1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/drivers/cpufreq/cpufreq.c
4 *
5 *  Copyright (C) 2001 Russell King
6 *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 *	Added handling for CPU hotplug
11 *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 *	Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/suspend.h>
29#include <linux/syscore_ops.h>
30#include <linux/tick.h>
31#include <linux/units.h>
32#include <trace/events/power.h>
33
34static LIST_HEAD(cpufreq_policy_list);
35
36/* Macros to iterate over CPU policies */
37#define for_each_suitable_policy(__policy, __active)			 \
38	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39		if ((__active) == !policy_is_inactive(__policy))
40
41#define for_each_active_policy(__policy)		\
42	for_each_suitable_policy(__policy, true)
43#define for_each_inactive_policy(__policy)		\
44	for_each_suitable_policy(__policy, false)
45
46/* Iterate over governors */
47static LIST_HEAD(cpufreq_governor_list);
48#define for_each_governor(__governor)				\
49	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51static char default_governor[CPUFREQ_NAME_LEN];
52
53/*
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58static struct cpufreq_driver *cpufreq_driver;
59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63bool cpufreq_supports_freq_invariance(void)
64{
65	return static_branch_likely(&cpufreq_freq_invariance);
66}
67
68/* Flag to suspend/resume CPUFreq governors */
69static bool cpufreq_suspended;
70
71static inline bool has_target(void)
72{
73	return cpufreq_driver->target_index || cpufreq_driver->target;
74}
75
76bool has_target_index(void)
77{
78	return !!cpufreq_driver->target_index;
79}
80
81/* internal prototypes */
82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83static int cpufreq_init_governor(struct cpufreq_policy *policy);
84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86static int cpufreq_set_policy(struct cpufreq_policy *policy,
87			      struct cpufreq_governor *new_gov,
88			      unsigned int new_pol);
89static bool cpufreq_boost_supported(void);
90
91/*
92 * Two notifier lists: the "policy" list is involved in the
93 * validation process for a new CPU frequency policy; the
94 * "transition" list for kernel code that needs to handle
95 * changes to devices when the CPU clock speed changes.
96 * The mutex locks both lists.
97 */
98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101static int off __read_mostly;
102static int cpufreq_disabled(void)
103{
104	return off;
105}
106void disable_cpufreq(void)
107{
108	off = 1;
109}
110static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112bool have_governor_per_policy(void)
113{
114	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115}
116EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118static struct kobject *cpufreq_global_kobject;
119
120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121{
122	if (have_governor_per_policy())
123		return &policy->kobj;
124	else
125		return cpufreq_global_kobject;
126}
127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130{
131	struct kernel_cpustat kcpustat;
132	u64 cur_wall_time;
133	u64 idle_time;
134	u64 busy_time;
135
136	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137
138	kcpustat_cpu_fetch(&kcpustat, cpu);
139
140	busy_time = kcpustat.cpustat[CPUTIME_USER];
141	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145	busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147	idle_time = cur_wall_time - busy_time;
148	if (wall)
149		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150
151	return div_u64(idle_time, NSEC_PER_USEC);
152}
153
154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155{
156	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157
158	if (idle_time == -1ULL)
159		return get_cpu_idle_time_jiffy(cpu, wall);
160	else if (!io_busy)
161		idle_time += get_cpu_iowait_time_us(cpu, wall);
162
163	return idle_time;
164}
165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167/*
168 * This is a generic cpufreq init() routine which can be used by cpufreq
169 * drivers of SMP systems. It will do following:
170 * - validate & show freq table passed
171 * - set policies transition latency
172 * - policy->cpus with all possible CPUs
173 */
174void cpufreq_generic_init(struct cpufreq_policy *policy,
175		struct cpufreq_frequency_table *table,
176		unsigned int transition_latency)
177{
178	policy->freq_table = table;
179	policy->cpuinfo.transition_latency = transition_latency;
180
181	/*
182	 * The driver only supports the SMP configuration where all processors
183	 * share the clock and voltage and clock.
184	 */
185	cpumask_setall(policy->cpus);
186}
187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190{
191	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194}
195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197unsigned int cpufreq_generic_get(unsigned int cpu)
198{
199	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201	if (!policy || IS_ERR(policy->clk)) {
202		pr_err("%s: No %s associated to cpu: %d\n",
203		       __func__, policy ? "clk" : "policy", cpu);
204		return 0;
205	}
206
207	return clk_get_rate(policy->clk) / 1000;
208}
209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211/**
212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213 * @cpu: CPU to find the policy for.
214 *
215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216 * the kobject reference counter of that policy.  Return a valid policy on
217 * success or NULL on failure.
218 *
219 * The policy returned by this function has to be released with the help of
220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
221 */
222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223{
224	struct cpufreq_policy *policy = NULL;
225	unsigned long flags;
226
227	if (WARN_ON(cpu >= nr_cpu_ids))
228		return NULL;
229
230	/* get the cpufreq driver */
231	read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233	if (cpufreq_driver) {
234		/* get the CPU */
235		policy = cpufreq_cpu_get_raw(cpu);
236		if (policy)
237			kobject_get(&policy->kobj);
238	}
239
240	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242	return policy;
243}
244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246/**
247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
249 */
250void cpufreq_cpu_put(struct cpufreq_policy *policy)
251{
252	kobject_put(&policy->kobj);
253}
254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256/**
257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259 */
260void cpufreq_cpu_release(struct cpufreq_policy *policy)
261{
262	if (WARN_ON(!policy))
263		return;
264
265	lockdep_assert_held(&policy->rwsem);
266
267	up_write(&policy->rwsem);
268
269	cpufreq_cpu_put(policy);
270}
271
272/**
273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274 * @cpu: CPU to find the policy for.
275 *
276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
278 * Return the policy if it is active or release it and return NULL otherwise.
279 *
280 * The policy returned by this function has to be released with the help of
281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282 * counter properly.
283 */
284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285{
286	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288	if (!policy)
289		return NULL;
290
291	down_write(&policy->rwsem);
292
293	if (policy_is_inactive(policy)) {
294		cpufreq_cpu_release(policy);
295		return NULL;
296	}
297
298	return policy;
299}
300
301/*********************************************************************
302 *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303 *********************************************************************/
304
305/**
306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308 * @ci: Frequency change information.
309 *
310 * This function alters the system "loops_per_jiffy" for the clock
311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
312 * systems as each CPU might be scaled differently. So, use the arch
313 * per-CPU loops_per_jiffy value wherever possible.
314 */
315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316{
317#ifndef CONFIG_SMP
318	static unsigned long l_p_j_ref;
319	static unsigned int l_p_j_ref_freq;
320
321	if (ci->flags & CPUFREQ_CONST_LOOPS)
322		return;
323
324	if (!l_p_j_ref_freq) {
325		l_p_j_ref = loops_per_jiffy;
326		l_p_j_ref_freq = ci->old;
327		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328			 l_p_j_ref, l_p_j_ref_freq);
329	}
330	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332								ci->new);
333		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334			 loops_per_jiffy, ci->new);
335	}
336#endif
337}
338
339/**
340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341 * @policy: cpufreq policy to enable fast frequency switching for.
342 * @freqs: contain details of the frequency update.
343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344 *
345 * This function calls the transition notifiers and adjust_jiffies().
346 *
347 * It is called twice on all CPU frequency changes that have external effects.
348 */
349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350				      struct cpufreq_freqs *freqs,
351				      unsigned int state)
352{
353	int cpu;
354
355	BUG_ON(irqs_disabled());
356
357	if (cpufreq_disabled())
358		return;
359
360	freqs->policy = policy;
361	freqs->flags = cpufreq_driver->flags;
362	pr_debug("notification %u of frequency transition to %u kHz\n",
363		 state, freqs->new);
364
365	switch (state) {
366	case CPUFREQ_PRECHANGE:
367		/*
368		 * Detect if the driver reported a value as "old frequency"
369		 * which is not equal to what the cpufreq core thinks is
370		 * "old frequency".
371		 */
372		if (policy->cur && policy->cur != freqs->old) {
373			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374				 freqs->old, policy->cur);
375			freqs->old = policy->cur;
376		}
377
378		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379					 CPUFREQ_PRECHANGE, freqs);
380
381		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382		break;
383
384	case CPUFREQ_POSTCHANGE:
385		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387			 cpumask_pr_args(policy->cpus));
388
389		for_each_cpu(cpu, policy->cpus)
390			trace_cpu_frequency(freqs->new, cpu);
391
392		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393					 CPUFREQ_POSTCHANGE, freqs);
394
395		cpufreq_stats_record_transition(policy, freqs->new);
396		policy->cur = freqs->new;
397	}
398}
399
400/* Do post notifications when there are chances that transition has failed */
401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402		struct cpufreq_freqs *freqs, int transition_failed)
403{
404	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405	if (!transition_failed)
406		return;
407
408	swap(freqs->old, freqs->new);
409	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411}
412
413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414		struct cpufreq_freqs *freqs)
415{
416
417	/*
418	 * Catch double invocations of _begin() which lead to self-deadlock.
419	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420	 * doesn't invoke _begin() on their behalf, and hence the chances of
421	 * double invocations are very low. Moreover, there are scenarios
422	 * where these checks can emit false-positive warnings in these
423	 * drivers; so we avoid that by skipping them altogether.
424	 */
425	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426				&& current == policy->transition_task);
427
428wait:
429	wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431	spin_lock(&policy->transition_lock);
432
433	if (unlikely(policy->transition_ongoing)) {
434		spin_unlock(&policy->transition_lock);
435		goto wait;
436	}
437
438	policy->transition_ongoing = true;
439	policy->transition_task = current;
440
441	spin_unlock(&policy->transition_lock);
442
443	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444}
445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448		struct cpufreq_freqs *freqs, int transition_failed)
449{
450	if (WARN_ON(!policy->transition_ongoing))
451		return;
452
453	cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455	arch_set_freq_scale(policy->related_cpus,
456			    policy->cur,
457			    arch_scale_freq_ref(policy->cpu));
458
459	spin_lock(&policy->transition_lock);
460	policy->transition_ongoing = false;
461	policy->transition_task = NULL;
462	spin_unlock(&policy->transition_lock);
463
464	wake_up(&policy->transition_wait);
465}
466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468/*
469 * Fast frequency switching status count.  Positive means "enabled", negative
470 * means "disabled" and 0 means "not decided yet".
