1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * POWERNV cpufreq driver for the IBM POWER processors
4 *
5 * (C) Copyright IBM 2014
6 *
7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
8 */
9
10#define pr_fmt(fmt)	"powernv-cpufreq: " fmt
11
12#include <linux/kernel.h>
13#include <linux/sysfs.h>
14#include <linux/cpumask.h>
15#include <linux/module.h>
16#include <linux/cpufreq.h>
17#include <linux/smp.h>
18#include <linux/of.h>
19#include <linux/reboot.h>
20#include <linux/slab.h>
21#include <linux/cpu.h>
22#include <linux/hashtable.h>
23#include <trace/events/power.h>
24
25#include <asm/cputhreads.h>
26#include <asm/firmware.h>
27#include <asm/reg.h>
28#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
29#include <asm/opal.h>
30#include <linux/timer.h>
31
32#define POWERNV_MAX_PSTATES_ORDER  8
33#define POWERNV_MAX_PSTATES	(1UL << (POWERNV_MAX_PSTATES_ORDER))
34#define PMSR_PSAFE_ENABLE	(1UL << 30)
35#define PMSR_SPR_EM_DISABLE	(1UL << 31)
36#define MAX_PSTATE_SHIFT	32
37#define LPSTATE_SHIFT		48
38#define GPSTATE_SHIFT		56
39#define MAX_NR_CHIPS		32
40
41#define MAX_RAMP_DOWN_TIME				5120
42/*
43 * On an idle system we want the global pstate to ramp-down from max value to
44 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
45 * then ramp-down rapidly later on.
46 *
47 * This gives a percentage rampdown for time elapsed in milliseconds.
48 * ramp_down_percentage = ((ms * ms) >> 18)
49 *			~= 3.8 * (sec * sec)
50 *
51 * At 0 ms	ramp_down_percent = 0
52 * At 5120 ms	ramp_down_percent = 100
53 */
54#define ramp_down_percent(time)		((time * time) >> 18)
55
56/* Interval after which the timer is queued to bring down global pstate */
57#define GPSTATE_TIMER_INTERVAL				2000
58
59/**
60 * struct global_pstate_info -	Per policy data structure to maintain history of
61 *				global pstates
62 * @highest_lpstate_idx:	The local pstate index from which we are
63 *				ramping down
64 * @elapsed_time:		Time in ms spent in ramping down from
65 *				highest_lpstate_idx
66 * @last_sampled_time:		Time from boot in ms when global pstates were
67 *				last set
68 * @last_lpstate_idx:		Last set value of local pstate and global
69 * @last_gpstate_idx:		pstate in terms of cpufreq table index
70 * @timer:			Is used for ramping down if cpu goes idle for
71 *				a long time with global pstate held high
72 * @gpstate_lock:		A spinlock to maintain synchronization between
73 *				routines called by the timer handler and
74 *				governer's target_index calls
75 * @policy:			Associated CPUFreq policy
76 */
77struct global_pstate_info {
78	int highest_lpstate_idx;
79	unsigned int elapsed_time;
80	unsigned int last_sampled_time;
81	int last_lpstate_idx;
82	int last_gpstate_idx;
83	spinlock_t gpstate_lock;
84	struct timer_list timer;
85	struct cpufreq_policy *policy;
86};
87
88static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
89
90static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
91/**
92 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
93 *				  indexed by a function of pstate id.
94 *
95 * @pstate_id: pstate id for this entry.
96 *
97 * @cpufreq_table_idx: Index into the powernv_freqs
98 *		       cpufreq_frequency_table for frequency
99 *		       corresponding to pstate_id.
100 *
101 * @hentry: hlist_node that hooks this entry into the pstate_revmap
102 *	    hashtable
103 */
104struct pstate_idx_revmap_data {
105	u8 pstate_id;
106	unsigned int cpufreq_table_idx;
107	struct hlist_node hentry;
108};
109
110static bool rebooting, throttled, occ_reset;
111
112static const char * const throttle_reason[] = {
113	"No throttling",
114	"Power Cap",
115	"Processor Over Temperature",
116	"Power Supply Failure",
117	"Over Current",
118	"OCC Reset"
119};
120
121enum throttle_reason_type {
122	NO_THROTTLE = 0,
123	POWERCAP,
124	CPU_OVERTEMP,
125	POWER_SUPPLY_FAILURE,
126	OVERCURRENT,
127	OCC_RESET_THROTTLE,
128	OCC_MAX_REASON
129};
130
131static struct chip {
132	unsigned int id;
133	bool throttled;
134	bool restore;
135	u8 throttle_reason;
136	cpumask_t mask;
137	struct work_struct throttle;
138	int throttle_turbo;
139	int throttle_sub_turbo;
140	int reason[OCC_MAX_REASON];
141} *chips;
142
143static int nr_chips;
144static DEFINE_PER_CPU(struct chip *, chip_info);
145
146/*
147 * Note:
148 * The set of pstates consists of contiguous integers.
