1// SPDX-License-Identifier: GPL-2.0
2/*
3 * MHI Endpoint bus stack
4 *
5 * Copyright (C) 2022 Linaro Ltd.
6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7 */
8
9#include <linux/bitfield.h>
10#include <linux/delay.h>
11#include <linux/dma-direction.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/irq.h>
15#include <linux/mhi_ep.h>
16#include <linux/mod_devicetable.h>
17#include <linux/module.h>
18#include "internal.h"
19
20#define M0_WAIT_DELAY_MS	100
21#define M0_WAIT_COUNT		100
22
23static DEFINE_IDA(mhi_ep_cntrl_ida);
24
25static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id);
26static int mhi_ep_destroy_device(struct device *dev, void *data);
27
28static int mhi_ep_send_event(struct mhi_ep_cntrl *mhi_cntrl, u32 ring_idx,
29			     struct mhi_ring_element *el, bool bei)
30{
31	struct device *dev = &mhi_cntrl->mhi_dev->dev;
32	union mhi_ep_ring_ctx *ctx;
33	struct mhi_ep_ring *ring;
34	int ret;
35
36	mutex_lock(&mhi_cntrl->event_lock);
37	ring = &mhi_cntrl->mhi_event[ring_idx].ring;
38	ctx = (union mhi_ep_ring_ctx *)&mhi_cntrl->ev_ctx_cache[ring_idx];
39	if (!ring->started) {
40		ret = mhi_ep_ring_start(mhi_cntrl, ring, ctx);
41		if (ret) {
42			dev_err(dev, "Error starting event ring (%u)\n", ring_idx);
43			goto err_unlock;
44		}
45	}
46
47	/* Add element to the event ring */
48	ret = mhi_ep_ring_add_element(ring, el);
49	if (ret) {
50		dev_err(dev, "Error adding element to event ring (%u)\n", ring_idx);
51		goto err_unlock;
52	}
53
54	mutex_unlock(&mhi_cntrl->event_lock);
55
56	/*
57	 * As per the MHI specification, section 4.3, Interrupt moderation:
58	 *
59	 * 1. If BEI flag is not set, cancel any pending intmodt work if started
60	 * for the event ring and raise IRQ immediately.
61	 *
62	 * 2. If both BEI and intmodt are set, and if no IRQ is pending for the
63	 * same event ring, start the IRQ delayed work as per the value of
64	 * intmodt. If previous IRQ is pending, then do nothing as the pending
65	 * IRQ is enough for the host to process the current event ring element.
66	 *
67	 * 3. If BEI is set and intmodt is not set, no need to raise IRQ.
68	 */
69	if (!bei) {
70		if (READ_ONCE(ring->irq_pending))
71			cancel_delayed_work(&ring->intmodt_work);
72
73		mhi_cntrl->raise_irq(mhi_cntrl, ring->irq_vector);
74	} else if (ring->intmodt && !READ_ONCE(ring->irq_pending)) {
75		WRITE_ONCE(ring->irq_pending, true);
76		schedule_delayed_work(&ring->intmodt_work, msecs_to_jiffies(ring->intmodt));
77	}
78
79	return 0;
80
81err_unlock:
82	mutex_unlock(&mhi_cntrl->event_lock);
83
84	return ret;
85}
86
87static int mhi_ep_send_completion_event(struct mhi_ep_cntrl *mhi_cntrl, struct mhi_ep_ring *ring,
88					struct mhi_ring_element *tre, u32 len, enum mhi_ev_ccs code)
89{
90	struct mhi_ring_element *event;
91	int ret;
92
93	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
94	if (!event)
95		return -ENOMEM;
96
97	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(*tre));
98	event->dword[0] = MHI_TRE_EV_DWORD0(code, len);
99	event->dword[1] = MHI_TRE_EV_DWORD1(ring->ch_id, MHI_PKT_TYPE_TX_EVENT);
100
101	ret = mhi_ep_send_event(mhi_cntrl, ring->er_index, event, MHI_TRE_DATA_GET_BEI(tre));
102	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
103
104	return ret;
105}
106
107int mhi_ep_send_state_change_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_state state)
108{
109	struct mhi_ring_element *event;
110	int ret;
111
112	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
113	if (!event)
114		return -ENOMEM;
115
116	event->dword[0] = MHI_SC_EV_DWORD0(state);
117	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_STATE_CHANGE_EVENT);
118
119	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
120	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
121
122	return ret;
123}
124
125int mhi_ep_send_ee_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ee_type exec_env)
126{
127	struct mhi_ring_element *event;
128	int ret;
129
130	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
131	if (!event)
132		return -ENOMEM;
133
134	event->dword[0] = MHI_EE_EV_DWORD0(exec_env);
135	event->dword[1] = MHI_SC_EV_DWORD1(MHI_PKT_TYPE_EE_EVENT);
136
137	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
138	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
139
140	return ret;
141}
142
143static int mhi_ep_send_cmd_comp_event(struct mhi_ep_cntrl *mhi_cntrl, enum mhi_ev_ccs code)
144{
145	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
146	struct mhi_ring_element *event;
147	int ret;
148
149	event = kmem_cache_zalloc(mhi_cntrl->ev_ring_el_cache, GFP_KERNEL | GFP_DMA);
150	if (!event)
151		return -ENOMEM;
152
153	event->ptr = cpu_to_le64(ring->rbase + ring->rd_offset * sizeof(struct mhi_ring_element));
154	event->dword[0] = MHI_CC_EV_DWORD0(code);
155	event->dword[1] = MHI_CC_EV_DWORD1(MHI_PKT_TYPE_CMD_COMPLETION_EVENT);
156
157	ret = mhi_ep_send_event(mhi_cntrl, 0, event, 0);
158	kmem_cache_free(mhi_cntrl->ev_ring_el_cache, event);
159
160	return ret;
161}
162
163static int mhi_ep_process_cmd_ring(struct mhi_ep_ring *ring, struct mhi_ring_element *el)
164{
165	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
166	struct device *dev = &mhi_cntrl->mhi_dev->dev;
167	struct mhi_result result = {};
