZE(crypto4xx_alg));
1446	if (rc)
1447		goto err_start_dev;
1448
1449	ppc4xx_trng_probe(core_dev);
1450	return 0;
1451
1452err_start_dev:
1453	free_irq(core_dev->irq, dev);
1454err_request_irq:
1455	irq_dispose_mapping(core_dev->irq);
1456	iounmap(core_dev->dev->ce_base);
1457err_iomap:
1458	tasklet_kill(&core_dev->tasklet);
1459err_build_sdr:
1460	crypto4xx_destroy_sdr(core_dev->dev);
1461	crypto4xx_destroy_gdr(core_dev->dev);
1462	crypto4xx_destroy_pdr(core_dev->dev);
1463	kfree(core_dev->dev);
1464err_alloc_dev:
1465	kfree(core_dev);
1466
1467	return rc;
1468}
1469
1470static void crypto4xx_remove(struct platform_device *ofdev)
1471{
1472	struct device *dev = &ofdev->dev;
1473	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1474
1475	ppc4xx_trng_remove(core_dev);
1476
1477	free_irq(core_dev->irq, dev);
1478	irq_dispose_mapping(core_dev->irq);
1479
1480	tasklet_kill(&core_dev->tasklet);
1481	/* Un-register with Linux CryptoAPI */
1482	crypto4xx_unregister_alg(core_dev->dev);
1483	mutex_destroy(&core_dev->rng_lock);
1484	/* Free all allocated memory */
1485	crypto4xx_stop_all(core_dev);
1486}
1487
1488static const struct of_device_id crypto4xx_match[] = {
1489	{ .compatible      = "amcc,ppc4xx-crypto",},
1490	{ },
1491};
1492MODULE_DEVICE_TABLE(of, crypto4xx_match);
1493
1494static struct platform_driver crypto4xx_driver = {
1495	.driver = {
1496		.name = KBUILD_MODNAME,
1497		.of_match_table = crypto4xx_match,
1498	},
1499	.probe		= crypto4xx_probe,
1500	.remove_new	= crypto4xx_remove,
1501};
1502
1503module_platform_driver(crypto4xx_driver);
1504
1505MODULE_LICENSE("GPL");
1506MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1507MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1508