149 * powernv_pstate_info stores the index of the frequency table for
150 * max, min and nominal frequencies. It also stores number of
151 * available frequencies.
152 *
153 * powernv_pstate_info.nominal indicates the index to the highest
154 * non-turbo frequency.
155 */
156static struct powernv_pstate_info {
157	unsigned int min;
158	unsigned int max;
159	unsigned int nominal;
160	unsigned int nr_pstates;
161	bool wof_enabled;
162} powernv_pstate_info;
163
164static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift)
165{
166	return ((pmsr_val >> shift) & 0xFF);
167}
168
169#define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
170#define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
171#define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
172
173/* Use following functions for conversions between pstate_id and index */
174
175/*
176 * idx_to_pstate : Returns the pstate id corresponding to the
177 *		   frequency in the cpufreq frequency table
178 *		   powernv_freqs indexed by @i.
179 *
180 *		   If @i is out of bound, this will return the pstate
181 *		   corresponding to the nominal frequency.
182 */
183static inline u8 idx_to_pstate(unsigned int i)
184{
185	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
186		pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
187		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
188	}
189
190	return powernv_freqs[i].driver_data;
191}
192
193/*
194 * pstate_to_idx : Returns the index in the cpufreq frequencytable
195 *		   powernv_freqs for the frequency whose corresponding
196 *		   pstate id is @pstate.
197 *
198 *		   If no frequency corresponding to @pstate is found,
199 *		   this will return the index of the nominal
200 *		   frequency.
201 */
202static unsigned int pstate_to_idx(u8 pstate)
203{
204	unsigned int key = pstate % POWERNV_MAX_PSTATES;
205	struct pstate_idx_revmap_data *revmap_data;
206
207	hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
208		if (revmap_data->pstate_id == pstate)
209			return revmap_data->cpufreq_table_idx;
210	}
211
212	pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate);
213	return powernv_pstate_info.nominal;
214}
215
216static inline void reset_gpstates(struct cpufreq_policy *policy)
217{
218	struct global_pstate_info *gpstates = policy->driver_data;
219
220	gpstates->highest_lpstate_idx = 0;
221	gpstates->elapsed_time = 0;
222	gpstates->last_sampled_time = 0;
223	gpstates->last_lpstate_idx = 0;
224	gpstates->last_gpstate_idx = 0;
225}
226
227/*
228 * Initialize the freq table based on data obtained
229 * from the firmware passed via device-tree
230 */
231static int init_powernv_pstates(void)
232{
233	struct device_node *power_mgt;
234	int i, nr_pstates = 0;
235	const __be32 *pstate_ids, *pstate_freqs;
236	u32 len_ids, len_freqs;
237	u32 pstate_min, pstate_max, pstate_nominal;
238	u32 pstate_turbo, pstate_ultra_turbo;
239	int rc = -ENODEV;
240
241	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
242	if (!power_mgt) {
243		pr_warn("power-mgt node not found\n");
244		return -ENODEV;
245	}
246
247	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
248		pr_warn("ibm,pstate-min node not found\n");
249		goto out;
250	}
251
252	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
253		pr_warn("ibm,pstate-max node not found\n");
254		goto out;
255	}
256
257	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
258				 &pstate_nominal)) {
259		pr_warn("ibm,pstate-nominal not found\n");
260		goto out;
261	}
262
263	if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
264				 &pstate_ultra_turbo)) {
265		powernv_pstate_info.wof_enabled = false;
266		goto next;
267	}
268
269	if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
270				 &pstate_turbo)) {
271		powernv_pstate_info.wof_enabled = false;
272		goto next;
273	}
274
275	if (pstate_turbo == pstate_ultra_turbo)
276		powernv_pstate_info.wof_enabled = false;
277	else
278		powernv_pstate_info.wof_enabled = true;
279
280next:
281	pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min,
282		pstate_nominal, pstate_max);
283	pr_info("Workload Optimized Frequency is %s in the platform\n",
284		(powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
285
286	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
287	if (!pstate_ids) {
288		pr_warn("ibm,pstate-ids not found\n");
289		goto out;
290	}
291
292	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
293				      &len_freqs);
294	if (!pstate_freqs) {
295		pr_warn("ibm,pstate-frequencies-mhz not found\n");
296		goto out;
297	}
298
299	if (len_ids != len_freqs) {
300		pr_warn("Entries in ibm,pstate-ids and "
