1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Setup routines for AGP 3.5 compliant bridges.
4 */
5
6#include <linux/list.h>
7#include <linux/pci.h>
8#include <linux/agp_backend.h>
9#include <linux/module.h>
10#include <linux/slab.h>
11
12#include "agp.h"
13
14/* Generic AGP 3.5 enabling routines */
15
16struct agp_3_5_dev {
17	struct list_head list;
18	u8 capndx;
19	u32 maxbw;
20	struct pci_dev *dev;
21};
22
23static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
24{
25	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
26	struct list_head *pos;
27
28	list_for_each(pos, head) {
29		cur = list_entry(pos, struct agp_3_5_dev, list);
30		if (cur->maxbw > n->maxbw)
31			break;
32	}
33	list_add_tail(new, pos);
34}
35
36static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
37{
38	struct agp_3_5_dev *cur;
39	struct pci_dev *dev;
40	struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
41	u32 nistat;
42
43	INIT_LIST_HEAD(head);
44
45	for (pos=start; pos!=head; ) {
46		cur = list_entry(pos, struct agp_3_5_dev, list);
47		dev = cur->dev;
48
49		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
50		cur->maxbw = (nistat >> 16) & 0xff;
51
52		tmp = pos;
53		pos = pos->next;
54		agp_3_5_dev_list_insert(head, tmp);
55	}
56}
57
58/*
59 * Initialize all isochronous transfer parameters for an AGP 3.0
60 * node (i.e. a host bridge in combination with the adapters
61 * lying behind it...)
62 */
63
64static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
65		struct agp_3_5_dev *dev_list, unsigned int ndevs)
66{
67	/*
68	 * Convenience structure to make the calculations clearer
69	 * here.  The field names come straight from the AGP 3.0 spec.
70	 */
71	struct isoch_data {
72		u32 maxbw;
73		u32 n;
74		u32 y;
75		u32 l;
76		u32 rq;
77		struct agp_3_5_dev *dev;
78	};
79
80	struct pci_dev *td = bridge->dev, *dev;
81	struct list_head *head = &dev_list->list, *pos;
82	struct agp_3_5_dev *cur;
83	struct isoch_data *master, target;
84	unsigned int cdev = 0;
85	u32 mnistat, tnistat, tstatus, mcmd;
86	u16 tnicmd, mnicmd;
87	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
88	u32 step, rem, rem_isoch, rem_async;
89	int ret = 0;
90
91	/*
92	 * We'll work with an array of isoch_data's (one for each
93	 * device in dev_list) throughout this function.
94	 */
95	master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
96	if (master == NULL) {
97		ret = -ENOMEM;
98		goto get_out;
99	}
100
101	/*
102	 * Sort the device list by maxbw.  We need to do this because the
103	 * spec suggests that the devices with the smallest requirements
104	 * have their resources allocated first, with all remaining resources
105	 * falling to the device with the largest requirement.
106	 *
107	 * We don't exactly do this, we divide target resources by ndevs
108	 * and split them amongst the AGP 3.0 devices.  The remainder of such
109	 * division operations are dropped on the last device, sort of like
110	 * the spec mentions it should be done.
111	 *
112	 * We can't do this sort when we initially construct the dev_list
113	 * because we don't know until this function whether isochronous
114	 * transfers are enabled and consequently whether maxbw will mean
115	 * anything.
116	 */
117	agp_3_5_dev_list_sort(dev_list, ndevs);
118
119	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
120	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
121
122	/* Extract power-on defaults from the target */
123	target.maxbw = (tnistat >> 16) & 0xff;
124	target.n     = (tnistat >> 8)  & 0xff;
125	target.y     = (tnistat >> 6)  & 0x3;
126	target.l     = (tnistat >> 3)  & 0x7;
127	target.rq    = (tstatus >> 24) & 0xff;
128
129	y_max = target.y;
130
131	/*
132	 * Extract power-on defaults for each device in dev_list.  Along
133	 * the way, calculate the total isochronous bandwidth required
134	 * by these devices and the largest requested payload size.
135	 */
136	list_for_each(pos, head) {
137		cur = list_entry(pos, struct agp_3_5_dev, list);
138		dev = cur->dev;
139
140		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
141
142		master[cdev].maxbw = (mnistat >> 16) & 0xff;
143		master[cdev].n     = (mnistat >> 8)  & 0xff;
144		master[cdev].y     = (mnistat >> 6)  & 0x3;
145		master[cdev].dev   = cur;
146
147		tot_bw += master[cdev].maxbw;
148		y_max = max(y_max, master[cdev].y);
149
150		cdev++;
151	}
152
153	/* Check if this configuration has any chance of working */
154	if (tot_bw > target.maxbw) {
155		dev_err(&td->dev, "isochronous bandwidth required "
156			"by AGP 3.0 devices exceeds that which is supported by "
157			"the AGP 3.0 bridge!\n");
158		ret = -ENODEV;
159		goto free_and_exit;
160	}
161
162	target.y = y_max;
163
164	/*
165	 * Write the calculated payload size into the target's NICMD
166	 * register.  Doing this directly effects the ISOCH_N value
167	 * in the target's NISTAT register, so we need to do this now
168	 * to get an accurate value for ISOCH_N later.
