1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013 Broadcom Corporation
4 * Copyright 2013 Linaro Limited
5 */
6
7#include <linux/io.h>
8#include <linux/of_address.h>
9
10#include "clk-kona.h"
11
12/* These are used when a selector or trigger is found to be unneeded */
13#define selector_clear_exists(sel)	((sel)->width = 0)
14#define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)
15
16/* Validity checking */
17
18static bool ccu_data_offsets_valid(struct ccu_data *ccu)
19{
20	struct ccu_policy *ccu_policy = &ccu->policy;
21	u32 limit;
22
23	limit = ccu->range - sizeof(u32);
24	limit = round_down(limit, sizeof(u32));
25	if (ccu_policy_exists(ccu_policy)) {
26		if (ccu_policy->enable.offset > limit) {
27			pr_err("%s: bad policy enable offset for %s "
28					"(%u > %u)\n", __func__,
29				ccu->name, ccu_policy->enable.offset, limit);
30			return false;
31		}
32		if (ccu_policy->control.offset > limit) {
33			pr_err("%s: bad policy control offset for %s "
34					"(%u > %u)\n", __func__,
35				ccu->name, ccu_policy->control.offset, limit);
36			return false;
37		}
38	}
39
40	return true;
41}
42
43static bool clk_requires_trigger(struct kona_clk *bcm_clk)
44{
45	struct peri_clk_data *peri = bcm_clk->u.peri;
46	struct bcm_clk_sel *sel;
47	struct bcm_clk_div *div;
48
49	if (bcm_clk->type != bcm_clk_peri)
50		return false;
51
52	sel = &peri->sel;
53	if (sel->parent_count && selector_exists(sel))
54		return true;
55
56	div = &peri->div;
57	if (!divider_exists(div))
58		return false;
59
60	/* Fixed dividers don't need triggers */
61	if (!divider_is_fixed(div))
62		return true;
63
64	div = &peri->pre_div;
65
66	return divider_exists(div) && !divider_is_fixed(div);
67}
68
69static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
70{
71	struct peri_clk_data *peri;
72	struct bcm_clk_policy *policy;
73	struct bcm_clk_gate *gate;
74	struct bcm_clk_hyst *hyst;
75	struct bcm_clk_div *div;
76	struct bcm_clk_sel *sel;
77	struct bcm_clk_trig *trig;
78	const char *name;
79	u32 range;
80	u32 limit;
81
82	BUG_ON(bcm_clk->type != bcm_clk_peri);
83	peri = bcm_clk->u.peri;
84	name = bcm_clk->init_data.name;
85	range = bcm_clk->ccu->range;
86
87	limit = range - sizeof(u32);
88	limit = round_down(limit, sizeof(u32));
89
90	policy = &peri->policy;
91	if (policy_exists(policy)) {
92		if (policy->offset > limit) {
93			pr_err("%s: bad policy offset for %s (%u > %u)\n",
94				__func__, name, policy->offset, limit);
95			return false;
96		}
97	}
98
99	gate = &peri->gate;
100	hyst = &peri->hyst;
101	if (gate_exists(gate)) {
102		if (gate->offset > limit) {
103			pr_err("%s: bad gate offset for %s (%u > %u)\n",
104				__func__, name, gate->offset, limit);
105			return false;
106		}
107
108		if (hyst_exists(hyst)) {
109			if (hyst->offset > limit) {
110				pr_err("%s: bad hysteresis offset for %s "
111					"(%u > %u)\n", __func__,
112					name, hyst->offset, limit);
113				return false;
114			}
115		}
116	} else if (hyst_exists(hyst)) {
117		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
118		return false;
119	}
120
121	div = &peri->div;
122	if (divider_exists(div)) {
123		if (div->u.s.offset > limit) {
124			pr_err("%s: bad divider offset for %s (%u > %u)\n",
125				__func__, name, div->u.s.offset, limit);
126			return false;
127		}
128	}
129
130	div = &peri->pre_div;
131	if (divider_exists(div)) {
132		if (div->u.s.offset > limit) {
133			pr_err("%s: bad pre-divider offset for %s "
134					"(%u > %u)\n",
135				__func__, name, div->u.s.offset, limit);
136			return false;
137		}
138	}
139
140	sel = &peri->sel;
141	if (selector_exists(sel)) {
142		if (sel->offset > limit) {
143			pr_err("%s: bad selector offset for %s (%u > %u)\n",
144				__func__, name, sel->offset, limit);
145			return false;
146		}
147	}
148
149	trig = &peri->trig;
150	if (trigger_exists(trig)) {
151		if (trig->offset > limit) {
152			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
153				__func__, name, trig->offset, limit);
154			return false;
155		}
156	}
157