301			"ibm,pstate-frequencies-mhz does not match\n");
302	}
303
304	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
305	if (!nr_pstates) {
306		pr_warn("No PStates found\n");
307		goto out;
308	}
309
310	powernv_pstate_info.nr_pstates = nr_pstates;
311	pr_debug("NR PStates %d\n", nr_pstates);
312
313	for (i = 0; i < nr_pstates; i++) {
314		u32 id = be32_to_cpu(pstate_ids[i]);
315		u32 freq = be32_to_cpu(pstate_freqs[i]);
316		struct pstate_idx_revmap_data *revmap_data;
317		unsigned int key;
318
319		pr_debug("PState id %d freq %d MHz\n", id, freq);
320		powernv_freqs[i].frequency = freq * 1000; /* kHz */
321		powernv_freqs[i].driver_data = id & 0xFF;
322
323		revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL);
324		if (!revmap_data) {
325			rc = -ENOMEM;
326			goto out;
327		}
328
329		revmap_data->pstate_id = id & 0xFF;
330		revmap_data->cpufreq_table_idx = i;
331		key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES;
332		hash_add(pstate_revmap, &revmap_data->hentry, key);
333
334		if (id == pstate_max)
335			powernv_pstate_info.max = i;
336		if (id == pstate_nominal)
337			powernv_pstate_info.nominal = i;
338		if (id == pstate_min)
339			powernv_pstate_info.min = i;
340
341		if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
342			int j;
343
344			for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
345				powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
346		}
347	}
348
349	/* End of list marker entry */
350	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
351
352	of_node_put(power_mgt);
353	return 0;
354out:
355	of_node_put(power_mgt);
356	return rc;
357}
358
359/* Returns the CPU frequency corresponding to the pstate_id. */
360static unsigned int pstate_id_to_freq(u8 pstate_id)
361{
362	int i;
363
364	i = pstate_to_idx(pstate_id);
365	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
366		pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
367			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
368		i = powernv_pstate_info.nominal;
369	}
370
371	return powernv_freqs[i].frequency;
372}
373
374/*
375 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
376 * the firmware
377 */
378static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
379					char *buf)
380{
381	return sprintf(buf, "%u\n",
382		powernv_freqs[powernv_pstate_info.nominal].frequency);
383}
384
385static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
386	__ATTR_RO(cpuinfo_nominal_freq);
387
388#define SCALING_BOOST_FREQS_ATTR_INDEX		2
389
390static struct freq_attr *powernv_cpu_freq_attr[] = {
391	&cpufreq_freq_attr_scaling_available_freqs,
392	&cpufreq_freq_attr_cpuinfo_nominal_freq,
393	&cpufreq_freq_attr_scaling_boost_freqs,
394	NULL,
395};
396
397#define throttle_attr(name, member)					\
398static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
399{									\
400	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
401									\
402	return sprintf(buf, "%u\n", chip->member);			\
403}									\
404									\
405static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
406
407throttle_attr(unthrottle, reason[NO_THROTTLE]);
408throttle_attr(powercap, reason[POWERCAP]);
409throttle_attr(overtemp, reason[CPU_OVERTEMP]);
410throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
411throttle_attr(overcurrent, reason[OVERCURRENT]);
412throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
413throttle_attr(turbo_stat, throttle_turbo);
414throttle_attr(sub_turbo_stat, throttle_sub_turbo);
415
416static struct attribute *throttle_attrs[] = {
417	&throttle_attr_unthrottle.attr,
418	&throttle_attr_powercap.attr,
419	&throttle_attr_overtemp.attr,
420	&throttle_attr_supply_fault.attr,
421	&throttle_attr_overcurrent.attr,
422	&throttle_attr_occ_reset.attr,
423	&throttle_attr_turbo_stat.attr,
424	&throttle_attr_sub_turbo_stat.attr,
425	NULL,
426};
427
428static const struct attribute_group throttle_attr_grp = {
429	.name	= "throttle_stats",
430	.attrs	= throttle_attrs,
431};
432
433/* Helper routines */
434
435/* Access helpers to power mgt SPR */
436
437static inline unsigned long get_pmspr(unsigned long sprn)
438{
439	switch (sprn) {
440	case SPRN_PMCR:
441		return mfspr(SPRN_PMCR);
442
443	case SPRN_PMICR:
444		return mfspr(SPRN_PMICR);
445
446	case SPRN_PMSR:
447		return mfspr(SPRN_PMSR);
448	}
449	BUG();
450}
451
452static inline void set_pmspr(unsigned long sprn, unsigned long val)
453{
454	switch (sprn) {
455	case SPRN_PMCR:
456		mtspr(SPRN_PMCR, val);
457		return;
458
459	case SPRN_PMICR:
460		mtspr(SPRN_PMICR, val);
461		return;
462	}
463	BUG();
464}
465
466/*
467 * Use objects of this type to query/update
468 * pstates on a remote CPU via smp_call_function.