471 */
472static int cpufreq_fast_switch_count;
473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475static void cpufreq_list_transition_notifiers(void)
476{
477	struct notifier_block *nb;
478
479	pr_info("Registered transition notifiers:\n");
480
481	mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484		pr_info("%pS\n", nb->notifier_call);
485
486	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487}
488
489/**
490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491 * @policy: cpufreq policy to enable fast frequency switching for.
492 *
493 * Try to enable fast frequency switching for @policy.
494 *
495 * The attempt will fail if there is at least one transition notifier registered
496 * at this point, as fast frequency switching is quite fundamentally at odds
497 * with transition notifiers.  Thus if successful, it will make registration of
498 * transition notifiers fail going forward.
499 */
500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501{
502	lockdep_assert_held(&policy->rwsem);
503
504	if (!policy->fast_switch_possible)
505		return;
506
507	mutex_lock(&cpufreq_fast_switch_lock);
508	if (cpufreq_fast_switch_count >= 0) {
509		cpufreq_fast_switch_count++;
510		policy->fast_switch_enabled = true;
511	} else {
512		pr_warn("CPU%u: Fast frequency switching not enabled\n",
513			policy->cpu);
514		cpufreq_list_transition_notifiers();
515	}
516	mutex_unlock(&cpufreq_fast_switch_lock);
517}
518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520/**
521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522 * @policy: cpufreq policy to disable fast frequency switching for.
523 */
524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525{
526	mutex_lock(&cpufreq_fast_switch_lock);
527	if (policy->fast_switch_enabled) {
528		policy->fast_switch_enabled = false;
529		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530			cpufreq_fast_switch_count--;
531	}
532	mutex_unlock(&cpufreq_fast_switch_lock);
533}
534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537		unsigned int target_freq, unsigned int relation)
538{
539	unsigned int idx;
540
541	target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543	if (!policy->freq_table)
544		return target_freq;
545
546	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547	policy->cached_resolved_idx = idx;
548	policy->cached_target_freq = target_freq;
549	return policy->freq_table[idx].frequency;
550}
551
552/**
553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554 * one.
555 * @policy: associated policy to interrogate
556 * @target_freq: target frequency to resolve.
557 *
558 * The target to driver frequency mapping is cached in the policy.
559 *
560 * Return: Lowest driver-supported frequency greater than or equal to the
561 * given target_freq, subject to policy (min/max) and driver limitations.
562 */
563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564					 unsigned int target_freq)
565{
566	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567}
568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571{
572	unsigned int latency;
573
574	if (policy->transition_delay_us)
575		return policy->transition_delay_us;
576
577	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578	if (latency) {
579		unsigned int max_delay_us = 2 * MSEC_PER_SEC;
580
581		/*
582		 * If the platform already has high transition_latency, use it
583		 * as-is.
584		 */
585		if (latency > max_delay_us)
586			return latency;
587
588		/*
589		 * For platforms that can change the frequency very fast (< 2
590		 * us), the above formula gives a decent transition delay. But
591		 * for platforms where transition_latency is in milliseconds, it
592		 * ends up giving unrealistic values.
593		 *
594		 * Cap the default transition delay to 2 ms, which seems to be
595		 * a reasonable amount of time after which we should reevaluate
596		 * the frequency.
597		 */
598		return min(latency * LATENCY_MULTIPLIER, max_delay_us);
599	}
600
601	return LATENCY_MULTIPLIER;
602}
603EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
604
605/*********************************************************************
606 *                          SYSFS INTERFACE                          *
607 *********************************************************************/
608static ssize_t show_boost(struct kobject *kobj,
609			  struct kobj_attribute *attr, char *buf)
610{
611	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
612}
613
614static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
615			   const char *buf, size_t count)
616{
617	int ret, enable;
618
619	ret = sscanf(buf, "%d", &enable);
620	if (ret != 1 || enable < 0 || enable > 1)
621		return -EINVAL;
622
623	if (cpufreq_boost_trigger_state(enable)) {
624		pr_err("%s: Cannot %s BOOST!\n",
625		       __func__, enable ? "enable" : "disable");
626		return -EINVAL;
627	}
628
629	pr_debug("%s: cpufreq BOOST %s\n",
630		 __func__, enable ? "enabled" : "disabled");
631
632	return count;
633}
634define_one_global_rw(boost);
635
636static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
637{
638	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
639}
640
641static ssize_t store_local_boost(struct cpufreq_policy *policy,
642				 const char *buf, size_t count)
643{
644	int ret, enable;
645
646	ret = kstrtoint(buf, 10, &enable);
647	if (ret || enable < 0 || enable > 1)
648		return -EINVAL;
649
650	if (!cpufreq_driver->boost_enabled)
651		return -EINVAL;
652
653	if (policy->boost_enabled == enable)
654		return count;
655
656	policy->boost_enabled = enable;
657
658	cpus_read_lock();
659	ret = cpufreq_driver->set_boost(policy, enable);
660	cpus_read_unlock();
661
662	if (ret) {
663		policy->boost_enabled = !policy->boost_enabled;
664		return ret;
665	}
666
667	return count;
668}
669
670static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
671
672static struct cpufreq_governor *find_governor(const char *str_governor)
673{
674	struct cpufreq_governor *t;
675
676	for_each_governor(t)
677		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
678			return t;
679
680	return NULL;
681}
682
683static struct cpufreq_governor *get_governor(const char *str_governor)
684{
685	struct cpufreq_governor *t;
686
687	mutex_lock(&cpufreq_governor_mutex);
688	t = find_governor(str_governor);
689	if (!t)
690		goto unlock;
691
692	if (!try_module_get(t->owner))
693		t = NULL;
694
695unlock:
696	mutex_unlock(&cpufreq_governor_mutex);
697
698	return t;
699}
700
701static unsigned int cpufreq_parse_policy(char *str_governor)
702{
703	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
704		return CPUFREQ_POLICY_PERFORMANCE;
705
706	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
707		return CPUFREQ_POLICY_POWERSAVE;
708
709	return CPUFREQ_POLICY_UNKNOWN;
710}
711
712/**
713 * cpufreq_parse_governor - parse a governor string only for has_target()
714 * @str_governor: Governor name.
715 */
716static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
717{
718	struct cpufreq_governor *t;
719
720	t = get_governor(str_governor);
721	if (t)
722		return t;
723
724	if (request_module("cpufreq_%s", str_governor))
725		return NULL;
726
727	return get_governor(str_governor);
728}
729
730/*
731 * cpufreq_per_cpu_attr_read() / show_##file_name() -
732 * print out cpufreq information
733 *
734 * Write out information from cpufreq_driver->policy[cpu]; object must be
735 * "unsigned int".
736 */
737
738#define show_one(file_name, object)			\
739static ssize_t show_##file_name				\
740(struct cpufreq_policy *policy, char *buf)		\
741{							\
742	return sprintf(buf, "%u\n", policy->object);	\
743}
744
745show_one(cpuinfo_min_freq, cpuinfo.min_freq);
746show_one(cpuinfo_max_freq, cpuinfo.max_freq);
747show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
748show_one(scaling_min_freq, min);
749show_one(scaling_max_freq, max);
750
751__weak unsigned int arch_freq_get_on_cpu(int cpu)
752{
753	return 0;
754}
755
756static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
757{
758	ssize_t ret;
759	unsigned int freq;
760
761	freq = arch_freq_get_on_cpu(policy->cpu);
762	if (freq)
763		ret = sprintf(buf, "%u\n", freq);
764	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
765		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
766	else
767		ret = sprintf(buf, "%u\n", policy->cur);
768	return ret;
769}
770
771/*
772 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
773 */
774#define store_one(file_name, object)			\
775static ssize_t store_##file_name					\
776(struct cpufreq_policy *policy, const char *buf, size_t count)		\
777{									\
778	unsigned long val;						\
779	int ret;							\
780									\
781	ret = kstrtoul(buf, 0, &val);					\
782	if (ret)							\
783		return ret;						\
784									\
785	ret = freq_qos_update_request(policy->object##_freq_req, val);\
786	return ret >= 0 ? count : ret;					\
787}
788
789store_one(scaling_min_freq, min);
790store_one(scaling_max_freq, max);
791
792/*
793 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
794 */
795static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
796					char *buf)
797{
798	unsigned int cur_freq = __cpufreq_get(policy);
799
800	if (cur_freq)
801		return sprintf(buf, "%u\n", cur_freq);
802
803	return sprintf(buf, "<unknown>\n");
804}
805
806/*
807 * show_scaling_governor - show the current policy for the specified CPU
808 */
809static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
810{
811	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
812		return sprintf(buf, "powersave\n");
813	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
814		return sprintf(buf, "performance\n");
815	else if (policy->governor)
816		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
817				policy->governor->name);
818	return -EINVAL;
819}
820
821/*
822 * store_scaling_governor - store policy for the specified CPU
823 */
824static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
825					const char *buf, size_t count)
826{
827	char str_governor[16];
828	int ret;
829
830	ret = sscanf(buf, "%15s", str_governor);
831	if (ret != 1)
832		return -EINVAL;
833
834	if (cpufreq_driver->setpolicy) {
835		unsigned int new_pol;
836
837		new_pol = cpufreq_parse_policy(str_governor);
838		if (!new_pol)
839			return -EINVAL;
840
841		ret = cpufreq_set_policy(policy, NULL, new_pol);
842	} else {
843		struct cpufreq_governor *new_gov;
844
845		new_gov = cpufreq_parse_governor(str_governor);
846		if (!new_gov)
847			return -EINVAL;
848
849		ret = cpufreq_set_policy(policy, new_gov,