168	struct mhi_ep_chan *mhi_chan;
169	struct mhi_ep_ring *ch_ring;
170	u32 tmp, ch_id;
171	int ret;
172
173	ch_id = MHI_TRE_GET_CMD_CHID(el);
174
175	/* Check if the channel is supported by the controller */
176	if ((ch_id >= mhi_cntrl->max_chan) || !mhi_cntrl->mhi_chan[ch_id].name) {
177		dev_dbg(dev, "Channel (%u) not supported!\n", ch_id);
178		return -ENODEV;
179	}
180
181	mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
182	ch_ring = &mhi_cntrl->mhi_chan[ch_id].ring;
183
184	switch (MHI_TRE_GET_CMD_TYPE(el)) {
185	case MHI_PKT_TYPE_START_CHAN_CMD:
186		dev_dbg(dev, "Received START command for channel (%u)\n", ch_id);
187
188		mutex_lock(&mhi_chan->lock);
189		/* Initialize and configure the corresponding channel ring */
190		if (!ch_ring->started) {
191			ret = mhi_ep_ring_start(mhi_cntrl, ch_ring,
192				(union mhi_ep_ring_ctx *)&mhi_cntrl->ch_ctx_cache[ch_id]);
193			if (ret) {
194				dev_err(dev, "Failed to start ring for channel (%u)\n", ch_id);
195				ret = mhi_ep_send_cmd_comp_event(mhi_cntrl,
196							MHI_EV_CC_UNDEFINED_ERR);
197				if (ret)
198					dev_err(dev, "Error sending completion event: %d\n", ret);
199
200				goto err_unlock;
201			}
202
203			mhi_chan->rd_offset = ch_ring->rd_offset;
204		}
205
206		/* Set channel state to RUNNING */
207		mhi_chan->state = MHI_CH_STATE_RUNNING;
208		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
209		tmp &= ~CHAN_CTX_CHSTATE_MASK;
210		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
211		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
212
213		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
214		if (ret) {
215			dev_err(dev, "Error sending command completion event (%u)\n",
216				MHI_EV_CC_SUCCESS);
217			goto err_unlock;
218		}
219
220		mutex_unlock(&mhi_chan->lock);
221
222		/*
223		 * Create MHI device only during UL channel start. Since the MHI
224		 * channels operate in a pair, we'll associate both UL and DL
225		 * channels to the same device.
226		 *
227		 * We also need to check for mhi_dev != NULL because, the host
228		 * will issue START_CHAN command during resume and we don't
229		 * destroy the device during suspend.
230		 */
231		if (!(ch_id % 2) && !mhi_chan->mhi_dev) {
232			ret = mhi_ep_create_device(mhi_cntrl, ch_id);
233			if (ret) {
234				dev_err(dev, "Error creating device for channel (%u)\n", ch_id);
235				mhi_ep_handle_syserr(mhi_cntrl);
236				return ret;
237			}
238		}
239
240		/* Finally, enable DB for the channel */
241		mhi_ep_mmio_enable_chdb(mhi_cntrl, ch_id);
242
243		break;
244	case MHI_PKT_TYPE_STOP_CHAN_CMD:
245		dev_dbg(dev, "Received STOP command for channel (%u)\n", ch_id);
246		if (!ch_ring->started) {
247			dev_err(dev, "Channel (%u) not opened\n", ch_id);
248			return -ENODEV;
249		}
250
251		mutex_lock(&mhi_chan->lock);
252		/* Disable DB for the channel */
253		mhi_ep_mmio_disable_chdb(mhi_cntrl, ch_id);
254
255		/* Send channel disconnect status to client drivers */
256		if (mhi_chan->xfer_cb) {
257			result.transaction_status = -ENOTCONN;
258			result.bytes_xferd = 0;
259			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
260		}
261
262		/* Set channel state to STOP */
263		mhi_chan->state = MHI_CH_STATE_STOP;
264		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
265		tmp &= ~CHAN_CTX_CHSTATE_MASK;
266		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_STOP);
267		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
268
269		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
270		if (ret) {
271			dev_err(dev, "Error sending command completion event (%u)\n",
272				MHI_EV_CC_SUCCESS);
273			goto err_unlock;
274		}
275
276		mutex_unlock(&mhi_chan->lock);
277		break;
278	case MHI_PKT_TYPE_RESET_CHAN_CMD:
279		dev_dbg(dev, "Received RESET command for channel (%u)\n", ch_id);
280		if (!ch_ring->started) {
281			dev_err(dev, "Channel (%u) not opened\n", ch_id);
282			return -ENODEV;
283		}
284
285		mutex_lock(&mhi_chan->lock);
286		/* Stop and reset the transfer ring */
287		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
288
289		/* Send channel disconnect status to client driver */
290		if (mhi_chan->xfer_cb) {
291			result.transaction_status = -ENOTCONN;
292			result.bytes_xferd = 0;
293			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
294		}
295
296		/* Set channel state to DISABLED */
297		mhi_chan->state = MHI_CH_STATE_DISABLED;
298		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[ch_id].chcfg);
299		tmp &= ~CHAN_CTX_CHSTATE_MASK;
300		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
301		mhi_cntrl->ch_ctx_cache[ch_id].chcfg = cpu_to_le32(tmp);
302
303		ret = mhi_ep_send_cmd_comp_event(mhi_cntrl, MHI_EV_CC_SUCCESS);
304		if (ret) {
305			dev_err(dev, "Error sending command completion event (%u)\n",
306				MHI_EV_CC_SUCCESS);
307			goto err_unlock;
308		}
309
310		mutex_unlock(&mhi_chan->lock);
311		break;
312	default:
313		dev_err(dev, "Invalid command received: %lu for channel (%u)\n",
314			MHI_TRE_GET_CMD_TYPE(el), ch_id);
315		return -EINVAL;
316	}
317
318	return 0;
319
320err_unlock:
321	mutex_unlock(&mhi_chan->lock);
322
323	return ret;
324}
325
326bool mhi_ep_queue_is_empty(struct mhi_ep_device *mhi_dev, enum dma_data_direction dir)
327{
328	struct mhi_ep_chan *mhi_chan = (dir == DMA_FROM_DEVICE) ? mhi_dev->dl_chan :