469 */
470struct powernv_smp_call_data {
471	unsigned int freq;
472	u8 pstate_id;
473	u8 gpstate_id;
474};
475
476/*
477 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
478 *
479 * Called via smp_call_function.
480 *
481 * Note: The caller of the smp_call_function should pass an argument of
482 * the type 'struct powernv_smp_call_data *' along with this function.
483 *
484 * The current frequency on this CPU will be returned via
485 * ((struct powernv_smp_call_data *)arg)->freq;
486 */
487static void powernv_read_cpu_freq(void *arg)
488{
489	unsigned long pmspr_val;
490	struct powernv_smp_call_data *freq_data = arg;
491
492	pmspr_val = get_pmspr(SPRN_PMSR);
493	freq_data->pstate_id = extract_local_pstate(pmspr_val);
494	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
495
496	pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
497		 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
498		 freq_data->freq);
499}
500
501/*
502 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
503 * firmware for CPU 'cpu'. This value is reported through the sysfs
504 * file cpuinfo_cur_freq.
505 */
506static unsigned int powernv_cpufreq_get(unsigned int cpu)
507{
508	struct powernv_smp_call_data freq_data;
509
510	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
511			&freq_data, 1);
512
513	return freq_data.freq;
514}
515
516/*
517 * set_pstate: Sets the pstate on this CPU.
518 *
519 * This is called via an smp_call_function.
520 *
521 * The caller must ensure that freq_data is of the type
522 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
523 * on this CPU should be present in freq_data->pstate_id.
524 */
525static void set_pstate(void *data)
526{
527	unsigned long val;
528	struct powernv_smp_call_data *freq_data = data;
529	unsigned long pstate_ul = freq_data->pstate_id;
530	unsigned long gpstate_ul = freq_data->gpstate_id;
531
532	val = get_pmspr(SPRN_PMCR);
533	val = val & 0x0000FFFFFFFFFFFFULL;
534
535	pstate_ul = pstate_ul & 0xFF;
536	gpstate_ul = gpstate_ul & 0xFF;
537
538	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
539	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
540
541	pr_debug("Setting cpu %d pmcr to %016lX\n",
542			raw_smp_processor_id(), val);
543	set_pmspr(SPRN_PMCR, val);
544}
545
546/*
547 * get_nominal_index: Returns the index corresponding to the nominal
548 * pstate in the cpufreq table
549 */
550static inline unsigned int get_nominal_index(void)
551{
552	return powernv_pstate_info.nominal;
553}
554
555static void powernv_cpufreq_throttle_check(void *data)
556{
557	struct chip *chip;
558	unsigned int cpu = smp_processor_id();
559	unsigned long pmsr;
560	u8 pmsr_pmax;
561	unsigned int pmsr_pmax_idx;
562
563	pmsr = get_pmspr(SPRN_PMSR);
564	chip = this_cpu_read(chip_info);
565
566	/* Check for Pmax Capping */
567	pmsr_pmax = extract_max_pstate(pmsr);
568	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
569	if (pmsr_pmax_idx != powernv_pstate_info.max) {
570		if (chip->throttled)
571			goto next;
572		chip->throttled = true;
573		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
574			pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
575				     cpu, chip->id, pmsr_pmax,
576				     idx_to_pstate(powernv_pstate_info.nominal));
577			chip->throttle_sub_turbo++;
578		} else {
579			chip->throttle_turbo++;
580		}
581		trace_powernv_throttle(chip->id,
582				      throttle_reason[chip->throttle_reason],
583				      pmsr_pmax);
584	} else if (chip->throttled) {
585		chip->throttled = false;
586		trace_powernv_throttle(chip->id,
587				      throttle_reason[chip->throttle_reason],
588				      pmsr_pmax);
589	}
590
591	/* Check if Psafe_mode_active is set in PMSR. */
592next:
593	if (pmsr & PMSR_PSAFE_ENABLE) {
594		throttled = true;
595		pr_info("Pstate set to safe frequency\n");
596	}
597
598	/* Check if SPR_EM_DISABLE is set in PMSR */
599	if (pmsr & PMSR_SPR_EM_DISABLE) {
600		throttled = true;
601		pr_info("Frequency Control disabled from OS\n");
602	}
603
604	if (throttled) {
605		pr_info("PMSR = %16lx\n", pmsr);
606		pr_warn("CPU Frequency could be throttled\n");
607	}
608}
609
610/**
611 * calc_global_pstate - Calculate global pstate
612 * @elapsed_time:		Elapsed time in milliseconds
613 * @local_pstate_idx:		New local pstate
614 * @highest_lpstate_idx:	pstate from which its ramping down
615 *
616 * Finds the appropriate global pstate based on the pstate from which its
617 * ramping down and the time elapsed in ramping down. It follows a quadratic
618 * equation which ensures that it reaches ramping down to pmin in 5sec.