158	trig = &peri->pre_trig;
159	if (trigger_exists(trig)) {
160		if (trig->offset > limit) {
161			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
162				__func__, name, trig->offset, limit);
163			return false;
164		}
165	}
166
167	return true;
168}
169
170/* A bit position must be less than the number of bits in a 32-bit register. */
171static bool bit_posn_valid(u32 bit_posn, const char *field_name,
172			const char *clock_name)
173{
174	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
175
176	if (bit_posn > limit) {
177		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
178			field_name, clock_name, bit_posn, limit);
179		return false;
180	}
181	return true;
182}
183
184/*
185 * A bitfield must be at least 1 bit wide.  Both the low-order and
186 * high-order bits must lie within a 32-bit register.  We require
187 * fields to be less than 32 bits wide, mainly because we use
188 * shifting to produce field masks, and shifting a full word width
189 * is not well-defined by the C standard.
190 */
191static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
192			const char *clock_name)
193{
194	u32 limit = BITS_PER_BYTE * sizeof(u32);
195
196	if (!width) {
197		pr_err("%s: bad %s field width 0 for %s\n", __func__,
198			field_name, clock_name);
199		return false;
200	}
201	if (shift + width > limit) {
202		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
203			field_name, clock_name, shift, width, limit);
204		return false;
205	}
206	return true;
207}
208
209static bool
210ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
211{
212	struct bcm_lvm_en *enable = &ccu_policy->enable;
213	struct bcm_policy_ctl *control;
214
215	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
216		return false;
217
218	control = &ccu_policy->control;
219	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
220		return false;
221
222	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
223		return false;
224
225	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
226		return false;
227
228	return true;
229}
230
231static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
232{
233	if (!bit_posn_valid(policy->bit, "policy", clock_name))
234		return false;
235
236	return true;
237}
238
239/*
240 * All gates, if defined, have a status bit, and for hardware-only
241 * gates, that's it.  Gates that can be software controlled also
242 * have an enable bit.  And a gate that can be hardware or software
243 * controlled will have a hardware/software select bit.
244 */
245static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
246			const char *clock_name)
247{
248	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
249		return false;
250
251	if (gate_is_sw_controllable(gate)) {
252		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
253			return false;
254
255		if (gate_is_hw_controllable(gate)) {
256			if (!bit_posn_valid(gate->hw_sw_sel_bit,
257						"gate hw/sw select",
258						clock_name))
259				return false;
260		}
261	} else {
262		BUG_ON(!gate_is_hw_controllable(gate));
263	}
264
265	return true;
266}
267
268static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
269{
270	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
271		return false;
272
273	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
274		return false;
275
276	return true;
277}
278
279/*
280 * A selector bitfield must be valid.  Its parent_sel array must
281 * also be reasonable for the field.
282 */
283static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
284			const char *clock_name)
285{
286	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
287		return false;
288
289	if (sel->parent_count) {
290		u32 max_sel;
291		u32 limit;
292
293		/*
294		 * Make sure the selector field can hold all the
295		 * selector values we expect to be able to use.  A
296		 * clock only needs to have a selector defined if it
297		 * has more than one parent.  And in that case the
298		 * highest selector value will be in the last entry
299		 * in the array.