329								mhi_dev->ul_chan;
330	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
331	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
332
333	return !!(mhi_chan->rd_offset == ring->wr_offset);
334}
335EXPORT_SYMBOL_GPL(mhi_ep_queue_is_empty);
336
337static void mhi_ep_read_completion(struct mhi_ep_buf_info *buf_info)
338{
339	struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
340	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
341	struct mhi_ep_chan *mhi_chan = mhi_dev->ul_chan;
342	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
343	struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
344	struct mhi_result result = {};
345	int ret;
346
347	if (mhi_chan->xfer_cb) {
348		result.buf_addr = buf_info->cb_buf;
349		result.dir = mhi_chan->dir;
350		result.bytes_xferd = buf_info->size;
351
352		mhi_chan->xfer_cb(mhi_dev, &result);
353	}
354
355	/*
356	 * The host will split the data packet into multiple TREs if it can't fit
357	 * the packet in a single TRE. In that case, CHAIN flag will be set by the
358	 * host for all TREs except the last one.
359	 */
360	if (buf_info->code != MHI_EV_CC_OVERFLOW) {
361		if (MHI_TRE_DATA_GET_CHAIN(el)) {
362			/*
363			 * IEOB (Interrupt on End of Block) flag will be set by the host if
364			 * it expects the completion event for all TREs of a TD.
365			 */
366			if (MHI_TRE_DATA_GET_IEOB(el)) {
367				ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
368							     MHI_TRE_DATA_GET_LEN(el),
369							     MHI_EV_CC_EOB);
370				if (ret < 0) {
371					dev_err(&mhi_chan->mhi_dev->dev,
372						"Error sending transfer compl. event\n");
373					goto err_free_tre_buf;
374				}
375			}
376		} else {
377			/*
378			 * IEOT (Interrupt on End of Transfer) flag will be set by the host
379			 * for the last TRE of the TD and expects the completion event for
380			 * the same.
381			 */
382			if (MHI_TRE_DATA_GET_IEOT(el)) {
383				ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el,
384							     MHI_TRE_DATA_GET_LEN(el),
385							     MHI_EV_CC_EOT);
386				if (ret < 0) {
387					dev_err(&mhi_chan->mhi_dev->dev,
388						"Error sending transfer compl. event\n");
389					goto err_free_tre_buf;
390				}
391			}
392		}
393	}
394
395	mhi_ep_ring_inc_index(ring);
396
397err_free_tre_buf:
398	kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_info->cb_buf);
399}
400
401static int mhi_ep_read_channel(struct mhi_ep_cntrl *mhi_cntrl,
402			       struct mhi_ep_ring *ring)
403{
404	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
405	struct device *dev = &mhi_cntrl->mhi_dev->dev;
406	size_t tr_len, read_offset, write_offset;
407	struct mhi_ep_buf_info buf_info = {};
408	u32 len = MHI_EP_DEFAULT_MTU;
409	struct mhi_ring_element *el;
410	bool tr_done = false;
411	void *buf_addr;
412	u32 buf_left;
413	int ret;
414
415	buf_left = len;
416
417	do {
418		/* Don't process the transfer ring if the channel is not in RUNNING state */
419		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
420			dev_err(dev, "Channel not available\n");
421			return -ENODEV;
422		}
423
424		el = &ring->ring_cache[mhi_chan->rd_offset];
425
426		/* Check if there is data pending to be read from previous read operation */
427		if (mhi_chan->tre_bytes_left) {
428			dev_dbg(dev, "TRE bytes remaining: %u\n", mhi_chan->tre_bytes_left);
429			tr_len = min(buf_left, mhi_chan->tre_bytes_left);
430		} else {
431			mhi_chan->tre_loc = MHI_TRE_DATA_GET_PTR(el);
432			mhi_chan->tre_size = MHI_TRE_DATA_GET_LEN(el);
433			mhi_chan->tre_bytes_left = mhi_chan->tre_size;
434
435			tr_len = min(buf_left, mhi_chan->tre_size);
436		}
437
438		read_offset = mhi_chan->tre_size - mhi_chan->tre_bytes_left;
439		write_offset = len - buf_left;
440
441		buf_addr = kmem_cache_zalloc(mhi_cntrl->tre_buf_cache, GFP_KERNEL | GFP_DMA);
442		if (!buf_addr)
443			return -ENOMEM;
444
445		buf_info.host_addr = mhi_chan->tre_loc + read_offset;
446		buf_info.dev_addr = buf_addr + write_offset;
447		buf_info.size = tr_len;
448		buf_info.cb = mhi_ep_read_completion;
449		buf_info.cb_buf = buf_addr;
450		buf_info.mhi_dev = mhi_chan->mhi_dev;
451
452		if (mhi_chan->tre_bytes_left - tr_len)
453			buf_info.code = MHI_EV_CC_OVERFLOW;
454
455		dev_dbg(dev, "Reading %zd bytes from channel (%u)\n", tr_len, ring->ch_id);
456		ret = mhi_cntrl->read_async(mhi_cntrl, &buf_info);
457		if (ret < 0) {
458			dev_err(&mhi_chan->mhi_dev->dev, "Error reading from channel\n");
459			goto err_free_buf_addr;
460		}
461
462		buf_left -= tr_len;
463		mhi_chan->tre_bytes_left -= tr_len;
464
465		if (!mhi_chan->tre_bytes_left) {
466			if (MHI_TRE_DATA_GET_IEOT(el))
467				tr_done = true;
468
469			mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
470		}
471	} while (buf_left && !tr_done);
472
473	return 0;
474
475err_free_buf_addr:
476	kmem_cache_free(mhi_cntrl->tre_buf_cache, buf_addr);
477
478	return ret;
479}
480
481static int mhi_ep_process_ch_ring(struct mhi_ep_ring *ring)
482{
483	struct mhi_ep_cntrl *mhi_cntrl = ring->mhi_cntrl;
484	struct mhi_result result = {};
485	struct mhi_ep_chan *mhi_chan;
486	int ret;
487
488	mhi_chan = &mhi_cntrl->mhi_chan[ring->ch_id];
489
490	/*
491	 * Bail out if transfer callback is not registered for the channel.