619 */
620static inline int calc_global_pstate(unsigned int elapsed_time,
621				     int highest_lpstate_idx,
622				     int local_pstate_idx)
623{
624	int index_diff;
625
626	/*
627	 * Using ramp_down_percent we get the percentage of rampdown
628	 * that we are expecting to be dropping. Difference between
629	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
630	 * number of how many pstates we will drop eventually by the end of
631	 * 5 seconds, then just scale it get the number pstates to be dropped.
632	 */
633	index_diff =  ((int)ramp_down_percent(elapsed_time) *
634			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
635
636	/* Ensure that global pstate is >= to local pstate */
637	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
638		return local_pstate_idx;
639	else
640		return highest_lpstate_idx + index_diff;
641}
642
643static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
644{
645	unsigned int timer_interval;
646
647	/*
648	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
649	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
650	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
651	 * seconds of ramp down time.
652	 */
653	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
654	     > MAX_RAMP_DOWN_TIME)
655		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
656	else
657		timer_interval = GPSTATE_TIMER_INTERVAL;
658
659	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
660}
661
662/**
663 * gpstate_timer_handler
664 *
665 * @t: Timer context used to fetch global pstate info struct
666 *
667 * This handler brings down the global pstate closer to the local pstate
668 * according quadratic equation. Queues a new timer if it is still not equal
669 * to local pstate
670 */
671static void gpstate_timer_handler(struct timer_list *t)
672{
673	struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
674	struct cpufreq_policy *policy = gpstates->policy;
675	int gpstate_idx, lpstate_idx;
676	unsigned long val;
677	unsigned int time_diff = jiffies_to_msecs(jiffies)
678					- gpstates->last_sampled_time;
679	struct powernv_smp_call_data freq_data;
680
681	if (!spin_trylock(&gpstates->gpstate_lock))
682		return;
683	/*
684	 * If the timer has migrated to the different cpu then bring
685	 * it back to one of the policy->cpus
686	 */
687	if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) {
688		gpstates->timer.expires = jiffies + msecs_to_jiffies(1);
689		add_timer_on(&gpstates->timer, cpumask_first(policy->cpus));
690		spin_unlock(&gpstates->gpstate_lock);
691		return;
692	}
693
694	/*
695	 * If PMCR was last updated was using fast_swtich then
696	 * We may have wrong in gpstate->last_lpstate_idx
697	 * value. Hence, read from PMCR to get correct data.
698	 */
699	val = get_pmspr(SPRN_PMCR);
700	freq_data.gpstate_id = extract_global_pstate(val);
701	freq_data.pstate_id = extract_local_pstate(val);
702	if (freq_data.gpstate_id  == freq_data.pstate_id) {
703		reset_gpstates(policy);
704		spin_unlock(&gpstates->gpstate_lock);
705		return;
706	}
707
708	gpstates->last_sampled_time += time_diff;
709	gpstates->elapsed_time += time_diff;
710
711	if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
712		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
713		lpstate_idx = gpstate_idx;
714		reset_gpstates(policy);
715		gpstates->highest_lpstate_idx = gpstate_idx;
716	} else {
717		lpstate_idx = pstate_to_idx(freq_data.pstate_id);
718		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
719						 gpstates->highest_lpstate_idx,
720						 lpstate_idx);
721	}
722	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
723	gpstates->last_gpstate_idx = gpstate_idx;
724	gpstates->last_lpstate_idx = lpstate_idx;
725	/*
726	 * If local pstate is equal to global pstate, rampdown is over
727	 * So timer is not required to be queued.