300		 */
301		max_sel = sel->parent_sel[sel->parent_count - 1];
302		limit = (1 << sel->width) - 1;
303		if (max_sel > limit) {
304			pr_err("%s: bad selector for %s "
305					"(%u needs > %u bits)\n",
306				__func__, clock_name, max_sel,
307				sel->width);
308			return false;
309		}
310	} else {
311		pr_warn("%s: ignoring selector for %s (no parents)\n",
312			__func__, clock_name);
313		selector_clear_exists(sel);
314		kfree(sel->parent_sel);
315		sel->parent_sel = NULL;
316	}
317
318	return true;
319}
320
321/*
322 * A fixed divider just needs to be non-zero.  A variable divider
323 * has to have a valid divider bitfield, and if it has a fraction,
324 * the width of the fraction must not be no more than the width of
325 * the divider as a whole.
326 */
327static bool div_valid(struct bcm_clk_div *div, const char *field_name,
328			const char *clock_name)
329{
330	if (divider_is_fixed(div)) {
331		/* Any fixed divider value but 0 is OK */
332		if (div->u.fixed == 0) {
333			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
334				field_name, clock_name);
335			return false;
336		}
337		return true;
338	}
339	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
340				field_name, clock_name))
341		return false;
342
343	if (divider_has_fraction(div))
344		if (div->u.s.frac_width > div->u.s.width) {
345			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
346				__func__, field_name, clock_name,
347				div->u.s.frac_width, div->u.s.width);
348			return false;
349		}
350
351	return true;
352}
353
354/*
355 * If a clock has two dividers, the combined number of fractional
356 * bits must be representable in a 32-bit unsigned value.  This
357 * is because we scale up a dividend using both dividers before
358 * dividing to improve accuracy, and we need to avoid overflow.
359 */
360static bool kona_dividers_valid(struct kona_clk *bcm_clk)
361{
362	struct peri_clk_data *peri = bcm_clk->u.peri;
363	struct bcm_clk_div *div;
364	struct bcm_clk_div *pre_div;
365	u32 limit;
366
367	BUG_ON(bcm_clk->type != bcm_clk_peri);
368
369	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
370		return true;
371
372	div = &peri->div;
373	pre_div = &peri->pre_div;
374	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
375		return true;
376
377	limit = BITS_PER_BYTE * sizeof(u32);
378
379	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
380}
381
382
383/* A trigger just needs to represent a valid bit position */
384static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
385			const char *clock_name)
386{
387	return bit_posn_valid(trig->bit, field_name, clock_name);
388}
389
390/* Determine whether the set of peripheral clock registers are valid. */
391static bool
392peri_clk_data_valid(struct kona_clk *bcm_clk)
393{
394	struct peri_clk_data *peri;
395	struct bcm_clk_policy *policy;
396	struct bcm_clk_gate *gate;
397	struct bcm_clk_hyst *hyst;
398	struct bcm_clk_sel *sel;
399	struct bcm_clk_div *div;
400	struct bcm_clk_div *pre_div;
401	struct bcm_clk_trig *trig;
402	const char *name;
403
404	BUG_ON(bcm_clk->type != bcm_clk_peri);
405
406	/*
407	 * First validate register offsets.  This is the only place
408	 * where we need something from the ccu, so we do these
409	 * together.
410	 */
411	if (!peri_clk_data_offsets_valid(bcm_clk))
412		return false;
413
414	peri = bcm_clk->u.peri;
415	name = bcm_clk->init_data.name;
416
417	policy = &peri->policy;
418	if (policy_exists(policy) && !policy_valid(policy, name))
419		return false;
420
421	gate = &peri->gate;
422	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
423		return false;
424
425	hyst = &peri->hyst;
426	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
427		return false;
428
429	sel = &peri->sel;
430	if (selector_exists(sel)) {
431		if (!sel_valid(sel, "selector", name))
432			return false;
433
434	} else if (sel->parent_count > 1) {
435		pr_err("%s: multiple parents but no selector for %s\n",
436			__func__, name);
437
438		return false;
439	}
440
441	div = &peri->div;
442	pre_div = &peri->pre_div;
443	if (divider_exists(div)) {
444		if (!div_valid(div, "divider", name))
445			return false;