492	 * This is most likely due to the client driver not loaded at this point.
493	 */
494	if (!mhi_chan->xfer_cb) {
495		dev_err(&mhi_chan->mhi_dev->dev, "Client driver not available\n");
496		return -ENODEV;
497	}
498
499	if (ring->ch_id % 2) {
500		/* DL channel */
501		result.dir = mhi_chan->dir;
502		mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
503	} else {
504		/* UL channel */
505		do {
506			ret = mhi_ep_read_channel(mhi_cntrl, ring);
507			if (ret < 0) {
508				dev_err(&mhi_chan->mhi_dev->dev, "Failed to read channel\n");
509				return ret;
510			}
511
512			/* Read until the ring becomes empty */
513		} while (!mhi_ep_queue_is_empty(mhi_chan->mhi_dev, DMA_TO_DEVICE));
514	}
515
516	return 0;
517}
518
519static void mhi_ep_skb_completion(struct mhi_ep_buf_info *buf_info)
520{
521	struct mhi_ep_device *mhi_dev = buf_info->mhi_dev;
522	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
523	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
524	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
525	struct mhi_ring_element *el = &ring->ring_cache[ring->rd_offset];
526	struct device *dev = &mhi_dev->dev;
527	struct mhi_result result = {};
528	int ret;
529
530	if (mhi_chan->xfer_cb) {
531		result.buf_addr = buf_info->cb_buf;
532		result.dir = mhi_chan->dir;
533		result.bytes_xferd = buf_info->size;
534
535		mhi_chan->xfer_cb(mhi_dev, &result);
536	}
537
538	ret = mhi_ep_send_completion_event(mhi_cntrl, ring, el, buf_info->size,
539					   buf_info->code);
540	if (ret) {
541		dev_err(dev, "Error sending transfer completion event\n");
542		return;
543	}
544
545	mhi_ep_ring_inc_index(ring);
546}
547
548/* TODO: Handle partially formed TDs */
549int mhi_ep_queue_skb(struct mhi_ep_device *mhi_dev, struct sk_buff *skb)
550{
551	struct mhi_ep_cntrl *mhi_cntrl = mhi_dev->mhi_cntrl;
552	struct mhi_ep_chan *mhi_chan = mhi_dev->dl_chan;
553	struct device *dev = &mhi_chan->mhi_dev->dev;
554	struct mhi_ep_buf_info buf_info = {};
555	struct mhi_ring_element *el;
556	u32 buf_left, read_offset;
557	struct mhi_ep_ring *ring;
558	size_t tr_len;
559	u32 tre_len;
560	int ret;
561
562	buf_left = skb->len;
563	ring = &mhi_cntrl->mhi_chan[mhi_chan->chan].ring;
564
565	mutex_lock(&mhi_chan->lock);
566
567	do {
568		/* Don't process the transfer ring if the channel is not in RUNNING state */
569		if (mhi_chan->state != MHI_CH_STATE_RUNNING) {
570			dev_err(dev, "Channel not available\n");
571			ret = -ENODEV;
572			goto err_exit;
573		}
574
575		if (mhi_ep_queue_is_empty(mhi_dev, DMA_FROM_DEVICE)) {
576			dev_err(dev, "TRE not available!\n");
577			ret = -ENOSPC;
578			goto err_exit;
579		}
580
581		el = &ring->ring_cache[mhi_chan->rd_offset];
582		tre_len = MHI_TRE_DATA_GET_LEN(el);
583
584		tr_len = min(buf_left, tre_len);
585		read_offset = skb->len - buf_left;
586
587		buf_info.dev_addr = skb->data + read_offset;
588		buf_info.host_addr = MHI_TRE_DATA_GET_PTR(el);
589		buf_info.size = tr_len;
590		buf_info.cb = mhi_ep_skb_completion;
591		buf_info.cb_buf = skb;
592		buf_info.mhi_dev = mhi_dev;
593
594		/*
595		 * For all TREs queued by the host for DL channel, only the EOT flag will be set.
596		 * If the packet doesn't fit into a single TRE, send the OVERFLOW event to
597		 * the host so that the host can adjust the packet boundary to next TREs. Else send
598		 * the EOT event to the host indicating the packet boundary.
599		 */
600		if (buf_left - tr_len)
601			buf_info.code = MHI_EV_CC_OVERFLOW;
602		else
603			buf_info.code = MHI_EV_CC_EOT;
604
605		dev_dbg(dev, "Writing %zd bytes to channel (%u)\n", tr_len, ring->ch_id);
606		ret = mhi_cntrl->write_async(mhi_cntrl, &buf_info);
607		if (ret < 0) {
608			dev_err(dev, "Error writing to the channel\n");
609			goto err_exit;
610		}
611
612		buf_left -= tr_len;
613
614		/*
615		 * Update the read offset cached in mhi_chan. Actual read offset
616		 * will be updated by the completion handler.