728	 */
729	if (gpstate_idx != gpstates->last_lpstate_idx)
730		queue_gpstate_timer(gpstates);
731
732	set_pstate(&freq_data);
733	spin_unlock(&gpstates->gpstate_lock);
734}
735
736/*
737 * powernv_cpufreq_target_index: Sets the frequency corresponding to
738 * the cpufreq table entry indexed by new_index on the cpus in the
739 * mask policy->cpus
740 */
741static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
742					unsigned int new_index)
743{
744	struct powernv_smp_call_data freq_data;
745	unsigned int cur_msec, gpstate_idx;
746	struct global_pstate_info *gpstates = policy->driver_data;
747
748	if (unlikely(rebooting) && new_index != get_nominal_index())
749		return 0;
750
751	if (!throttled) {
752		/* we don't want to be preempted while
753		 * checking if the CPU frequency has been throttled
754		 */
755		preempt_disable();
756		powernv_cpufreq_throttle_check(NULL);
757		preempt_enable();
758	}
759
760	cur_msec = jiffies_to_msecs(get_jiffies_64());
761
762	freq_data.pstate_id = idx_to_pstate(new_index);
763	if (!gpstates) {
764		freq_data.gpstate_id = freq_data.pstate_id;
765		goto no_gpstate;
766	}
767
768	spin_lock(&gpstates->gpstate_lock);
769
770	if (!gpstates->last_sampled_time) {
771		gpstate_idx = new_index;
772		gpstates->highest_lpstate_idx = new_index;
773		goto gpstates_done;
774	}
775
776	if (gpstates->last_gpstate_idx < new_index) {
777		gpstates->elapsed_time += cur_msec -
778						 gpstates->last_sampled_time;
779
780		/*
781		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
782		 * we should be resetting all global pstate related data. Set it
783		 * equal to local pstate to start fresh.
784		 */
785		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
786			reset_gpstates(policy);
787			gpstates->highest_lpstate_idx = new_index;
788			gpstate_idx = new_index;
789		} else {
790		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
791			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
792							 gpstates->highest_lpstate_idx,
793							 new_index);
794		}
795	} else {
796		reset_gpstates(policy);
797		gpstates->highest_lpstate_idx = new_index;
798		gpstate_idx = new_index;
799	}
800
801	/*
802	 * If local pstate is equal to global pstate, rampdown is over
803	 * So timer is not required to be queued.
804	 */
805	if (gpstate_idx != new_index)
806		queue_gpstate_timer(gpstates);
807	else
808		del_timer_sync(&gpstates->timer);
809
810gpstates_done:
811	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
812	gpstates->last_sampled_time = cur_msec;
813	gpstates->last_gpstate_idx = gpstate_idx;
814	gpstates->last_lpstate_idx = new_index;
815
816	spin_unlock(&gpstates->gpstate_lock);
817
818no_gpstate:
819	/*
820	 * Use smp_call_function to send IPI and execute the
821	 * mtspr on target CPU.  We could do that without IPI
822	 * if current CPU is within policy->cpus (core)
823	 */
824	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
825	return 0;
826}
827
828static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
829{
830	int base, i;
831	struct kernfs_node *kn;
832	struct global_pstate_info *gpstates;
833
834	base = cpu_first_thread_sibling(policy->cpu);
835
836	for (i = 0; i < threads_per_core; i++)
837		cpumask_set_cpu(base + i, policy->cpus);
838
839	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
840	if (!kn) {
841		int ret;
842
843		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
844		if (ret) {
845			pr_info("Failed to create throttle stats directory for cpu %d\n",
846				policy->cpu);
847			return ret;
848		}
849	} else {
850		kernfs_put(kn);
851	}
852
853	policy->freq_table = powernv_freqs;
854	policy->fast_switch_possible = true;
855
856	if (pvr_version_is(PVR_POWER9))
857		return 0;
858
859	/* Initialise Gpstate ramp-down timer only on POWER8 */
860	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
861	if (!gpstates)
862		return -ENOMEM;
863
864	policy->driver_data = gpstates;
865
866	/* initialize timer */
867	gpstates->policy = policy;
868	timer_setup(&gpstates->timer, gpstate_timer_handler,
869		    TIMER_PINNED | TIMER_DEFERRABLE);