169	 */
170	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
171	tnicmd &= ~(0x3 << 6);
172	tnicmd |= target.y << 6;
173	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
174
175	/* Reread the target's ISOCH_N */
176	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
177	target.n = (tnistat >> 8) & 0xff;
178
179	/* Calculate the minimum ISOCH_N needed by each master */
180	for (cdev=0; cdev<ndevs; cdev++) {
181		master[cdev].y = target.y;
182		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
183
184		tot_n += master[cdev].n;
185	}
186
187	/* Exit if the minimal ISOCH_N allocation among the masters is more
188	 * than the target can handle. */
189	if (tot_n > target.n) {
190		dev_err(&td->dev, "number of isochronous "
191			"transactions per period required by AGP 3.0 devices "
192			"exceeds that which is supported by the AGP 3.0 "
193			"bridge!\n");
194		ret = -ENODEV;
195		goto free_and_exit;
196	}
197
198	/* Calculate left over ISOCH_N capability in the target.  We'll give
199	 * this to the hungriest device (as per the spec) */
200	rem  = target.n - tot_n;
201
202	/*
203	 * Calculate the minimum isochronous RQ depth needed by each master.
204	 * Along the way, distribute the extra ISOCH_N capability calculated
205	 * above.
206	 */
207	for (cdev=0; cdev<ndevs; cdev++) {
208		/*
209		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
210		 * byte isochronous writes will be broken into 64B pieces.
211		 * This means we need to budget more RQ depth to account for
212		 * these kind of writes (each isochronous write is actually
213		 * many writes on the AGP bus).
214		 */
215		master[cdev].rq = master[cdev].n;
216		if (master[cdev].y > 0x1)
217			master[cdev].rq *= (1 << (master[cdev].y - 1));
218
219		tot_rq += master[cdev].rq;
220	}
221	master[ndevs-1].n += rem;
222
223	/* Figure the number of isochronous and asynchronous RQ slots the
224	 * target is providing. */
225	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
226	rq_async = target.rq - rq_isoch;
227
228	/* Exit if the minimal RQ needs of the masters exceeds what the target
229	 * can provide. */
230	if (tot_rq > rq_isoch) {
231		dev_err(&td->dev, "number of request queue slots "
232			"required by the isochronous bandwidth requested by "
233			"AGP 3.0 devices exceeds the number provided by the "
234			"AGP 3.0 bridge!\n");
235		ret = -ENODEV;
236		goto free_and_exit;
237	}
238
239	/* Calculate asynchronous RQ capability in the target (per master) as
240	 * well as the total number of leftover isochronous RQ slots. */
241	step      = rq_async / ndevs;
242	rem_async = step + (rq_async % ndevs);
243	rem_isoch = rq_isoch - tot_rq;
244
245	/* Distribute the extra RQ slots calculated above and write our
246	 * isochronous settings out to the actual devices. */
247	for (cdev=0; cdev<ndevs; cdev++) {
248		cur = master[cdev].dev;
249		dev = cur->dev;
250
251		master[cdev].rq += (cdev == ndevs - 1)
252		              ? (rem_async + rem_isoch) : step;
253
254		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
255		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
256
257		mnicmd &= ~(0xff << 8);
258		mnicmd &= ~(0x3  << 6);
259		mcmd   &= ~(0xff << 24);
260
261		mnicmd |= master[cdev].n  << 8;
262		mnicmd |= master[cdev].y  << 6;
263		mcmd   |= master[cdev].rq << 24;
264
265		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
266		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
267	}
268
269free_and_exit:
270	kfree(master);
271
272get_out:
273	return ret;
274}
275
276/*
277 * This function basically allocates request queue slots among the
278 * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
279 * pretty stupid, divide the total number of RQ slots provided by the
280 * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
281 * giving any left over slots to the last device in dev_list.
282 */
283static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
284		struct agp_3_5_dev *dev_list, unsigned int ndevs)
285{
286	struct agp_3_5_dev *cur;
287	struct list_head *head = &dev_list->list, *pos;
288	u32 tstatus, mcmd;
289	u32 trq, mrq, rem;
290	unsigned int cdev = 0;
291
292	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
293
294	trq = (tstatus >> 24) & 0xff;
295	mrq = trq / ndevs;
296
297	rem = mrq + (trq % ndevs);
298
299	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
300		cur = list_entry(pos, struct agp_3_5_dev, list);
301
302		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
303		mcmd &= ~(0xff << 24);
304		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
305		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
306	}
307}
308
309/*
310 * Fully configure and enable an AGP 3.0 host bridge and all the devices
311 * lying behind it.