617		 */
618		mhi_chan->rd_offset = (mhi_chan->rd_offset + 1) % ring->ring_size;
619	} while (buf_left);
620
621	mutex_unlock(&mhi_chan->lock);
622
623	return 0;
624
625err_exit:
626	mutex_unlock(&mhi_chan->lock);
627
628	return ret;
629}
630EXPORT_SYMBOL_GPL(mhi_ep_queue_skb);
631
632static int mhi_ep_cache_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
633{
634	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
635	struct device *dev = &mhi_cntrl->mhi_dev->dev;
636	int ret;
637
638	/* Update the number of event rings (NER) programmed by the host */
639	mhi_ep_mmio_update_ner(mhi_cntrl);
640
641	dev_dbg(dev, "Number of Event rings: %u, HW Event rings: %u\n",
642		 mhi_cntrl->event_rings, mhi_cntrl->hw_event_rings);
643
644	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
645	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
646	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
647
648	/* Get the channel context base pointer from host */
649	mhi_ep_mmio_get_chc_base(mhi_cntrl);
650
651	/* Allocate and map memory for caching host channel context */
652	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa,
653				   &mhi_cntrl->ch_ctx_cache_phys,
654				   (void __iomem **) &mhi_cntrl->ch_ctx_cache,
655				   ch_ctx_host_size);
656	if (ret) {
657		dev_err(dev, "Failed to allocate and map ch_ctx_cache\n");
658		return ret;
659	}
660
661	/* Get the event context base pointer from host */
662	mhi_ep_mmio_get_erc_base(mhi_cntrl);
663
664	/* Allocate and map memory for caching host event context */
665	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa,
666				   &mhi_cntrl->ev_ctx_cache_phys,
667				   (void __iomem **) &mhi_cntrl->ev_ctx_cache,
668				   ev_ctx_host_size);
669	if (ret) {
670		dev_err(dev, "Failed to allocate and map ev_ctx_cache\n");
671		goto err_ch_ctx;
672	}
673
674	/* Get the command context base pointer from host */
675	mhi_ep_mmio_get_crc_base(mhi_cntrl);
676
677	/* Allocate and map memory for caching host command context */
678	ret = mhi_cntrl->alloc_map(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa,
679				   &mhi_cntrl->cmd_ctx_cache_phys,
680				   (void __iomem **) &mhi_cntrl->cmd_ctx_cache,
681				   cmd_ctx_host_size);
682	if (ret) {
683		dev_err(dev, "Failed to allocate and map cmd_ctx_cache\n");
684		goto err_ev_ctx;
685	}
686
687	/* Initialize command ring */
688	ret = mhi_ep_ring_start(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring,
689				(union mhi_ep_ring_ctx *)mhi_cntrl->cmd_ctx_cache);
690	if (ret) {
691		dev_err(dev, "Failed to start the command ring\n");
692		goto err_cmd_ctx;
693	}
694
695	return ret;
696
697err_cmd_ctx:
698	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
699			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
700
701err_ev_ctx:
702	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
703			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
704
705err_ch_ctx:
706	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
707			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
708
709	return ret;
710}
711
712static void mhi_ep_free_host_cfg(struct mhi_ep_cntrl *mhi_cntrl)
713{
714	size_t cmd_ctx_host_size, ch_ctx_host_size, ev_ctx_host_size;
715
716	ch_ctx_host_size = sizeof(struct mhi_chan_ctxt) * mhi_cntrl->max_chan;
717	ev_ctx_host_size = sizeof(struct mhi_event_ctxt) * mhi_cntrl->event_rings;
718	cmd_ctx_host_size = sizeof(struct mhi_cmd_ctxt) * NR_OF_CMD_RINGS;
719
720	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->cmd_ctx_host_pa, mhi_cntrl->cmd_ctx_cache_phys,
721			      (void __iomem *) mhi_cntrl->cmd_ctx_cache, cmd_ctx_host_size);
722
723	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ev_ctx_host_pa, mhi_cntrl->ev_ctx_cache_phys,
724			      (void __iomem *) mhi_cntrl->ev_ctx_cache, ev_ctx_host_size);
725
726	mhi_cntrl->unmap_free(mhi_cntrl, mhi_cntrl->ch_ctx_host_pa, mhi_cntrl->ch_ctx_cache_phys,
727			      (void __iomem *) mhi_cntrl->ch_ctx_cache, ch_ctx_host_size);
728}
729
730static void mhi_ep_enable_int(struct mhi_ep_cntrl *mhi_cntrl)
731{
732	/*
733	 * Doorbell interrupts are enabled when the corresponding channel gets started.
734	 * Enabling all interrupts here triggers spurious irqs as some of the interrupts
735	 * associated with hw channels always get triggered.