870	gpstates->timer.expires = jiffies +
871				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
872	spin_lock_init(&gpstates->gpstate_lock);
873
874	return 0;
875}
876
877static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
878{
879	struct powernv_smp_call_data freq_data;
880	struct global_pstate_info *gpstates = policy->driver_data;
881
882	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
883	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
884	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
885	if (gpstates)
886		del_timer_sync(&gpstates->timer);
887
888	kfree(policy->driver_data);
889
890	return 0;
891}
892
893static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
894				unsigned long action, void *unused)
895{
896	int cpu;
897	struct cpufreq_policy *cpu_policy;
898
899	rebooting = true;
900	for_each_online_cpu(cpu) {
901		cpu_policy = cpufreq_cpu_get(cpu);
902		if (!cpu_policy)
903			continue;
904		powernv_cpufreq_target_index(cpu_policy, get_nominal_index());
905		cpufreq_cpu_put(cpu_policy);
906	}
907
908	return NOTIFY_DONE;
909}
910
911static struct notifier_block powernv_cpufreq_reboot_nb = {
912	.notifier_call = powernv_cpufreq_reboot_notifier,
913};
914
915static void powernv_cpufreq_work_fn(struct work_struct *work)
916{
917	struct chip *chip = container_of(work, struct chip, throttle);
918	struct cpufreq_policy *policy;
919	unsigned int cpu;
920	cpumask_t mask;
921
922	cpus_read_lock();
923	cpumask_and(&mask, &chip->mask, cpu_online_mask);
924	smp_call_function_any(&mask,
925			      powernv_cpufreq_throttle_check, NULL, 0);
926
927	if (!chip->restore)
928		goto out;
929
930	chip->restore = false;
931	for_each_cpu(cpu, &mask) {
932		int index;
933
934		policy = cpufreq_cpu_get(cpu);
935		if (!policy)
936			continue;
937		index = cpufreq_table_find_index_c(policy, policy->cur, false);
938		powernv_cpufreq_target_index(policy, index);
939		cpumask_andnot(&mask, &mask, policy->cpus);
940		cpufreq_cpu_put(policy);
941	}
942out:
943	cpus_read_unlock();
944}
945
946static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
947				   unsigned long msg_type, void *_msg)
948{
949	struct opal_msg *msg = _msg;
950	struct opal_occ_msg omsg;
951	int i;
952
953	if (msg_type != OPAL_MSG_OCC)
954		return 0;
955
956	omsg.type = be64_to_cpu(msg->params[0]);
957
958	switch (omsg.type) {
959	case OCC_RESET:
960		occ_reset = true;
961		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
962		/*
963		 * powernv_cpufreq_throttle_check() is called in
964		 * target() callback which can detect the throttle state
965		 * for governors like ondemand.
966		 * But static governors will not call target() often thus
967		 * report throttling here.
968		 */
969		if (!throttled) {
970			throttled = true;
971			pr_warn("CPU frequency is throttled for duration\n");
972		}
973
974		break;
975	case OCC_LOAD:
976		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
977		break;
978	case OCC_THROTTLE:
979		omsg.chip = be64_to_cpu(msg->params[1]);
980		omsg.throttle_status = be64_to_cpu(msg->params[2]);
981
982		if (occ_reset) {
983			occ_reset = false;
984			throttled = false;
985			pr_info("OCC Active, CPU frequency is no longer throttled\n");
986
987			for (i = 0; i < nr_chips; i++) {
988				chips[i].restore = true;
989				schedule_work(&chips[i].throttle);
990			}
991
992			return 0;
993		}
994
995		for (i = 0; i < nr_chips; i++)
996			if (chips[i].id == omsg.chip)
997				break;
998
999		if (omsg.throttle_status >= 0 &&
1000		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
1001			chips[i].throttle_reason = omsg.throttle_status;
1002			chips[i].reason[omsg.throttle_status]++;
1003		}
1004
1005		if (!omsg.throttle_status)
1006			chips[i].restore = true;
1007
1008		schedule_work(&chips[i].throttle);
1009	}
1010	return 0;
1011}
1012
1013static struct notifier_block powernv_cpufreq_opal_nb = {
1014	.notifier_call	= powernv_cpufreq_occ_msg,
1015	.next		= NULL,
1016	.priority	= 0,
1017};
1018
1019static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1020					unsigned int target_freq)