446
447		if (divider_exists(pre_div))
448			if (!div_valid(pre_div, "pre-divider", name))
449				return false;
450	} else if (divider_exists(pre_div)) {
451		pr_err("%s: pre-divider but no divider for %s\n", __func__,
452			name);
453		return false;
454	}
455
456	trig = &peri->trig;
457	if (trigger_exists(trig)) {
458		if (!trig_valid(trig, "trigger", name))
459			return false;
460
461		if (trigger_exists(&peri->pre_trig)) {
462			if (!trig_valid(trig, "pre-trigger", name)) {
463				return false;
464			}
465		}
466		if (!clk_requires_trigger(bcm_clk)) {
467			pr_warn("%s: ignoring trigger for %s (not needed)\n",
468				__func__, name);
469			trigger_clear_exists(trig);
470		}
471	} else if (trigger_exists(&peri->pre_trig)) {
472		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
473			name);
474		return false;
475	} else if (clk_requires_trigger(bcm_clk)) {
476		pr_err("%s: required trigger missing for %s\n", __func__,
477			name);
478		return false;
479	}
480
481	return kona_dividers_valid(bcm_clk);
482}
483
484static bool kona_clk_valid(struct kona_clk *bcm_clk)
485{
486	switch (bcm_clk->type) {
487	case bcm_clk_peri:
488		if (!peri_clk_data_valid(bcm_clk))
489			return false;
490		break;
491	default:
492		pr_err("%s: unrecognized clock type (%d)\n", __func__,
493			(int)bcm_clk->type);
494		return false;
495	}
496	return true;
497}
498
499/*
500 * Scan an array of parent clock names to determine whether there
501 * are any entries containing BAD_CLK_NAME.  Such entries are
502 * placeholders for non-supported clocks.  Keep track of the
503 * position of each clock name in the original array.
504 *
505 * Allocates an array of pointers to hold the names of all
506 * non-null entries in the original array, and returns a pointer to
507 * that array in *names.  This will be used for registering the
508 * clock with the common clock code.  On successful return,
509 * *count indicates how many entries are in that names array.
510 *
511 * If there is more than one entry in the resulting names array,
512 * another array is allocated to record the parent selector value
513 * for each (defined) parent clock.  This is the value that
514 * represents this parent clock in the clock's source selector
515 * register.  The position of the clock in the original parent array
516 * defines that selector value.  The number of entries in this array
517 * is the same as the number of entries in the parent names array.
518 *
519 * The array of selector values is returned.  If the clock has no
520 * parents, no selector is required and a null pointer is returned.
521 *
522 * Returns a null pointer if the clock names array supplied was
523 * null.  (This is not an error.)
524 *
525 * Returns a pointer-coded error if an error occurs.
526 */
527static u32 *parent_process(const char *clocks[],
528			u32 *count, const char ***names)
529{
530	static const char **parent_names;
531	static u32 *parent_sel;
532	const char **clock;
533	u32 parent_count;
534	u32 bad_count = 0;
535	u32 orig_count;
536	u32 i;
537	u32 j;
538
539	*count = 0;	/* In case of early return */
540	*names = NULL;
541	if (!clocks)
542		return NULL;
543
544	/*
545	 * Count the number of names in the null-terminated array,
546	 * and find out how many of those are actually clock names.
547	 */
548	for (clock = clocks; *clock; clock++)
549		if (*clock == BAD_CLK_NAME)
550			bad_count++;
551	orig_count = (u32)(clock - clocks);
552	parent_count = orig_count - bad_count;
553
554	/* If all clocks are unsupported, we treat it as no clock */
555	if (!parent_count)
556		return NULL;
557
558	/* Avoid exceeding our parent clock limit */
559	if (parent_count > PARENT_COUNT_MAX) {
560		pr_err("%s: too many parents (%u > %u)\n", __func__,
561			parent_count, PARENT_COUNT_MAX);
562		return ERR_PTR(-EINVAL);
563	}
564
565	/*
566	 * There is one parent name for each defined parent clock.
567	 * We also maintain an array containing the selector value
568	 * for each defined clock.  If there's only one clock, the
569	 * selector is not required, but we allocate space for the
570	 * array anyway to keep things simple.