736	 */
737	mhi_ep_mmio_enable_ctrl_interrupt(mhi_cntrl);
738	mhi_ep_mmio_enable_cmdb_interrupt(mhi_cntrl);
739}
740
741static int mhi_ep_enable(struct mhi_ep_cntrl *mhi_cntrl)
742{
743	struct device *dev = &mhi_cntrl->mhi_dev->dev;
744	enum mhi_state state;
745	bool mhi_reset;
746	u32 count = 0;
747	int ret;
748
749	/* Wait for Host to set the M0 state */
750	do {
751		msleep(M0_WAIT_DELAY_MS);
752		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
753		if (mhi_reset) {
754			/* Clear the MHI reset if host is in reset state */
755			mhi_ep_mmio_clear_reset(mhi_cntrl);
756			dev_info(dev, "Detected Host reset while waiting for M0\n");
757		}
758		count++;
759	} while (state != MHI_STATE_M0 && count < M0_WAIT_COUNT);
760
761	if (state != MHI_STATE_M0) {
762		dev_err(dev, "Host failed to enter M0\n");
763		return -ETIMEDOUT;
764	}
765
766	ret = mhi_ep_cache_host_cfg(mhi_cntrl);
767	if (ret) {
768		dev_err(dev, "Failed to cache host config\n");
769		return ret;
770	}
771
772	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
773
774	/* Enable all interrupts now */
775	mhi_ep_enable_int(mhi_cntrl);
776
777	return 0;
778}
779
780static void mhi_ep_cmd_ring_worker(struct work_struct *work)
781{
782	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, cmd_ring_work);
783	struct mhi_ep_ring *ring = &mhi_cntrl->mhi_cmd->ring;
784	struct device *dev = &mhi_cntrl->mhi_dev->dev;
785	struct mhi_ring_element *el;
786	int ret;
787
788	/* Update the write offset for the ring */
789	ret = mhi_ep_update_wr_offset(ring);
790	if (ret) {
791		dev_err(dev, "Error updating write offset for ring\n");
792		return;
793	}
794
795	/* Sanity check to make sure there are elements in the ring */
796	if (ring->rd_offset == ring->wr_offset)
797		return;
798
799	/*
800	 * Process command ring element till write offset. In case of an error, just try to
801	 * process next element.
802	 */
803	while (ring->rd_offset != ring->wr_offset) {
804		el = &ring->ring_cache[ring->rd_offset];
805
806		ret = mhi_ep_process_cmd_ring(ring, el);
807		if (ret && ret != -ENODEV)
808			dev_err(dev, "Error processing cmd ring element: %zu\n", ring->rd_offset);
809
810		mhi_ep_ring_inc_index(ring);
811	}
812}
813
814static void mhi_ep_ch_ring_worker(struct work_struct *work)
815{
816	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, ch_ring_work);
817	struct device *dev = &mhi_cntrl->mhi_dev->dev;
818	struct mhi_ep_ring_item *itr, *tmp;
819	struct mhi_ep_ring *ring;
820	struct mhi_ep_chan *chan;
821	unsigned long flags;
822	LIST_HEAD(head);
823	int ret;
824
825	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
826	list_splice_tail_init(&mhi_cntrl->ch_db_list, &head);
827	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
828
829	/* Process each queued channel ring. In case of an error, just process next element. */
830	list_for_each_entry_safe(itr, tmp, &head, node) {
831		list_del(&itr->node);
832		ring = itr->ring;
833
834		chan = &mhi_cntrl->mhi_chan[ring->ch_id];
835		mutex_lock(&chan->lock);
836
837		/*
838		 * The ring could've stopped while we waited to grab the (chan->lock), so do
839		 * a sanity check before going further.
840		 */
841		if (!ring->started) {
842			mutex_unlock(&chan->lock);
843			kfree(itr);
844			continue;
845		}
846
847		/* Update the write offset for the ring */
848		ret = mhi_ep_update_wr_offset(ring);
849		if (ret) {
850			dev_err(dev, "Error updating write offset for ring\n");
851			mutex_unlock(&chan->lock);
852			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
853			continue;
854		}
855
856		/* Sanity check to make sure there are elements in the ring */
857		if (chan->rd_offset == ring->wr_offset) {
858			mutex_unlock(&chan->lock);
859			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
860			continue;
861		}
862
863		dev_dbg(dev, "Processing the ring for channel (%u)\n", ring->ch_id);
864		ret = mhi_ep_process_ch_ring(ring);
865		if (ret) {
866			dev_err(dev, "Error processing ring for channel (%u): %d\n",
867				ring->ch_id, ret);
868			mutex_unlock(&chan->lock);
869			kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
870			continue;
871		}
872
873		mutex_unlock(&chan->lock);
874		kmem_cache_free(mhi_cntrl->ring_item_cache, itr);
875	}
876}
877
878static void mhi_ep_state_worker(struct work_struct *work)
879{
880	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, state_work);
881	struct device *dev = &mhi_cntrl->mhi_dev->dev;
882	struct mhi_ep_state_transition *itr, *tmp;
883	unsigned long flags;
884	LIST_HEAD(head);
885	int ret;
886
887	spin_lock_irqsave(&mhi_cntrl->list_lock, flags);
888	list_splice_tail_init(&mhi_cntrl->st_transition_list, &head);
889	spin_unlock_irqrestore(&mhi_cntrl->list_lock, flags);
890
891	list_for_each_entry_safe(itr, tmp, &head, node) {
892		list_del(&itr->node);
893		dev_dbg(dev, "Handling MHI state transition to %s\n",
894			 mhi_state_str(itr->state));
895
896		switch (itr->state) {
897		case MHI_STATE_M0:
898			ret = mhi_ep_set_m0_state(mhi_cntrl);
899			if (ret)
900				dev_err(dev, "Failed to transition to M0 state\n");
901			break;
902		case MHI_STATE_M3:
903			ret = mhi_ep_set_m3_state(mhi_cntrl);
904			if (ret)
905				dev_err(dev, "Failed to transition to M3 state\n");
906			break;
907		default:
908			dev_err(dev, "Invalid MHI state transition: %d\n", itr->state);
909			break;
910		}
911		kfree(itr);
912	}
913}
914
915static void mhi_ep_queue_channel_db(struct mhi_ep_cntrl *mhi_cntrl, unsigned long ch_int,
916				    u32 ch_idx)
917{
918	struct mhi_ep_ring_item *item;
919	struct mhi_ep_ring *ring;
920	bool work = !!ch_int;
921	LIST_HEAD(head);
922	u32 i;
923
924	/* First add the ring items to a local list */
925	for_each_set_bit(i, &ch_int, 32) {
926		/* Channel index varies for each register: 0, 32, 64, 96 */
927		u32 ch_id = ch_idx + i;
928
929		ring = &mhi_cntrl->mhi_chan[ch_id].ring;
930		item = kmem_cache_zalloc(mhi_cntrl->ring_item_cache, GFP_ATOMIC);
931		if (!item)
932			return;
933
934		item->ring = ring;
935		list_add_tail(&item->node, &head);
936	}
937
938	/* Now, splice the local list into ch_db_list and queue the work item */
939	if (work) {
940		spin_lock(&mhi_cntrl->list_lock);
941		list_splice_tail_init(&head, &mhi_cntrl->ch_db_list);
942		spin_unlock(&mhi_cntrl->list_lock);
943
944		queue_work(mhi_cntrl->wq, &mhi_cntrl->ch_ring_work);
945	}
946}
947
948/*
949 * Channel interrupt statuses are contained in 4 registers each of 32bit length.