1021{
1022	int index;
1023	struct powernv_smp_call_data freq_data;
1024
1025	index = cpufreq_table_find_index_dl(policy, target_freq, false);
1026	freq_data.pstate_id = powernv_freqs[index].driver_data;
1027	freq_data.gpstate_id = powernv_freqs[index].driver_data;
1028	set_pstate(&freq_data);
1029
1030	return powernv_freqs[index].frequency;
1031}
1032
1033static struct cpufreq_driver powernv_cpufreq_driver = {
1034	.name		= "powernv-cpufreq",
1035	.flags		= CPUFREQ_CONST_LOOPS,
1036	.init		= powernv_cpufreq_cpu_init,
1037	.exit		= powernv_cpufreq_cpu_exit,
1038	.verify		= cpufreq_generic_frequency_table_verify,
1039	.target_index	= powernv_cpufreq_target_index,
1040	.fast_switch	= powernv_fast_switch,
1041	.get		= powernv_cpufreq_get,
1042	.attr		= powernv_cpu_freq_attr,
1043};
1044
1045static int init_chip_info(void)
1046{
1047	unsigned int *chip;
1048	unsigned int cpu, i;
1049	unsigned int prev_chip_id = UINT_MAX;
1050	cpumask_t *chip_cpu_mask;
1051	int ret = 0;
1052
1053	chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL);
1054	if (!chip)
1055		return -ENOMEM;
1056
1057	/* Allocate a chip cpu mask large enough to fit mask for all chips */
1058	chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL);
1059	if (!chip_cpu_mask) {
1060		ret = -ENOMEM;
1061		goto free_and_return;
1062	}
1063
1064	for_each_possible_cpu(cpu) {
1065		unsigned int id = cpu_to_chip_id(cpu);
1066
1067		if (prev_chip_id != id) {
1068			prev_chip_id = id;
1069			chip[nr_chips++] = id;
1070		}
1071		cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]);
1072	}
1073
1074	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1075	if (!chips) {
1076		ret = -ENOMEM;
1077		goto out_free_chip_cpu_mask;
1078	}
1079
1080	for (i = 0; i < nr_chips; i++) {
1081		chips[i].id = chip[i];
1082		cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]);
1083		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1084		for_each_cpu(cpu, &chips[i].mask)
1085			per_cpu(chip_info, cpu) =  &chips[i];
1086	}
1087
1088out_free_chip_cpu_mask:
1089	kfree(chip_cpu_mask);
1090free_and_return:
1091	kfree(chip);
1092	return ret;
1093}
1094
1095static inline void clean_chip_info(void)
1096{
1097	int i;
1098
1099	/* flush any pending work items */
1100	if (chips)
1101		for (i = 0; i < nr_chips; i++)
1102			cancel_work_sync(&chips[i].throttle);
1103	kfree(chips);
1104}
1105
1106static inline void unregister_all_notifiers(void)
1107{
1108	opal_message_notifier_unregister(OPAL_MSG_OCC,
1109					 &powernv_cpufreq_opal_nb);
1110	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1111}
1112
1113static int __init powernv_cpufreq_init(void)
1114{
1115	int rc = 0;
1116
1117	/* Don't probe on pseries (guest) platforms */
1118	if (!firmware_has_feature(FW_FEATURE_OPAL))
1119		return -ENODEV;
1120
1121	/* Discover pstates from device tree and init */
1122	rc = init_powernv_pstates();
1123	if (rc)
1124		goto out;
1125
1126	/* Populate chip info */
1127	rc = init_chip_info();
1128	if (rc)
1129		goto out;
1130
1131	if (powernv_pstate_info.wof_enabled)
1132		powernv_cpufreq_driver.boost_enabled = true;
1133	else
1134		powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1135
1136	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1137	if (rc) {
1138		pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1139		goto cleanup;
1140	}
1141
1142	if (powernv_pstate_info.wof_enabled)
1143		cpufreq_enable_boost_support();
1144
1145	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1146	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1147
1148	return 0;
1149cleanup:
1150	clean_chip_info();
1151out:
1152	pr_info("Platform driver disabled. System does not support PState control\n");
1153	return rc;
1154}
1155module_init(powernv_cpufreq_init);
1156
1157static void __exit powernv_cpufreq_exit(void)
1158{
1159	cpufreq_unregister_driver(&powernv_cpufreq_driver);
1160	unregister_all_notifiers();
1161	clean_chip_info();
1162}
1163module_exit(powernv_cpufreq_exit);
1164
1165MODULE_LICENSE("GPL");
1166MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1167