850					 CPUFREQ_POLICY_UNKNOWN);
851
852		module_put(new_gov->owner);
853	}
854
855	return ret ? ret : count;
856}
857
858/*
859 * show_scaling_driver - show the cpufreq driver currently loaded
860 */
861static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
862{
863	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
864}
865
866/*
867 * show_scaling_available_governors - show the available CPUfreq governors
868 */
869static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
870						char *buf)
871{
872	ssize_t i = 0;
873	struct cpufreq_governor *t;
874
875	if (!has_target()) {
876		i += sprintf(buf, "performance powersave");
877		goto out;
878	}
879
880	mutex_lock(&cpufreq_governor_mutex);
881	for_each_governor(t) {
882		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
883		    - (CPUFREQ_NAME_LEN + 2)))
884			break;
885		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
886	}
887	mutex_unlock(&cpufreq_governor_mutex);
888out:
889	i += sprintf(&buf[i], "\n");
890	return i;
891}
892
893ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
894{
895	ssize_t i = 0;
896	unsigned int cpu;
897
898	for_each_cpu(cpu, mask) {
899		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu);
900		if (i >= (PAGE_SIZE - 5))
901			break;
902	}
903
904	/* Remove the extra space at the end */
905	i--;
906
907	i += sprintf(&buf[i], "\n");
908	return i;
909}
910EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
911
912/*
913 * show_related_cpus - show the CPUs affected by each transition even if
914 * hw coordination is in use
915 */
916static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
917{
918	return cpufreq_show_cpus(policy->related_cpus, buf);
919}
920
921/*
922 * show_affected_cpus - show the CPUs affected by each transition
923 */
924static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
925{
926	return cpufreq_show_cpus(policy->cpus, buf);
927}
928
929static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
930					const char *buf, size_t count)
931{
932	unsigned int freq = 0;
933	unsigned int ret;
934
935	if (!policy->governor || !policy->governor->store_setspeed)
936		return -EINVAL;
937
938	ret = sscanf(buf, "%u", &freq);
939	if (ret != 1)
940		return -EINVAL;
941
942	policy->governor->store_setspeed(policy, freq);
943
944	return count;
945}
946
947static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
948{
949	if (!policy->governor || !policy->governor->show_setspeed)
950		return sprintf(buf, "<unsupported>\n");
951
952	return policy->governor->show_setspeed(policy, buf);
953}
954
955/*
956 * show_bios_limit - show the current cpufreq HW/BIOS limitation
957 */
958static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
959{
960	unsigned int limit;
961	int ret;
962	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
963	if (!ret)
964		return sprintf(buf, "%u\n", limit);
965	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
966}
967
968cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
969cpufreq_freq_attr_ro(cpuinfo_min_freq);
970cpufreq_freq_attr_ro(cpuinfo_max_freq);
971cpufreq_freq_attr_ro(cpuinfo_transition_latency);
972cpufreq_freq_attr_ro(scaling_available_governors);
973cpufreq_freq_attr_ro(scaling_driver);
974cpufreq_freq_attr_ro(scaling_cur_freq);
975cpufreq_freq_attr_ro(bios_limit);
976cpufreq_freq_attr_ro(related_cpus);
977cpufreq_freq_attr_ro(affected_cpus);
978cpufreq_freq_attr_rw(scaling_min_freq);
979cpufreq_freq_attr_rw(scaling_max_freq);
980cpufreq_freq_attr_rw(scaling_governor);
981cpufreq_freq_attr_rw(scaling_setspeed);
982
983static struct attribute *cpufreq_attrs[] = {
984	&cpuinfo_min_freq.attr,
985	&cpuinfo_max_freq.attr,
986	&cpuinfo_transition_latency.attr,
987	&scaling_min_freq.attr,
988	&scaling_max_freq.attr,
989	&affected_cpus.attr,
990	&related_cpus.attr,
991	&scaling_governor.attr,
992	&scaling_driver.attr,
993	&scaling_available_governors.attr,
994	&scaling_setspeed.attr,
995	NULL
996};
997ATTRIBUTE_GROUPS(cpufreq);
998
999#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
1000#define to_attr(a) container_of(a, struct freq_attr, attr)
1001
1002static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1003{
1004	struct cpufreq_policy *policy = to_policy(kobj);
1005	struct freq_attr *fattr = to_attr(attr);
1006	ssize_t ret = -EBUSY;
1007
1008	if (!fattr->show)
1009		return -EIO;
1010
1011	down_read(&policy->rwsem);
1012	if (likely(!policy_is_inactive(policy)))
1013		ret = fattr->show(policy, buf);
1014	up_read(&policy->rwsem);
1015
1016	return ret;
1017}
1018
1019static ssize_t store(struct kobject *kobj, struct attribute *attr,
1020		     const char *buf, size_t count)
1021{
1022	struct cpufreq_policy *policy = to_policy(kobj);
1023	struct freq_attr *fattr = to_attr(attr);
1024	ssize_t ret = -EBUSY;
1025
1026	if (!fattr->store)
1027		return -EIO;
1028
1029	down_write(&policy->rwsem);
1030	if (likely(!policy_is_inactive(policy)))
1031		ret = fattr->store(policy, buf, count);
1032	up_write(&policy->rwsem);
1033
1034	return ret;
1035}
1036
1037static void cpufreq_sysfs_release(struct kobject *kobj)
1038{
1039	struct cpufreq_policy *policy = to_policy(kobj);
1040	pr_debug("last reference is dropped\n");
1041	complete(&policy->kobj_unregister);
1042}
1043
1044static const struct sysfs_ops sysfs_ops = {
1045	.show	= show,
1046	.store	= store,
1047};
1048
1049static const struct kobj_type ktype_cpufreq = {
1050	.sysfs_ops	= &sysfs_ops,
1051	.default_groups	= cpufreq_groups,
1052	.release	= cpufreq_sysfs_release,
1053};
1054
1055static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1056				struct device *dev)
1057{
1058	if (unlikely(!dev))
1059		return;
1060
1061	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1062		return;
1063
1064	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1065	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1066		dev_err(dev, "cpufreq symlink creation failed\n");
1067}
1068
1069static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1070				   struct device *dev)
1071{
1072	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1073	sysfs_remove_link(&dev->kobj, "cpufreq");
1074	cpumask_clear_cpu(cpu, policy->real_cpus);
1075}
1076
1077static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1078{
1079	struct freq_attr **drv_attr;
1080	int ret = 0;
1081
1082	/* set up files for this cpu device */
1083	drv_attr = cpufreq_driver->attr;
1084	while (drv_attr && *drv_attr) {
1085		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1086		if (ret)
1087			return ret;
1088		drv_attr++;
1089	}
1090	if (cpufreq_driver->get) {
1091		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1092		if (ret)
1093			return ret;
1094	}
1095
1096	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1097	if (ret)
1098		return ret;
1099
1100	if (cpufreq_driver->bios_limit) {
1101		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1102		if (ret)
1103			return ret;
1104	}
1105
1106	if (cpufreq_boost_supported()) {
1107		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1108		if (ret)
1109			return ret;
1110	}
1111
1112	return 0;
1113}
1114
1115static int cpufreq_init_policy(struct cpufreq_policy *policy)
1116{
1117	struct cpufreq_governor *gov = NULL;
1118	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1119	int ret;
1120
1121	if (has_target()) {
1122		/* Update policy governor to the one used before hotplug. */
1123		gov = get_governor(policy->last_governor);
1124		if (gov) {
1125			pr_debug("Restoring governor %s for cpu %d\n",
1126				 gov->name, policy->cpu);
1127		} else {
1128			gov = get_governor(default_governor);
1129		}
1130
1131		if (!gov) {
1132			gov = cpufreq_default_governor();
1133			__module_get(gov->owner);
1134		}
1135
1136	} else {
1137
1138		/* Use the default policy if there is no last_policy. */
1139		if (policy->last_policy) {
1140			pol = policy->last_policy;
1141		} else {
1142			pol = cpufreq_parse_policy(default_governor);
1143			/*
1144			 * In case the default governor is neither "performance"
1145			 * nor "powersave", fall back to the initial policy
1146			 * value set by the driver.
1147			 */
1148			if (pol == CPUFREQ_POLICY_UNKNOWN)
1149				pol = policy->policy;
1150		}
1151		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1152		    pol != CPUFREQ_POLICY_POWERSAVE)
1153			return -ENODATA;
1154	}
1155
1156	ret = cpufreq_set_policy(policy, gov, pol);
1157	if (gov)
1158		module_put(gov->owner);
1159
1160	return ret;
1161}
1162
1163static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1164{
1165	int ret = 0;
1166
1167	/* Has this CPU been taken care of already? */
1168	if (cpumask_test_cpu(cpu, policy->cpus))
1169		return 0;
1170
1171	down_write(&policy->rwsem);
1172	if (has_target())
1173		cpufreq_stop_governor(policy);
1174
1175	cpumask_set_cpu(cpu, policy->cpus);
1176
1177	if (has_target()) {
1178		ret = cpufreq_start_governor(policy);
1179		if (ret)
1180			pr_err("%s: Failed to start governor\n", __func__);
1181	}
1182	up_write(&policy->rwsem);
1183	return ret;
1184}
1185
1186void refresh_frequency_limits(struct cpufreq_policy *policy)
1187{
1188	if (!policy_is_inactive(policy)) {
1189		pr_debug("updating policy for CPU %u\n", policy->cpu);
1190
1191		cpufreq_set_policy(policy, policy->governor, policy->policy);
1192	}
1193}
1194EXPORT_SYMBOL(refresh_frequency_limits);
1195
1196static void handle_update(struct work_struct *work)
1197{
1198	struct cpufreq_policy *policy =
1199		container_of(work, struct cpufreq_policy, update);
1200
1201	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1202	down_write(&policy->rwsem);
1203	refresh_frequency_limits(policy);
1204	up_write(&policy->rwsem);
1205}
1206
1207static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1208				void *data)
1209{
1210	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1211
1212	schedule_work(&policy->update);
1213	return 0;
1214}
1215
1216static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1217				void *data)
1218{
1219	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1220
1221	schedule_work(&policy->update);
1222	return 0;
1223}
1224
1225static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1226{
1227	struct kobject *kobj;
1228	struct completion *cmp;
1229
1230	down_write(&policy->rwsem);
1231	cpufreq_stats_free_table(policy);
1232	kobj = &policy->kobj;
1233	cmp = &policy->kobj_unregister;
1234	up_write(&policy->rwsem);
1235	kobject_put(kobj);
1236
1237	/*
1238	 * We need to make sure that the underlying kobj is
1239	 * actually not referenced anymore by anybody before we
1240	 * proceed with unloading.