571	 */
572	parent_names = kmalloc_array(parent_count, sizeof(*parent_names),
573			       GFP_KERNEL);
574	if (!parent_names)
575		return ERR_PTR(-ENOMEM);
576
577	/* There is at least one parent, so allocate a selector array */
578	parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel),
579				   GFP_KERNEL);
580	if (!parent_sel) {
581		kfree(parent_names);
582
583		return ERR_PTR(-ENOMEM);
584	}
585
586	/* Now fill in the parent names and selector arrays */
587	for (i = 0, j = 0; i < orig_count; i++) {
588		if (clocks[i] != BAD_CLK_NAME) {
589			parent_names[j] = clocks[i];
590			parent_sel[j] = i;
591			j++;
592		}
593	}
594	*names = parent_names;
595	*count = parent_count;
596
597	return parent_sel;
598}
599
600static int
601clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
602		struct clk_init_data *init_data)
603{
604	const char **parent_names = NULL;
605	u32 parent_count = 0;
606	u32 *parent_sel;
607
608	/*
609	 * If a peripheral clock has multiple parents, the value
610	 * used by the hardware to select that parent is represented
611	 * by the parent clock's position in the "clocks" list.  Some
612	 * values don't have defined or supported clocks; these will
613	 * have BAD_CLK_NAME entries in the parents[] array.  The
614	 * list is terminated by a NULL entry.
615	 *
616	 * We need to supply (only) the names of defined parent
617	 * clocks when registering a clock though, so we use an
618	 * array of parent selector values to map between the
619	 * indexes the common clock code uses and the selector
620	 * values we need.
621	 */
622	parent_sel = parent_process(clocks, &parent_count, &parent_names);
623	if (IS_ERR(parent_sel)) {
624		int ret = PTR_ERR(parent_sel);
625
626		pr_err("%s: error processing parent clocks for %s (%d)\n",
627			__func__, init_data->name, ret);
628
629		return ret;
630	}
631
632	init_data->parent_names = parent_names;
633	init_data->num_parents = parent_count;
634
635	sel->parent_count = parent_count;
636	sel->parent_sel = parent_sel;
637
638	return 0;
639}
640
641static void clk_sel_teardown(struct bcm_clk_sel *sel,
642		struct clk_init_data *init_data)
643{
644	kfree(sel->parent_sel);
645	sel->parent_sel = NULL;
646	sel->parent_count = 0;
647
648	init_data->num_parents = 0;
649	kfree(init_data->parent_names);
650	init_data->parent_names = NULL;
651}
652
653static void peri_clk_teardown(struct peri_clk_data *data,
654				struct clk_init_data *init_data)
655{
656	clk_sel_teardown(&data->sel, init_data);
657}
658
659/*
660 * Caller is responsible for freeing the parent_names[] and
661 * parent_sel[] arrays in the peripheral clock's "data" structure
662 * that can be assigned if the clock has one or more parent clocks
663 * associated with it.
664 */
665static int
666peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
667{
668	init_data->flags = CLK_IGNORE_UNUSED;
669
670	return clk_sel_setup(data->clocks, &data->sel, init_data);
671}
672
673static void bcm_clk_teardown(struct kona_clk *bcm_clk)
674{
675	switch (bcm_clk->type) {
676	case bcm_clk_peri:
677		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
678		break;
679	default:
680		break;
681	}
682	bcm_clk->u.data = NULL;
683	bcm_clk->type = bcm_clk_none;
684}
685
686static void kona_clk_teardown(struct clk_hw *hw)
687{
688	struct kona_clk *bcm_clk;
689
690	if (!hw)
691		return;
692
693	clk_hw_unregister(hw);
694
695	bcm_clk = to_kona_clk(hw);
696	bcm_clk_teardown(bcm_clk);
697}
698
699static int kona_clk_setup(struct kona_clk *bcm_clk)
700{
701	int ret;
702	struct clk_init_data *init_data = &bcm_clk->init_data;
703
704	switch (bcm_clk->type) {
705	case bcm_clk_peri:
706		ret = peri_clk_setup(bcm_clk->u.data, init_data);