312 */
313int agp_3_5_enable(struct agp_bridge_data *bridge)
314{
315	struct pci_dev *td = bridge->dev, *dev = NULL;
316	u8 mcapndx;
317	u32 isoch;
318	u32 tstatus, mstatus, ncapid;
319	u32 mmajor;
320	u16 mpstat;
321	struct agp_3_5_dev *dev_list, *cur;
322	struct list_head *head, *pos;
323	unsigned int ndevs = 0;
324	int ret = 0;
325
326	/* Extract some power-on defaults from the target */
327	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
328	isoch     = (tstatus >> 17) & 0x1;
329	if (isoch == 0)	/* isoch xfers not available, bail out. */
330		return -ENODEV;
331
332	/*
333	 * Allocate a head for our AGP 3.5 device list
334	 * (multiple AGP v3 devices are allowed behind a single bridge).
335	 */
336	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
337		ret = -ENOMEM;
338		goto get_out;
339	}
340	head = &dev_list->list;
341	INIT_LIST_HEAD(head);
342
343	/* Find all AGP devices, and add them to dev_list. */
344	for_each_pci_dev(dev) {
345		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
346		if (mcapndx == 0)
347			continue;
348
349		switch ((dev->class >>8) & 0xff00) {
350			case 0x0600:    /* Bridge */
351				/* Skip bridges. We should call this function for each one. */
352				continue;
353
354			case 0x0001:    /* Unclassified device */
355				/* Don't know what this is, but log it for investigation. */
356				if (mcapndx != 0) {
357					dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
358						 pci_name(dev),
359						 dev->vendor, dev->device);
360				}
361				continue;
362
363			case 0x0300:    /* Display controller */
364			case 0x0400:    /* Multimedia controller */
365				if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
366					ret = -ENOMEM;
367					goto free_and_exit;
368				}
369				cur->dev = dev;
370
371				pos = &cur->list;
372				list_add(pos, head);
373				ndevs++;
374				continue;
375
376			default:
377				continue;
378		}
379	}
380
381	/*
382	 * Take an initial pass through the devices lying behind our host
383	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
384	 * exit with an error message.  Along the way store the AGP 3.0
385	 * cap_ptr for each device
386	 */
387	list_for_each(pos, head) {
388		cur = list_entry(pos, struct agp_3_5_dev, list);
389		dev = cur->dev;
390
391		pci_read_config_word(dev, PCI_STATUS, &mpstat);
392		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
393			continue;
394
395		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
396		if (mcapndx != 0) {
397			do {
398				pci_read_config_dword(dev, mcapndx, &ncapid);
399				if ((ncapid & 0xff) != 2)
400					mcapndx = (ncapid >> 8) & 0xff;
401			}
402			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
403		}
404
405		if (mcapndx == 0) {
406			dev_err(&td->dev, "woah!  Non-AGP device %s on "
407				"secondary bus of AGP 3.5 bridge!\n",
408				pci_name(dev));
409			ret = -ENODEV;
410			goto free_and_exit;
411		}
412
413		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
414		if (mmajor < 3) {
415			dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
416				"secondary bus of AGP 3.5 bridge operating "
417				"with AGP 3.0 electricals!\n", pci_name(dev));
418			ret = -ENODEV;
419			goto free_and_exit;
420		}
421
422		cur->capndx = mcapndx;
423
424		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
425
426		if (((mstatus >> 3) & 0x1) == 0) {
427			dev_err(&td->dev, "woah!  AGP 3.x device %s not "
428				"operating in AGP 3.x mode on secondary bus "
429				"of AGP 3.5 bridge operating with AGP 3.0 "
430				"electricals!\n", pci_name(dev));
431			ret = -ENODEV;
432			goto free_and_exit;
433		}
434	}
435
436	/*
437	 * Call functions to divide target resources amongst the AGP 3.0
438	 * masters.  This process is dramatically different depending on
439	 * whether isochronous transfers are supported.
440	 */
441	if (isoch) {
442		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
443		if (ret) {
444			dev_info(&td->dev, "something bad happened setting "
445				 "up isochronous xfers; falling back to "
446				 "non-isochronous xfer mode\n");
447		} else {
448			goto free_and_exit;
449		}
450	}
451	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
452
453free_and_exit:
454	/* Be sure to free the dev_list */
455	for (pos=head->next; pos!=head; ) {
456		cur = list_entry(pos, struct agp_3_5_dev, list);
457
458		pos = pos->next;
459		kfree(cur);
460	}
461	kfree(dev_list);
462
463get_out:
464	return ret;
465}
466