1241	 */
1242	pr_debug("waiting for dropping of refcount\n");
1243	wait_for_completion(cmp);
1244	pr_debug("wait complete\n");
1245}
1246
1247static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1248{
1249	struct cpufreq_policy *policy;
1250	struct device *dev = get_cpu_device(cpu);
1251	int ret;
1252
1253	if (!dev)
1254		return NULL;
1255
1256	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1257	if (!policy)
1258		return NULL;
1259
1260	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1261		goto err_free_policy;
1262
1263	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1264		goto err_free_cpumask;
1265
1266	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1267		goto err_free_rcpumask;
1268
1269	init_completion(&policy->kobj_unregister);
1270	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1271				   cpufreq_global_kobject, "policy%u", cpu);
1272	if (ret) {
1273		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1274		/*
1275		 * The entire policy object will be freed below, but the extra
1276		 * memory allocated for the kobject name needs to be freed by
1277		 * releasing the kobject.
1278		 */
1279		kobject_put(&policy->kobj);
1280		goto err_free_real_cpus;
1281	}
1282
1283	freq_constraints_init(&policy->constraints);
1284
1285	policy->nb_min.notifier_call = cpufreq_notifier_min;
1286	policy->nb_max.notifier_call = cpufreq_notifier_max;
1287
1288	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1289				    &policy->nb_min);
1290	if (ret) {
1291		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1292			ret, cpu);
1293		goto err_kobj_remove;
1294	}
1295
1296	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1297				    &policy->nb_max);
1298	if (ret) {
1299		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1300			ret, cpu);
1301		goto err_min_qos_notifier;
1302	}
1303
1304	INIT_LIST_HEAD(&policy->policy_list);
1305	init_rwsem(&policy->rwsem);
1306	spin_lock_init(&policy->transition_lock);
1307	init_waitqueue_head(&policy->transition_wait);
1308	INIT_WORK(&policy->update, handle_update);
1309
1310	policy->cpu = cpu;
1311	return policy;
1312
1313err_min_qos_notifier:
1314	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1315				 &policy->nb_min);
1316err_kobj_remove:
1317	cpufreq_policy_put_kobj(policy);
1318err_free_real_cpus:
1319	free_cpumask_var(policy->real_cpus);
1320err_free_rcpumask:
1321	free_cpumask_var(policy->related_cpus);
1322err_free_cpumask:
1323	free_cpumask_var(policy->cpus);
1324err_free_policy:
1325	kfree(policy);
1326
1327	return NULL;
1328}
1329
1330static void cpufreq_policy_free(struct cpufreq_policy *policy)
1331{
1332	unsigned long flags;
1333	int cpu;
1334
1335	/*
1336	 * The callers must ensure the policy is inactive by now, to avoid any
1337	 * races with show()/store() callbacks.
1338	 */
1339	if (unlikely(!policy_is_inactive(policy)))
1340		pr_warn("%s: Freeing active policy\n", __func__);
1341
1342	/* Remove policy from list */
1343	write_lock_irqsave(&cpufreq_driver_lock, flags);
1344	list_del(&policy->policy_list);
1345
1346	for_each_cpu(cpu, policy->related_cpus)
1347		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1348	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1349
1350	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1351				 &policy->nb_max);
1352	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1353				 &policy->nb_min);
1354
1355	/* Cancel any pending policy->update work before freeing the policy. */
1356	cancel_work_sync(&policy->update);
1357
1358	if (policy->max_freq_req) {
1359		/*
1360		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1361		 * notification, since CPUFREQ_CREATE_POLICY notification was
1362		 * sent after adding max_freq_req earlier.
1363		 */
1364		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1365					     CPUFREQ_REMOVE_POLICY, policy);
1366		freq_qos_remove_request(policy->max_freq_req);
1367	}
1368
1369	freq_qos_remove_request(policy->min_freq_req);
1370	kfree(policy->min_freq_req);
1371
1372	cpufreq_policy_put_kobj(policy);
1373	free_cpumask_var(policy->real_cpus);
1374	free_cpumask_var(policy->related_cpus);
1375	free_cpumask_var(policy->cpus);
1376	kfree(policy);
1377}
1378
1379static int cpufreq_online(unsigned int cpu)
1380{
1381	struct cpufreq_policy *policy;
1382	bool new_policy;
1383	unsigned long flags;
1384	unsigned int j;
1385	int ret;
1386
1387	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1388
1389	/* Check if this CPU already has a policy to manage it */
1390	policy = per_cpu(cpufreq_cpu_data, cpu);
1391	if (policy) {
1392		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1393		if (!policy_is_inactive(policy))
1394			return cpufreq_add_policy_cpu(policy, cpu);
1395
1396		/* This is the only online CPU for the policy.  Start over. */
1397		new_policy = false;
1398		down_write(&policy->rwsem);
1399		policy->cpu = cpu;
1400		policy->governor = NULL;
1401	} else {
1402		new_policy = true;
1403		policy = cpufreq_policy_alloc(cpu);
1404		if (!policy)
1405			return -ENOMEM;
1406		down_write(&policy->rwsem);
1407	}
1408
1409	if (!new_policy && cpufreq_driver->online) {
1410		/* Recover policy->cpus using related_cpus */
1411		cpumask_copy(policy->cpus, policy->related_cpus);
1412
1413		ret = cpufreq_driver->online(policy);
1414		if (ret) {
1415			pr_debug("%s: %d: initialization failed\n", __func__,
1416				 __LINE__);
1417			goto out_exit_policy;
1418		}
1419	} else {
1420		cpumask_copy(policy->cpus, cpumask_of(cpu));
1421
1422		/*
1423		 * Call driver. From then on the cpufreq must be able
1424		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1425		 */
1426		ret = cpufreq_driver->init(policy);
1427		if (ret) {
1428			pr_debug("%s: %d: initialization failed\n", __func__,
1429				 __LINE__);
1430			goto out_free_policy;
1431		}
1432
1433		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1434		policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy);
1435
1436		/*
1437		 * The initialization has succeeded and the policy is online.
1438		 * If there is a problem with its frequency table, take it
1439		 * offline and drop it.
1440		 */
1441		ret = cpufreq_table_validate_and_sort(policy);
1442		if (ret)
1443			goto out_offline_policy;
1444
1445		/* related_cpus should at least include policy->cpus. */
1446		cpumask_copy(policy->related_cpus, policy->cpus);
1447	}
1448
1449	/*
1450	 * affected cpus must always be the one, which are online. We aren't
1451	 * managing offline cpus here.
1452	 */
1453	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1454
1455	if (new_policy) {
1456		for_each_cpu(j, policy->related_cpus) {
1457			per_cpu(cpufreq_cpu_data, j) = policy;
1458			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1459		}
1460
1461		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1462					       GFP_KERNEL);
1463		if (!policy->min_freq_req) {
1464			ret = -ENOMEM;
1465			goto out_destroy_policy;
1466		}
1467
1468		ret = freq_qos_add_request(&policy->constraints,
1469					   policy->min_freq_req, FREQ_QOS_MIN,
1470					   FREQ_QOS_MIN_DEFAULT_VALUE);
1471		if (ret < 0) {
1472			/*
1473			 * So we don't call freq_qos_remove_request() for an
1474			 * uninitialized request.
1475			 */
1476			kfree(policy->min_freq_req);
1477			policy->min_freq_req = NULL;
1478			goto out_destroy_policy;
1479		}
1480
1481		/*
1482		 * This must be initialized right here to avoid calling
1483		 * freq_qos_remove_request() on uninitialized request in case
1484		 * of errors.
1485		 */
1486		policy->max_freq_req = policy->min_freq_req + 1;
1487
1488		ret = freq_qos_add_request(&policy->constraints,
1489					   policy->max_freq_req, FREQ_QOS_MAX,
1490					   FREQ_QOS_MAX_DEFAULT_VALUE);
1491		if (ret < 0) {
1492			policy->max_freq_req = NULL;
1493			goto out_destroy_policy;
1494		}
1495
1496		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1497				CPUFREQ_CREATE_POLICY, policy);
1498	}
1499
1500	if (cpufreq_driver->get && has_target()) {
1501		policy->cur = cpufreq_driver->get(policy->cpu);
1502		if (!policy->cur) {
1503			ret = -EIO;
1504			pr_err("%s: ->get() failed\n", __func__);
1505			goto out_destroy_policy;
1506		}
1507	}
1508
1509	/*
1510	 * Sometimes boot loaders set CPU frequency to a value outside of
1511	 * frequency table present with cpufreq core. In such cases CPU might be
1512	 * unstable if it has to run on that frequency for long duration of time
1513	 * and so its better to set it to a frequency which is specified in
1514	 * freq-table. This also makes cpufreq stats inconsistent as
1515	 * cpufreq-stats would fail to register because current frequency of CPU
1516	 * isn't found in freq-table.
1517	 *
1518	 * Because we don't want this change to effect boot process badly, we go
1519	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1520	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1521	 * is initialized to zero).
1522	 *
1523	 * We are passing target-freq as "policy->cur - 1" otherwise
1524	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1525	 * equal to target-freq.
1526	 */
1527	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1528	    && has_target()) {
1529		unsigned int old_freq = policy->cur;
1530
1531		/* Are we running at unknown frequency ? */
1532		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1533		if (ret == -EINVAL) {
1534			ret = __cpufreq_driver_target(policy, old_freq - 1,
1535						      CPUFREQ_RELATION_L);
1536
1537			/*
1538			 * Reaching here after boot in a few seconds may not
1539			 * mean that system will remain stable at "unknown"
1540			 * frequency for longer duration. Hence, a BUG_ON().
1541			 */
1542			BUG_ON(ret);
1543			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1544				__func__, policy->cpu, old_freq, policy->cur);
1545		}
1546	}
1547
1548	if (new_policy) {
1549		ret = cpufreq_add_dev_interface(policy);
1550		if (ret)
1551			goto out_destroy_policy;
1552
1553		cpufreq_stats_create_table(policy);
1554
1555		write_lock_irqsave(&cpufreq_driver_lock, flags);
1556		list_add(&policy->policy_list, &cpufreq_policy_list);
1557		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1558
1559		/*
1560		 * Register with the energy model before
1561		 * sugov_eas_rebuild_sd() is called, which will result
1562		 * in rebuilding of the sched domains, which should only be done
1563		 * once the energy model is properly initialized for the policy
1564		 * first.
1565		 *
1566		 * Also, this should be called before the policy is registered
1567		 * with cooling framework.