950 * For checking all interrupts, we need to loop through each registers and then
951 * check for bits set.
952 */
953static void mhi_ep_check_channel_interrupt(struct mhi_ep_cntrl *mhi_cntrl)
954{
955	u32 ch_int, ch_idx, i;
956
957	/* Bail out if there is no channel doorbell interrupt */
958	if (!mhi_ep_mmio_read_chdb_status_interrupts(mhi_cntrl))
959		return;
960
961	for (i = 0; i < MHI_MASK_ROWS_CH_DB; i++) {
962		ch_idx = i * MHI_MASK_CH_LEN;
963
964		/* Only process channel interrupt if the mask is enabled */
965		ch_int = mhi_cntrl->chdb[i].status & mhi_cntrl->chdb[i].mask;
966		if (ch_int) {
967			mhi_ep_queue_channel_db(mhi_cntrl, ch_int, ch_idx);
968			mhi_ep_mmio_write(mhi_cntrl, MHI_CHDB_INT_CLEAR_n(i),
969							mhi_cntrl->chdb[i].status);
970		}
971	}
972}
973
974static void mhi_ep_process_ctrl_interrupt(struct mhi_ep_cntrl *mhi_cntrl,
975					 enum mhi_state state)
976{
977	struct mhi_ep_state_transition *item;
978
979	item = kzalloc(sizeof(*item), GFP_ATOMIC);
980	if (!item)
981		return;
982
983	item->state = state;
984	spin_lock(&mhi_cntrl->list_lock);
985	list_add_tail(&item->node, &mhi_cntrl->st_transition_list);
986	spin_unlock(&mhi_cntrl->list_lock);
987
988	queue_work(mhi_cntrl->wq, &mhi_cntrl->state_work);
989}
990
991/*
992 * Interrupt handler that services interrupts raised by the host writing to
993 * MHICTRL and Command ring doorbell (CRDB) registers for state change and
994 * channel interrupts.
995 */
996static irqreturn_t mhi_ep_irq(int irq, void *data)
997{
998	struct mhi_ep_cntrl *mhi_cntrl = data;
999	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1000	enum mhi_state state;
1001	u32 int_value;
1002	bool mhi_reset;
1003
1004	/* Acknowledge the ctrl interrupt */
1005	int_value = mhi_ep_mmio_read(mhi_cntrl, MHI_CTRL_INT_STATUS);
1006	mhi_ep_mmio_write(mhi_cntrl, MHI_CTRL_INT_CLEAR, int_value);
1007
1008	/* Check for ctrl interrupt */
1009	if (FIELD_GET(MHI_CTRL_INT_STATUS_MSK, int_value)) {
1010		dev_dbg(dev, "Processing ctrl interrupt\n");
1011		mhi_ep_mmio_get_mhi_state(mhi_cntrl, &state, &mhi_reset);
1012		if (mhi_reset) {
1013			dev_info(dev, "Host triggered MHI reset!\n");
1014			disable_irq_nosync(mhi_cntrl->irq);
1015			schedule_work(&mhi_cntrl->reset_work);
1016			return IRQ_HANDLED;
1017		}
1018
1019		mhi_ep_process_ctrl_interrupt(mhi_cntrl, state);
1020	}
1021
1022	/* Check for command doorbell interrupt */
1023	if (FIELD_GET(MHI_CTRL_INT_STATUS_CRDB_MSK, int_value)) {
1024		dev_dbg(dev, "Processing command doorbell interrupt\n");
1025		queue_work(mhi_cntrl->wq, &mhi_cntrl->cmd_ring_work);
1026	}
1027
1028	/* Check for channel interrupts */
1029	mhi_ep_check_channel_interrupt(mhi_cntrl);
1030
1031	return IRQ_HANDLED;
1032}
1033
1034static void mhi_ep_abort_transfer(struct mhi_ep_cntrl *mhi_cntrl)
1035{
1036	struct mhi_ep_ring *ch_ring, *ev_ring;
1037	struct mhi_result result = {};
1038	struct mhi_ep_chan *mhi_chan;
1039	int i;
1040
1041	/* Stop all the channels */
1042	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1043		mhi_chan = &mhi_cntrl->mhi_chan[i];
1044		if (!mhi_chan->ring.started)
1045			continue;
1046
1047		mutex_lock(&mhi_chan->lock);
1048		/* Send channel disconnect status to client drivers */
1049		if (mhi_chan->xfer_cb) {
1050			result.transaction_status = -ENOTCONN;
1051			result.bytes_xferd = 0;
1052			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1053		}
1054
1055		mhi_chan->state = MHI_CH_STATE_DISABLED;
1056		mutex_unlock(&mhi_chan->lock);
1057	}
1058
1059	flush_workqueue(mhi_cntrl->wq);
1060
1061	/* Destroy devices associated with all channels */
1062	device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_ep_destroy_device);
1063
1064	/* Stop and reset the transfer rings */
1065	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1066		mhi_chan = &mhi_cntrl->mhi_chan[i];
1067		if (!mhi_chan->ring.started)
1068			continue;
1069
1070		ch_ring = &mhi_cntrl->mhi_chan[i].ring;
1071		mutex_lock(&mhi_chan->lock);
1072		mhi_ep_ring_reset(mhi_cntrl, ch_ring);