707		if (ret)
708			return ret;
709		break;
710	default:
711		pr_err("%s: clock type %d invalid for %s\n", __func__,
712			(int)bcm_clk->type, init_data->name);
713		return -EINVAL;
714	}
715
716	/* Make sure everything makes sense before we set it up */
717	if (!kona_clk_valid(bcm_clk)) {
718		pr_err("%s: clock data invalid for %s\n", __func__,
719			init_data->name);
720		ret = -EINVAL;
721		goto out_teardown;
722	}
723
724	bcm_clk->hw.init = init_data;
725	ret = clk_hw_register(NULL, &bcm_clk->hw);
726	if (ret) {
727		pr_err("%s: error registering clock %s (%d)\n", __func__,
728			init_data->name, ret);
729		goto out_teardown;
730	}
731
732	return 0;
733out_teardown:
734	bcm_clk_teardown(bcm_clk);
735
736	return ret;
737}
738
739static void ccu_clks_teardown(struct ccu_data *ccu)
740{
741	u32 i;
742
743	for (i = 0; i < ccu->clk_num; i++)
744		kona_clk_teardown(&ccu->kona_clks[i].hw);
745}
746
747static void kona_ccu_teardown(struct ccu_data *ccu)
748{
749	if (!ccu->base)
750		return;
751
752	of_clk_del_provider(ccu->node);	/* safe if never added */
753	ccu_clks_teardown(ccu);
754	of_node_put(ccu->node);
755	ccu->node = NULL;
756	iounmap(ccu->base);
757	ccu->base = NULL;
758}
759
760static bool ccu_data_valid(struct ccu_data *ccu)
761{
762	struct ccu_policy *ccu_policy;
763
764	if (!ccu_data_offsets_valid(ccu))
765		return false;
766
767	ccu_policy = &ccu->policy;
768	if (ccu_policy_exists(ccu_policy))
769		if (!ccu_policy_valid(ccu_policy, ccu->name))
770			return false;
771
772	return true;
773}
774
775static struct clk_hw *
776of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data)
777{
778	struct ccu_data *ccu = data;
779	unsigned int idx = clkspec->args[0];
780
781	if (idx >= ccu->clk_num) {
782		pr_err("%s: invalid index %u\n", __func__, idx);
783		return ERR_PTR(-EINVAL);
784	}
785
786	return &ccu->kona_clks[idx].hw;
787}
788
789/*
790 * Set up a CCU.  Call the provided ccu_clks_setup callback to
791 * initialize the array of clocks provided by the CCU.
792 */
793void __init kona_dt_ccu_setup(struct ccu_data *ccu,
794			struct device_node *node)
795{
796	struct resource res = { 0 };
797	resource_size_t range;
798	unsigned int i;
799	int ret;
800
801	ret = of_address_to_resource(node, 0, &res);
802	if (ret) {
803		pr_err("%s: no valid CCU registers found for %pOFn\n", __func__,
804			node);
805		goto out_err;
806	}
807
808	range = resource_size(&res);
809	if (range > (resource_size_t)U32_MAX) {
810		pr_err("%s: address range too large for %pOFn\n", __func__,
811			node);
812		goto out_err;
813	}
814
815	ccu->range = (u32)range;
816
817	if (!ccu_data_valid(ccu)) {
818		pr_err("%s: ccu data not valid for %pOFn\n", __func__, node);
819		goto out_err;
820	}
821
822	ccu->base = ioremap(res.start, ccu->range);
823	if (!ccu->base) {
824		pr_err("%s: unable to map CCU registers for %pOFn\n", __func__,
825			node);
826		goto out_err;
827	}
828	ccu->node = of_node_get(node);
829
830	/*
831	 * Set up each defined kona clock and save the result in
832	 * the clock framework clock array (in ccu->data).  Then
833	 * register as a provider for these clocks.
834	 */
835	for (i = 0; i < ccu->clk_num; i++) {
836		if (!ccu->kona_clks[i].ccu)
837			continue;
838		kona_clk_setup(&ccu->kona_clks[i]);
839	}
840
841	ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu);
842	if (ret) {
843		pr_err("%s: error adding ccu %pOFn as provider (%d)\n", __func__,
844				node, ret);
845		goto out_err;
846	}
847
848	if (!kona_ccu_init(ccu))
849		pr_err("Broadcom %pOFn initialization had errors\n", node);
850
851	return;
852out_err:
853	kona_ccu_teardown(ccu);
854	pr_err("Broadcom %pOFn setup aborted\n", node);
855}
856