1568		 */
1569		if (cpufreq_driver->register_em)
1570			cpufreq_driver->register_em(policy);
1571	}
1572
1573	ret = cpufreq_init_policy(policy);
1574	if (ret) {
1575		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1576		       __func__, cpu, ret);
1577		goto out_destroy_policy;
1578	}
1579
1580	up_write(&policy->rwsem);
1581
1582	kobject_uevent(&policy->kobj, KOBJ_ADD);
1583
1584	/* Callback for handling stuff after policy is ready */
1585	if (cpufreq_driver->ready)
1586		cpufreq_driver->ready(policy);
1587
1588	/* Register cpufreq cooling only for a new policy */
1589	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1590		policy->cdev = of_cpufreq_cooling_register(policy);
1591
1592	pr_debug("initialization complete\n");
1593
1594	return 0;
1595
1596out_destroy_policy:
1597	for_each_cpu(j, policy->real_cpus)
1598		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1599
1600out_offline_policy:
1601	if (cpufreq_driver->offline)
1602		cpufreq_driver->offline(policy);
1603
1604out_exit_policy:
1605	if (cpufreq_driver->exit)
1606		cpufreq_driver->exit(policy);
1607
1608out_free_policy:
1609	cpumask_clear(policy->cpus);
1610	up_write(&policy->rwsem);
1611
1612	cpufreq_policy_free(policy);
1613	return ret;
1614}
1615
1616/**
1617 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1618 * @dev: CPU device.
1619 * @sif: Subsystem interface structure pointer (not used)
1620 */
1621static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1622{
1623	struct cpufreq_policy *policy;
1624	unsigned cpu = dev->id;
1625	int ret;
1626
1627	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1628
1629	if (cpu_online(cpu)) {
1630		ret = cpufreq_online(cpu);
1631		if (ret)
1632			return ret;
1633	}
1634
1635	/* Create sysfs link on CPU registration */
1636	policy = per_cpu(cpufreq_cpu_data, cpu);
1637	if (policy)
1638		add_cpu_dev_symlink(policy, cpu, dev);
1639
1640	return 0;
1641}
1642
1643static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1644{
1645	int ret;
1646
1647	if (has_target())
1648		cpufreq_stop_governor(policy);
1649
1650	cpumask_clear_cpu(cpu, policy->cpus);
1651
1652	if (!policy_is_inactive(policy)) {
1653		/* Nominate a new CPU if necessary. */
1654		if (cpu == policy->cpu)
1655			policy->cpu = cpumask_any(policy->cpus);
1656
1657		/* Start the governor again for the active policy. */
1658		if (has_target()) {
1659			ret = cpufreq_start_governor(policy);
1660			if (ret)
1661				pr_err("%s: Failed to start governor\n", __func__);
1662		}
1663
1664		return;
1665	}
1666
1667	if (has_target())
1668		strscpy(policy->last_governor, policy->governor->name,
1669			CPUFREQ_NAME_LEN);
1670	else
1671		policy->last_policy = policy->policy;
1672
1673	if (has_target())
1674		cpufreq_exit_governor(policy);
1675
1676	/*
1677	 * Perform the ->offline() during light-weight tear-down, as
1678	 * that allows fast recovery when the CPU comes back.
1679	 */
1680	if (cpufreq_driver->offline) {
1681		cpufreq_driver->offline(policy);
1682	} else if (cpufreq_driver->exit) {
1683		cpufreq_driver->exit(policy);
1684		policy->freq_table = NULL;
1685	}
1686}
1687
1688static int cpufreq_offline(unsigned int cpu)
1689{
1690	struct cpufreq_policy *policy;
1691
1692	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1693
1694	policy = cpufreq_cpu_get_raw(cpu);
1695	if (!policy) {
1696		pr_debug("%s: No cpu_data found\n", __func__);
1697		return 0;
1698	}
1699
1700	down_write(&policy->rwsem);
1701
1702	__cpufreq_offline(cpu, policy);
1703
1704	up_write(&policy->rwsem);
1705	return 0;
1706}
1707
1708/*
1709 * cpufreq_remove_dev - remove a CPU device
1710 *
1711 * Removes the cpufreq interface for a CPU device.
1712 */
1713static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1714{
1715	unsigned int cpu = dev->id;
1716	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1717
1718	if (!policy)
1719		return;
1720
1721	down_write(&policy->rwsem);
1722
1723	if (cpu_online(cpu))
1724		__cpufreq_offline(cpu, policy);
1725
1726	remove_cpu_dev_symlink(policy, cpu, dev);
1727
1728	if (!cpumask_empty(policy->real_cpus)) {
1729		up_write(&policy->rwsem);
1730		return;
1731	}
1732
1733	/*
1734	 * Unregister cpufreq cooling once all the CPUs of the policy are
1735	 * removed.
1736	 */
1737	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1738		cpufreq_cooling_unregister(policy->cdev);
1739		policy->cdev = NULL;
1740	}
1741
1742	/* We did light-weight exit earlier, do full tear down now */
1743	if (cpufreq_driver->offline)
1744		cpufreq_driver->exit(policy);
1745
1746	up_write(&policy->rwsem);
1747
1748	cpufreq_policy_free(policy);
1749}
1750
1751/**
1752 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1753 * @policy: Policy managing CPUs.
1754 * @new_freq: New CPU frequency.
1755 *
1756 * Adjust to the current frequency first and clean up later by either calling
1757 * cpufreq_update_policy(), or scheduling handle_update().
1758 */
1759static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1760				unsigned int new_freq)
1761{
1762	struct cpufreq_freqs freqs;
1763
1764	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1765		 policy->cur, new_freq);
1766
1767	freqs.old = policy->cur;
1768	freqs.new = new_freq;
1769
1770	cpufreq_freq_transition_begin(policy, &freqs);
1771	cpufreq_freq_transition_end(policy, &freqs, 0);
1772}
1773
1774static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1775{
1776	unsigned int new_freq;
1777
1778	new_freq = cpufreq_driver->get(policy->cpu);
1779	if (!new_freq)
1780		return 0;
1781
1782	/*
1783	 * If fast frequency switching is used with the given policy, the check
1784	 * against policy->cur is pointless, so skip it in that case.
1785	 */
1786	if (policy->fast_switch_enabled || !has_target())
1787		return new_freq;
1788
1789	if (policy->cur != new_freq) {
1790		/*
1791		 * For some platforms, the frequency returned by hardware may be
1792		 * slightly different from what is provided in the frequency
1793		 * table, for example hardware may return 499 MHz instead of 500
1794		 * MHz. In such cases it is better to avoid getting into
1795		 * unnecessary frequency updates.
1796		 */
1797		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1798			return policy->cur;
1799
1800		cpufreq_out_of_sync(policy, new_freq);
1801		if (update)
1802			schedule_work(&policy->update);
1803	}
1804
1805	return new_freq;
1806}
1807
1808/**
1809 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1810 * @cpu: CPU number
1811 *
1812 * This is the last known freq, without actually getting it from the driver.
1813 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1814 */
1815unsigned int cpufreq_quick_get(unsigned int cpu)
1816{
1817	struct cpufreq_policy *policy;
1818	unsigned int ret_freq = 0;
1819	unsigned long flags;
1820
1821	read_lock_irqsave(&cpufreq_driver_lock, flags);
1822
1823	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1824		ret_freq = cpufreq_driver->get(cpu);
1825		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1826		return ret_freq;
1827	}
1828
1829	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1830
1831	policy = cpufreq_cpu_get(cpu);
1832	if (policy) {
1833		ret_freq = policy->cur;
1834		cpufreq_cpu_put(policy);
1835	}
1836
1837	return ret_freq;
1838}
1839EXPORT_SYMBOL(cpufreq_quick_get);
1840
1841/**
1842 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1843 * @cpu: CPU number
1844 *
1845 * Just return the max possible frequency for a given CPU.
1846 */
1847unsigned int cpufreq_quick_get_max(unsigned int cpu)
1848{
1849	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1850	unsigned int ret_freq = 0;
1851
1852	if (policy) {
1853		ret_freq = policy->max;
1854		cpufreq_cpu_put(policy);
1855	}
1856
1857	return ret_freq;
1858}
1859EXPORT_SYMBOL(cpufreq_quick_get_max);
1860
1861/**
1862 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1863 * @cpu: CPU number
1864 *
1865 * The default return value is the max_freq field of cpuinfo.
1866 */
1867__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1868{
1869	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1870	unsigned int ret_freq = 0;
1871
1872	if (policy) {
1873		ret_freq = policy->cpuinfo.max_freq;
1874		cpufreq_cpu_put(policy);
1875	}
1876
1877	return ret_freq;
1878}
1879EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1880
1881static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1882{
1883	if (unlikely(policy_is_inactive(policy)))
1884		return 0;
1885
1886	return cpufreq_verify_current_freq(policy, true);
1887}
1888
1889/**
1890 * cpufreq_get - get the current CPU frequency (in kHz)
1891 * @cpu: CPU number
1892 *
1893 * Get the CPU current (static) CPU frequency
1894 */
1895unsigned int cpufreq_get(unsigned int cpu)
1896{
1897	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1898	unsigned int ret_freq = 0;
1899
1900	if (policy) {
1901		down_read(&policy->rwsem);
1902		if (cpufreq_driver->get)
1903			ret_freq = __cpufreq_get(policy);
1904		up_read(&policy->rwsem);
1905
1906		cpufreq_cpu_put(policy);
1907	}
1908
1909	return ret_freq;
1910}
1911EXPORT_SYMBOL(cpufreq_get);
1912
1913static struct subsys_interface cpufreq_interface = {
1914	.name		= "cpufreq",
1915	.subsys		= &cpu_subsys,
1916	.add_dev	= cpufreq_add_dev,
1917	.remove_dev	= cpufreq_remove_dev,
1918};
1919
1920/*
1921 * In case platform wants some specific frequency to be configured
1922 * during suspend..
1923 */
1924int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1925{
1926	int ret;
1927
1928	if (!policy->suspend_freq) {
1929		pr_debug("%s: suspend_freq not defined\n", __func__);
1930		return 0;
1931	}
1932
1933	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1934			policy->suspend_freq);
1935
1936	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1937			CPUFREQ_RELATION_H);
1938	if (ret)
1939		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1940				__func__, policy->suspend_freq, ret);
1941
1942	return ret;
1943}
1944EXPORT_SYMBOL(cpufreq_generic_suspend);
1945
1946/**
1947 * cpufreq_suspend() - Suspend CPUFreq governors.
1948 *
1949 * Called during system wide Suspend/Hibernate cycles for suspending governors
1950 * as some platforms can't change frequency after this point in suspend cycle.
1951 * Because some of the devices (like: i2c, regulators, etc) they use for
1952 * changing frequency are suspended quickly after this point.
1953 */
1954void cpufreq_suspend(void)
1955{
1956	struct cpufreq_policy *policy;
1957
1958	if (!cpufreq_driver)
1959		return;
1960
1961	if (!has_target() && !cpufreq_driver->suspend)
1962		goto suspend;
1963
1964	pr_debug("%s: Suspending Governors\n", __func__);
1965
1966	for_each_active_policy(policy) {
1967		if (has_target()) {
1968			down_write(&policy->rwsem);
1969			cpufreq_stop_governor(policy);
1970			up_write(&policy->rwsem);
1971		}
1972
1973		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1974			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1975				cpufreq_driver->name);
1976	}
1977
1978suspend:
1979	cpufreq_suspended = true;
1980}
1981
1982/**
1983 * cpufreq_resume() - Resume CPUFreq governors.
1984 *
1985 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1986 * are suspended with cpufreq_suspend().
1987 */
1988void cpufreq_resume(void)
1989{
1990	struct cpufreq_policy *policy;
1991	int ret;
1992
1993	if (!cpufreq_driver)
1994		return;
1995
1996	if (unlikely(!cpufreq_suspended))
1997		return;
1998
1999	cpufreq_suspended = false;
2000
2001	if (!has_target() && !cpufreq_driver->resume)
2002		return;
2003
2004	pr_debug("%s: Resuming Governors\n", __func__);
2005
2006	for_each_active_policy(policy) {
2007		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2008			pr_err("%s: Failed to resume driver: %s\n", __func__,
2009				cpufreq_driver->name);
2010		} else if (has_target()) {
2011			down_write(&policy->rwsem);
2012			ret = cpufreq_start_governor(policy);
2013			up_write(&policy->rwsem);
2014
2015			if (ret)
2016				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2017				       __func__, policy->cpu);
2018		}
2019	}
2020}
2021
2022/**
2023 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2024 * @flags: Flags to test against the current cpufreq driver's flags.
2025 *
2026 * Assumes that the driver is there, so callers must ensure that this is the
2027 * case.
2028 */
2029bool cpufreq_driver_test_flags(u16 flags)
2030{
2031	return !!(cpufreq_driver->flags & flags);
2032}
2033
2034/**
2035 * cpufreq_get_current_driver - Return the current driver's name.
2036 *
2037 * Return the name string of the currently registered cpufreq driver or NULL if
2038 * none.
2039 */
2040const char *cpufreq_get_current_driver(void)
2041{
2042	if (cpufreq_driver)
2043		return cpufreq_driver->name;
2044
2045	return NULL;
2046}
2047EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2048
2049/**
2050 * cpufreq_get_driver_data - Return current driver data.
2051 *
2052 * Return the private data of the currently registered cpufreq driver, or NULL
2053 * if no cpufreq driver has been registered.
2054 */
2055void *cpufreq_get_driver_data(void)
2056{
2057	if (cpufreq_driver)
2058		return cpufreq_driver->driver_data;
2059
2060	return NULL;
2061}
2062EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2063
2064/*********************************************************************
2065 *                     NOTIFIER LISTS INTERFACE                      *
2066 *********************************************************************/
2067
2068/**
2069 * cpufreq_register_notifier - Register a notifier with cpufreq.
2070 * @nb: notifier function to register.
2071 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2072 *
2073 * Add a notifier to one of two lists: either a list of notifiers that run on
2074 * clock rate changes (once before and once after every transition), or a list
2075 * of notifiers that ron on cpufreq policy changes.
2076 *
2077 * This function may sleep and it has the same return values as
2078 * blocking_notifier_chain_register().
2079 */
2080int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2081{
2082	int ret;
2083
2084	if (cpufreq_disabled())
2085		return -EINVAL;
2086
2087	switch (list) {
2088	case CPUFREQ_TRANSITION_NOTIFIER:
2089		mutex_lock(&cpufreq_fast_switch_lock);
2090
2091		if (cpufreq_fast_switch_count > 0) {
2092			mutex_unlock(&cpufreq_fast_switch_lock);
2093			return -EBUSY;
2094		}
2095		ret = srcu_notifier_chain_register(
2096				&cpufreq_transition_notifier_list, nb);
2097		if (!ret)
2098			cpufreq_fast_switch_count--;
2099
2100		mutex_unlock(&cpufreq_fast_switch_lock);
2101		break;
2102	case CPUFREQ_POLICY_NOTIFIER:
2103		ret = blocking_notifier_chain_register(
2104				&cpufreq_policy_notifier_list, nb);
2105		break;
2106	default:
2107		ret = -EINVAL;
2108	}
2109
2110	return ret;
2111}
2112EXPORT_SYMBOL(cpufreq_register_notifier);
2113
2114/**
2115 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2116 * @nb: notifier block to be unregistered.
2117 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2118 *
2119 * Remove a notifier from one of the cpufreq notifier lists.
2120 *
2121 * This function may sleep and it has the same return values as
2122 * blocking_notifier_chain_unregister().
2123 */
2124int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2125{
2126	int ret;
2127
2128	if (cpufreq_disabled())
2129		return -EINVAL;
2130
2131	switch (list) {
2132	case CPUFREQ_TRANSITION_NOTIFIER:
2133		mutex_lock(&cpufreq_fast_switch_lock);
2134
2135		ret = srcu_notifier_chain_unregister(
2136				&cpufreq_transition_notifier_list, nb);
2137		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2138			cpufreq_fast_switch_count++;
2139
2140		mutex_unlock(&cpufreq_fast_switch_lock);
2141		break;
2142	case CPUFREQ_POLICY_NOTIFIER:
2143		ret = blocking_notifier_chain_unregister(
2144				&cpufreq_policy_notifier_list, nb);
2145		break;
2146	default:
2147		ret = -EINVAL;
2148	}
2149
2150	return ret;
2151}
2152EXPORT_SYMBOL(cpufreq_unregister_notifier);
2153
2154
2155/*********************************************************************
2156 *                              GOVERNORS                            *
2157 *********************************************************************/
2158
2159/**
2160 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2161 * @policy: cpufreq policy to switch the frequency for.
2162 * @target_freq: New frequency to set (may be approximate).
2163 *
2164 * Carry out a fast frequency switch without sleeping.
2165 *
2166 * The driver's ->fast_switch() callback invoked by this function must be
2167 * suitable for being called from within RCU-sched read-side critical sections
2168 * and it is expected to select the minimum available frequency greater than or
2169 * equal to @target_freq (CPUFREQ_RELATION_L).
2170 *
2171 * This function must not be called if policy->fast_switch_enabled is unset.
2172 *
2173 * Governors calling this function must guarantee that it will never be invoked
2174 * twice in parallel for the same policy and that it will never be called in
2175 * parallel with either ->target() or ->target_index() for the same policy.
2176 *
2177 * Returns the actual frequency set for the CPU.
2178 *
2179 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2180 * error condition, the hardware configuration must be preserved.
2181 */
2182unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2183					unsigned int target_freq)
2184{
2185	unsigned int freq;
2186	int cpu;
2187
2188	target_freq = clamp_val(target_freq, policy->min, policy->max);
2189	freq = cpufreq_driver->fast_switch(policy, target_freq);
2190
2191	if (!freq)
2192		return 0;
2193
2194	policy->cur = freq;
2195	arch_set_freq_scale(policy->related_cpus, freq,
2196			    arch_scale_freq_ref(policy->cpu));
2197	cpufreq_stats_record_transition(policy, freq);
2198
2199	if (trace_cpu_frequency_enabled()) {
2200		for_each_cpu(cpu, policy->cpus)
2201			trace_cpu_frequency(freq, cpu);
2202	}
2203
2204	return freq;
2205}
2206EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2207
2208/**
2209 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2210 * @cpu: Target CPU.
2211 * @min_perf: Minimum (required) performance level (units of @capacity).
2212 * @target_perf: Target (desired) performance level (units of @capacity).
2213 * @capacity: Capacity of the target CPU.
2214 *
2215 * Carry out a fast performance level switch of @cpu without sleeping.
2216 *
2217 * The driver's ->adjust_perf() callback invoked by this function must be
2218 * suitable for being called from within RCU-sched read-side critical sections
2219 * and it is expected to select a suitable performance level equal to or above
2220 * @min_perf and preferably equal to or below @target_perf.
2221 *
2222 * This function must not be called if policy->fast_switch_enabled is unset.
2223 *
2224 * Governors calling this function must guarantee that it will never be invoked
2225 * twice in parallel for the same CPU and that it will never be called in
2226 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2227 * the same CPU.
2228 */
2229void cpufreq_driver_adjust_perf(unsigned int cpu,
2230				 unsigned long min_perf,
2231				 unsigned long target_perf,
2232				 unsigned long capacity)
2233{
2234	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2235}
2236
2237/**
2238 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2239 *
2240 * Return 'true' if the ->adjust_perf callback is present for the
2241 * current driver or 'false' otherwise.
2242 */
2243bool cpufreq_driver_has_adjust_perf(void)
2244{
2245	return !!cpufreq_driver->adjust_perf;
2246}
2247
2248/* Must set freqs->new to intermediate frequency */
2249static int __target_intermediate(struct cpufreq_policy *policy,
2250				 struct cpufreq_freqs *freqs, int index)
2251{
2252	int ret;
2253
2254	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2255
2256	/* We don't need to switch to intermediate freq */
2257	if (!freqs->new)
2258		return 0;
2259
2260	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2261		 __func__, policy->cpu, freqs->old, freqs->new);
2262
2263	cpufreq_freq_transition_begin(policy, freqs);
2264	ret = cpufreq_driver->target_intermediate(policy, index);
2265	cpufreq_freq_transition_end(policy, freqs, ret);
2266
2267	if (ret)
2268		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2269		       __func__, ret);
2270
2271	return ret;
2272}
2273
2274static int __target_index(struct cpufreq_policy *policy, int index)
2275{
2276	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2277	unsigned int restore_freq, intermediate_freq = 0;
2278	unsigned int newfreq = policy->freq_table[index].frequency;
2279	int retval = -EINVAL;
2280	bool notify;
2281
2282	if (newfreq == policy->cur)
2283		return 0;
2284
2285	/* Save last value to restore later on errors */
2286	restore_freq = policy->cur;
2287
2288	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2289	if (notify) {
2290		/* Handle switching to intermediate frequency */
2291		if (cpufreq_driver->get_intermediate) {
2292			retval = __target_intermediate(policy, &freqs, index);
2293			if (retval)
2294				return retval;
2295
2296			intermediate_freq = freqs.new;
2297			/* Set old freq to intermediate */
2298			if (intermediate_freq)
2299				freqs.old = freqs.new;
2300		}
2301
2302		freqs.new = newfreq;
2303		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2304			 __func__, policy->cpu, freqs.old, freqs.new);
2305
2306		cpufreq_freq_transition_begin(policy, &freqs);
2307	}
2308
2309	retval = cpufreq_driver->target_index(policy, index);
2310	if (retval)
2311		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2312		       retval);
2313
2314	if (notify) {
2315		cpufreq_freq_transition_end(policy, &freqs, retval);
2316
2317		/*
2318		 * Failed after setting to intermediate freq? Driver should have
2319		 * reverted back to initial frequency and so should we. Check
2320		 * here for intermediate_freq instead of get_intermediate, in
2321		 * case we haven't switched to intermediate freq at all.
2322		 */
2323		if (unlikely(retval && intermediate_freq)) {
2324			freqs.old = intermediate_freq;
2325			freqs.new = restore_freq;
2326			cpufreq_freq_transition_begin(policy, &freqs);
2327			cpufreq_freq_transition_end(policy, &freqs, 0);
2328		}
2329	}
2330
2331	return retval;
2332}
2333
2334int __cpufreq_driver_target(struct cpufreq_policy *policy,
2335			    unsigned int target_freq,
2336			    unsigned int relation)
2337{
2338	unsigned int old_target_freq = target_freq;
2339
2340	if (cpufreq_disabled())
2341		return -ENODEV;
2342
2343	target_freq = __resolve_freq(policy, target_freq, relation);
2344
2345	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2346		 policy->cpu, target_freq, relation, old_target_freq);
2347
2348	/*
2349	 * This might look like a redundant call as we are checking it again
2350	 * after finding index. But it is left intentionally for cases where
2351	 * exactly same freq is called again and so we can save on few function
2352	 * calls.
2353	 */
2354	if (target_freq == policy->cur &&
2355	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2356		return 0;
2357
2358	if (cpufreq_driver->target) {
2359		/*
2360		 * If the driver hasn't setup a single inefficient frequency,
2361		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2362		 */
2363		if (!policy->efficiencies_available)
2364			relation &= ~CPUFREQ_RELATION_E;
2365
2366		return cpufreq_driver->target(policy, target_freq, relation);
2367	}
2368
2369	if (!cpufreq_driver->target_index)
2370		return -EINVAL;
2371
2372	return __target_index(policy, policy->cached_resolved_idx);
2373}
2374EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2375
2376int cpufreq_driver_target(struct cpufreq_policy *policy,
2377			  unsigned int target_freq,
2378			  unsigned int relation)
2379{
2380	int ret;
2381
2382	down_write(&policy->rwsem);
2383
2384	ret = __cpufreq_driver_target(policy, target_freq, relation);
2385
2386	up_write(&policy->rwsem);
2387
2388	return ret;
2389}
2390EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2391
2392__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2393{
2394	return NULL;
2395}
2396
2397static int cpufreq_init_governor(struct cpufreq_policy *policy)
2398{
2399	int ret;
2400
2401	/* Don't start any governor operations if we are entering suspend */
2402	if (cpufreq_suspended)
2403		return 0;
2404	/*
2405	 * Governor might not be initiated here if ACPI _PPC changed
2406	 * notification happened, so check it.
2407	 */
2408	if (!policy->governor)
2409		return -EINVAL;
2410
2411	/* Platform doesn't want dynamic frequency switching ? */
2412	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2413	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2414		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2415
2416		if (gov) {
2417			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2418				policy->governor->name, gov->name);
2419			policy->governor = gov;
2420		} else {
2421			return -EINVAL;
2422		}
2423	}
2424
2425	if (!try_module_get(policy->governor->owner))
2426		return -EINVAL;
2427
2428	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2429
2430	if (policy->governor->init) {
2431		ret = policy->governor->init(policy);
2432		if (ret) {
2433			module_put(policy->governor->owner);
2434			return ret;
2435		}
2436	}
2437
2438	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2439
2440	return 0;
2441}
2442
2443static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2444{
2445	if (cpufreq_suspended || !policy->governor)
2446		return;
2447
2448	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2449
2450	if (policy->governor->exit)
2451		policy->governor->exit(policy);
2452
2453	module_put(policy->governor->owner);
2454}
2455
2456int cpufreq_start_governor(struct cpufreq_policy *policy)
2457{
2458	int ret;
2459
2460	if (cpufreq_suspended)
2461		return 0;
2462
2463	if (!policy->governor)
2464		return -EINVAL;
2465
2466	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2467
2468	if (cpufreq_driver->get)
2469		cpufreq_verify_current_freq(policy, false);
2470
2471	if (policy->governor->start) {
2472		ret = policy->governor->start(policy);
2473		if (ret)
2474			return ret;
2475	}
2476
2477	if (policy->governor->limits)
2478		policy->governor->limits(policy);
2479
2480	return 0;
2481}
2482
2483void cpufreq_stop_governor(struct cpufreq_policy *policy)
2484{
2485	if (cpufreq_suspended || !policy->governor)
2486		return;
2487
2488	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2489
2490	if (policy->governor->stop)
2491		policy->governor->stop(policy);
2492}
2493
2494static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2495{
2496	if (cpufreq_suspended || !policy->governor)
2497		return;
2498
2499	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2500
2501	if (policy->governor->limits)
2502		policy->governor->limits(policy);
2503}
2504
2505int cpufreq_register_governor(struct cpufreq_governor *governor)
2506{
2507	int err;
2508
2509	if (!governor)
2510		return -EINVAL;
2511
2512	if (cpufreq_disabled())
2513		return -ENODEV;
2514
2515	mutex_lock(&cpufreq_governor_mutex);
2516
2517	err = -EBUSY;
2518	if (!find_governor(governor->name)) {
2519		err = 0;
2520		list_add(&governor->governor_list, &cpufreq_governor_list);
2521	}
2522
2523	mutex_unlock(&cpufreq_governor_mutex);
2524	return err;
2525}
2526EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2527
2528void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2529{
2530	struct cpufreq_policy *policy;
2531	unsigned long flags;
2532
2533	if (!governor)
2534		return;
2535
2536	if (cpufreq_disabled())
2537		return;
2538
2539	/* clear last_governor for all inactive policies */
2540	read_lock_irqsave(&cpufreq_driver_lock, flags);
2541	for_each_inactive_policy(policy) {
2542		if (!strcmp(policy->last_governor, governor->name)) {
2543			policy->governor = NULL;
2544			strcpy(policy->last_governor, "\0");
2545		}
2546	}
2547	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2548
2549	mutex_lock(&cpufreq_governor_mutex);
2550	list_del(&governor->governor_list);
2551	mutex_unlock(&cpufreq_governor_mutex);
2552}
2553EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2554
2555
2556/*********************************************************************
2557 *                          POLICY INTERFACE                         *
2558 *********************************************************************/
2559
2560/**
2561 * cpufreq_get_policy - get the current cpufreq_policy
2562 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2563 *	is written
2564 * @cpu: CPU to find the policy for
2565 *
2566 * Reads the current cpufreq policy.
2567 */
2568int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2569{
2570	struct cpufreq_policy *cpu_policy;
2571	if (!policy)
2572		return -EINVAL;
2573
2574	cpu_policy = cpufreq_cpu_get(cpu);
2575	if (!cpu_policy)
2576		return -EINVAL;
2577
2578	memcpy(policy, cpu_policy, sizeof(*policy));
2579
2580	cpufreq_cpu_put(cpu_policy);
2581	return 0;
2582}
2583EXPORT_SYMBOL(cpufreq_get_policy);
2584
2585/**
2586 * cpufreq_set_policy - Modify cpufreq policy parameters.
2587 * @policy: Policy object to modify.
2588 * @new_gov: Policy governor pointer.
2589 * @new_pol: Policy value (for drivers with built-in governors).
2590 *
2591 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2592 * limits to be set for the policy, update @policy with the verified limits
2593 * values and either invoke the driver's ->setpolicy() callback (if present) or
2594 * carry out a governor update for @policy.  That is, run the current governor's
2595 * ->limits() callback (if @new_gov points to the same object as the one in
2596 * @policy) or replace the governor for @policy with @new_gov.
2597 *
2598 * The cpuinfo part of @policy is not updated by this function.
2599 */
2600static int cpufreq_set_policy(struct cpufreq_policy *policy,
2601			      struct cpufreq_governor *new_gov,
2602			      unsigned int new_pol)
2603{
2604	struct cpufreq_policy_data new_data;
2605	struct cpufreq_governor *old_gov;
2606	int ret;
2607
2608	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2609	new_data.freq_table = policy->freq_table;
2610	new_data.cpu = policy->cpu;
2611	/*
2612	 * PM QoS framework collects all the requests from users and provide us
2613	 * the final aggregated value here.
2614	 */
2615	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2616	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2617
2618	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2619		 new_data.cpu, new_data.min, new_data.max);
2620
2621	/*
2622	 * Verify that the CPU speed can be set within these limits and make sure
2623	 * that min <= max.
2624	 */
2625	ret = cpufreq_driver->verify(&new_data);
2626	if (ret)
2627		return ret;
2628
2629	/*
2630	 * Resolve policy min/max to available frequencies. It ensures
2631	 * no frequency resolution will neither overshoot the requested maximum
2632	 * nor undershoot the requested minimum.
2633	 */
2634	policy->min = new_data.min;
2635	policy->max = new_data.max;
2636	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2637	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2638	trace_cpu_frequency_limits(policy);
2639
2640	policy->cached_target_freq = UINT_MAX;
2641
2642	pr_debug("new min and max freqs are %u - %u kHz\n",
2643		 policy->min, policy->max);
2644
2645	if (cpufreq_driver->setpolicy) {
2646		policy->policy = new_pol;
2647		pr_debug("setting range\n");
2648		return cpufreq_driver->setpolicy(policy);
2649	}
2650
2651	if (new_gov == policy->governor) {
2652		pr_debug("governor limits update\n");
2653		cpufreq_governor_limits(policy);
2654		return 0;
2655	}
2656
2657	pr_debug("governor switch\n");
2658
2659	/* save old, working values */
2660	old_gov = policy->governor;
2661	/* end old governor */
2662	if (old_gov) {
2663		cpufreq_stop_governor(policy);
2664		cpufreq_exit_governor(policy);
2665	}
2666
2667	/* start new governor */
2668	policy->governor = new_gov;
2669	ret = cpufreq_init_governor(policy);
2670	if (!ret) {
2671		ret = cpufreq_start_governor(policy);
2672		if (!ret) {
2673			pr_debug("governor change\n");
2674			return 0;
2675		}
2676		cpufreq_exit_governor(policy);
2677	}
2678
2679	/* new governor failed, so re-start old one */
2680	pr_debug("starting governor %s failed\n", policy->governor->name);
2681	if (old_gov) {
2682		policy->governor = old_gov;
2683		if (cpufreq_init_governor(policy))
2684			policy->governor = NULL;
2685		else
2686			cpufreq_start_governor(policy);
2687	}
2688
2689	return ret;
2690}
2691
2692/**
2693 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2694 * @cpu: CPU to re-evaluate the policy for.
2695 *
2696 * Update the current frequency for the cpufreq policy of @cpu and use
2697 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2698 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2699 * for the policy in question, among other things.
2700 */
2701void cpufreq_update_policy(unsigned int cpu)
2702{
2703	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2704
2705	if (!policy)
2706		return;
2707
2708	/*
2709	 * BIOS might change freq behind our back
2710	 * -> ask driver for current freq and notify governors about a change
2711	 */
2712	if (cpufreq_driver->get && has_target() &&
2713	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2714		goto unlock;
2715
2716	refresh_frequency_limits(policy);
2717
2718unlock:
2719	cpufreq_cpu_release(policy);
2720}
2721EXPORT_SYMBOL(cpufreq_update_policy);
2722
2723/**
2724 * cpufreq_update_limits - Update policy limits for a given CPU.
2725 * @cpu: CPU to update the policy limits for.
2726 *
2727 * Invoke the driver's ->update_limits callback if present or call
2728 * cpufreq_update_policy() for @cpu.
2729 */
2730void cpufreq_update_limits(unsigned int cpu)
2731{
2732	if (cpufreq_driver->update_limits)
2733		cpufreq_driver->update_limits(cpu);
2734	else
2735		cpufreq_update_policy(cpu);
2736}
2737EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2738
2739/*********************************************************************
2740 *               BOOST						     *
2741 *********************************************************************/
2742static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2743{
2744	int ret;
2745
2746	if (!policy->freq_table)
2747		return -ENXIO;
2748
2749	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2750	if (ret) {
2751		pr_err("%s: Policy frequency update failed\n", __func__);
2752		return ret;
2753	}
2754
2755	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2756	if (ret < 0)
2757		return ret;
2758
2759	return 0;
2760}
2761
2762int cpufreq_boost_trigger_state(int state)
2763{
2764	struct cpufreq_policy *policy;
2765	unsigned long flags;
2766	int ret = 0;
2767
2768	if (cpufreq_driver->boost_enabled == state)
2769		return 0;
2770
2771	write_lock_irqsave(&cpufreq_driver_lock, flags);
2772	cpufreq_driver->boost_enabled = state;
2773	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775	cpus_read_lock();
2776	for_each_active_policy(policy) {
2777		policy->boost_enabled = state;
2778		ret = cpufreq_driver->set_boost(policy, state);
2779		if (ret) {
2780			policy->boost_enabled = !policy->boost_enabled;
2781			goto err_reset_state;
2782		}
2783	}
2784	cpus_read_unlock();
2785
2786	return 0;
2787
2788err_reset_state:
2789	cpus_read_unlock();
2790
2791	write_lock_irqsave(&cpufreq_driver_lock, flags);
2792	cpufreq_driver->boost_enabled = !state;
2793	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2794
2795	pr_err("%s: Cannot %s BOOST\n",
2796	       __func__, state ? "enable" : "disable");
2797
2798	return ret;
2799}
2800
2801static bool cpufreq_boost_supported(void)
2802{
2803	return cpufreq_driver->set_boost;
2804}
2805
2806static int create_boost_sysfs_file(void)
2807{
2808	int ret;
2809
2810	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2811	if (ret)
2812		pr_err("%s: cannot register global BOOST sysfs file\n",
2813		       __func__);
2814
2815	return ret;
2816}
2817
2818static void remove_boost_sysfs_file(void)
2819{
2820	if (cpufreq_boost_supported())
2821		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2822}
2823
2824int cpufreq_enable_boost_support(void)
2825{
2826	if (!cpufreq_driver)
2827		return -EINVAL;
2828
2829	if (cpufreq_boost_supported())
2830		return 0;
2831
2832	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2833
2834	/* This will get removed on driver unregister */
2835	return create_boost_sysfs_file();
2836}
2837EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2838
2839int cpufreq_boost_enabled(void)
2840{
2841	return cpufreq_driver->boost_enabled;
2842}
2843EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2844
2845/*********************************************************************
2846 *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2847 *********************************************************************/
2848static enum cpuhp_state hp_online;
2849
2850static int cpuhp_cpufreq_online(unsigned int cpu)
2851{
2852	cpufreq_online(cpu);
2853
2854	return 0;
2855}
2856
2857static int cpuhp_cpufreq_offline(unsigned int cpu)
2858{
2859	cpufreq_offline(cpu);
2860
2861	return 0;
2862}
2863
2864/**
2865 * cpufreq_register_driver - register a CPU Frequency driver
2866 * @driver_data: A struct cpufreq_driver containing the values#
2867 * submitted by the CPU Frequency driver.
2868 *
2869 * Registers a CPU Frequency driver to this core code. This code
2870 * returns zero on success, -EEXIST when another driver got here first
2871 * (and isn't unregistered in the meantime).
2872 *
2873 */
2874int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2875{
2876	unsigned long flags;
2877	int ret;
2878
2879	if (cpufreq_disabled())
2880		return -ENODEV;
2881
2882	/*
2883	 * The cpufreq core depends heavily on the availability of device
2884	 * structure, make sure they are available before proceeding further.
2885	 */
2886	if (!get_cpu_device(0))
2887		return -EPROBE_DEFER;
2888
2889	if (!driver_data || !driver_data->verify || !driver_data->init ||
2890	    !(driver_data->setpolicy || driver_data->target_index ||
2891		    driver_data->target) ||
2892	     (driver_data->setpolicy && (driver_data->target_index ||
2893		    driver_data->target)) ||
2894	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2895	     (!driver_data->online != !driver_data->offline) ||
2896		 (driver_data->adjust_perf && !driver_data->fast_switch))
2897		return -EINVAL;
2898
2899	pr_debug("trying to register driver %s\n", driver_data->name);
2900
2901	/* Protect against concurrent CPU online/offline. */
2902	cpus_read_lock();
2903
2904	write_lock_irqsave(&cpufreq_driver_lock, flags);
2905	if (cpufreq_driver) {
2906		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2907		ret = -EEXIST;
2908		goto out;
2909	}
2910	cpufreq_driver = driver_data;
2911	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2912
2913	/*
2914	 * Mark support for the scheduler's frequency invariance engine for
2915	 * drivers that implement target(), target_index() or fast_switch().
2916	 */
2917	if (!cpufreq_driver->setpolicy) {
2918		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2919		pr_debug("supports frequency invariance");
2920	}
2921
2922	if (driver_data->setpolicy)
2923		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2924
2925	if (cpufreq_boost_supported()) {
2926		ret = create_boost_sysfs_file();
2927		if (ret)
2928			goto err_null_driver;
2929	}
2930
2931	ret = subsys_interface_register(&cpufreq_interface);
2932	if (ret)
2933		goto err_boost_unreg;
2934
2935	if (unlikely(list_empty(&cpufreq_policy_list))) {
2936		/* if all ->init() calls failed, unregister */
2937		ret = -ENODEV;
2938		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2939			 driver_data->name);
2940		goto err_if_unreg;
2941	}
2942
2943	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2944						   "cpufreq:online",
2945						   cpuhp_cpufreq_online,
2946						   cpuhp_cpufreq_offline);
2947	if (ret < 0)
2948		goto err_if_unreg;
2949	hp_online = ret;
2950	ret = 0;
2951
2952	pr_debug("driver %s up and running\n", driver_data->name);
2953	goto out;
2954
2955err_if_unreg:
2956	subsys_interface_unregister(&cpufreq_interface);
2957err_boost_unreg:
2958	remove_boost_sysfs_file();
2959err_null_driver:
2960	write_lock_irqsave(&cpufreq_driver_lock, flags);
2961	cpufreq_driver = NULL;
2962	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2963out:
2964	cpus_read_unlock();
2965	return ret;
2966}
2967EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2968
2969/*
2970 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2971 *
2972 * Unregister the current CPUFreq driver. Only call this if you have
2973 * the right to do so, i.e. if you have succeeded in initialising before!
2974 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2975 * currently not initialised.
2976 */
2977void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2978{
2979	unsigned long flags;
2980
2981	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2982		return;
2983
2984	pr_debug("unregistering driver %s\n", driver->name);
2985
2986	/* Protect against concurrent cpu hotplug */
2987	cpus_read_lock();
2988	subsys_interface_unregister(&cpufreq_interface);
2989	remove_boost_sysfs_file();
2990	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2991	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2992
2993	write_lock_irqsave(&cpufreq_driver_lock, flags);
2994
2995	cpufreq_driver = NULL;
2996
2997	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2998	cpus_read_unlock();
2999}
3000EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3001
3002static int __init cpufreq_core_init(void)
3003{
3004	struct cpufreq_governor *gov = cpufreq_default_governor();
3005	struct device *dev_root;
3006
3007	if (cpufreq_disabled())
3008		return -ENODEV;
3009
3010	dev_root = bus_get_dev_root(&cpu_subsys);
3011	if (dev_root) {
3012		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3013		put_device(dev_root);
3014	}
3015	BUG_ON(!cpufreq_global_kobject);
3016
3017	if (!strlen(default_governor))
3018		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3019
3020	return 0;
3021}
3022module_param(off, int, 0444);
3023module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3024core_initcall(cpufreq_core_init);
3025