1073		mutex_unlock(&mhi_chan->lock);
1074	}
1075
1076	/* Stop and reset the event rings */
1077	for (i = 0; i < mhi_cntrl->event_rings; i++) {
1078		ev_ring = &mhi_cntrl->mhi_event[i].ring;
1079		if (!ev_ring->started)
1080			continue;
1081
1082		mutex_lock(&mhi_cntrl->event_lock);
1083		mhi_ep_ring_reset(mhi_cntrl, ev_ring);
1084		mutex_unlock(&mhi_cntrl->event_lock);
1085	}
1086
1087	/* Stop and reset the command ring */
1088	mhi_ep_ring_reset(mhi_cntrl, &mhi_cntrl->mhi_cmd->ring);
1089
1090	mhi_ep_free_host_cfg(mhi_cntrl);
1091	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1092
1093	mhi_cntrl->enabled = false;
1094}
1095
1096static void mhi_ep_reset_worker(struct work_struct *work)
1097{
1098	struct mhi_ep_cntrl *mhi_cntrl = container_of(work, struct mhi_ep_cntrl, reset_work);
1099	enum mhi_state cur_state;
1100
1101	mhi_ep_power_down(mhi_cntrl);
1102
1103	mutex_lock(&mhi_cntrl->state_lock);
1104
1105	/* Reset MMIO to signal host that the MHI_RESET is completed in endpoint */
1106	mhi_ep_mmio_reset(mhi_cntrl);
1107	cur_state = mhi_cntrl->mhi_state;
1108
1109	/*
1110	 * Only proceed further if the reset is due to SYS_ERR. The host will
1111	 * issue reset during shutdown also and we don't need to do re-init in
1112	 * that case.
1113	 */
1114	if (cur_state == MHI_STATE_SYS_ERR)
1115		mhi_ep_power_up(mhi_cntrl);
1116
1117	mutex_unlock(&mhi_cntrl->state_lock);
1118}
1119
1120/*
1121 * We don't need to do anything special other than setting the MHI SYS_ERR
1122 * state. The host will reset all contexts and issue MHI RESET so that we
1123 * could also recover from error state.
1124 */
1125void mhi_ep_handle_syserr(struct mhi_ep_cntrl *mhi_cntrl)
1126{
1127	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1128	int ret;
1129
1130	ret = mhi_ep_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1131	if (ret)
1132		return;
1133
1134	/* Signal host that the device went to SYS_ERR state */
1135	ret = mhi_ep_send_state_change_event(mhi_cntrl, MHI_STATE_SYS_ERR);
1136	if (ret)
1137		dev_err(dev, "Failed sending SYS_ERR state change event: %d\n", ret);
1138}
1139
1140int mhi_ep_power_up(struct mhi_ep_cntrl *mhi_cntrl)
1141{
1142	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1143	int ret, i;
1144
1145	/*
1146	 * Mask all interrupts until the state machine is ready. Interrupts will
1147	 * be enabled later with mhi_ep_enable().
1148	 */
1149	mhi_ep_mmio_mask_interrupts(mhi_cntrl);
1150	mhi_ep_mmio_init(mhi_cntrl);
1151
1152	mhi_cntrl->mhi_event = kcalloc(mhi_cntrl->event_rings,
1153				       sizeof(*mhi_cntrl->mhi_event),
1154				       GFP_KERNEL);
1155	if (!mhi_cntrl->mhi_event)
1156		return -ENOMEM;
1157
1158	/* Initialize command, channel and event rings */
1159	mhi_ep_ring_init(&mhi_cntrl->mhi_cmd->ring, RING_TYPE_CMD, 0);
1160	for (i = 0; i < mhi_cntrl->max_chan; i++)
1161		mhi_ep_ring_init(&mhi_cntrl->mhi_chan[i].ring, RING_TYPE_CH, i);
1162	for (i = 0; i < mhi_cntrl->event_rings; i++)
1163		mhi_ep_ring_init(&mhi_cntrl->mhi_event[i].ring, RING_TYPE_ER, i);
1164
1165	mhi_cntrl->mhi_state = MHI_STATE_RESET;
1166
1167	/* Set AMSS EE before signaling ready state */
1168	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1169
1170	/* All set, notify the host that we are ready */
1171	ret = mhi_ep_set_ready_state(mhi_cntrl);
1172	if (ret)
1173		goto err_free_event;
1174
1175	dev_dbg(dev, "READY state notification sent to the host\n");
1176
1177	ret = mhi_ep_enable(mhi_cntrl);
1178	if (ret) {
1179		dev_err(dev, "Failed to enable MHI endpoint\n");
1180		goto err_free_event;
1181	}
1182
1183	enable_irq(mhi_cntrl->irq);
1184	mhi_cntrl->enabled = true;
1185
1186	return 0;
1187
1188err_free_event:
1189	kfree(mhi_cntrl->mhi_event);
1190
1191	return ret;
1192}
1193EXPORT_SYMBOL_GPL(mhi_ep_power_up);
1194
1195void mhi_ep_power_down(struct mhi_ep_cntrl *mhi_cntrl)
1196{
1197	if (mhi_cntrl->enabled) {
1198		mhi_ep_abort_transfer(mhi_cntrl);
1199		kfree(mhi_cntrl->mhi_event);
1200		disable_irq(mhi_cntrl->irq);
1201	}
1202}
1203EXPORT_SYMBOL_GPL(mhi_ep_power_down);
1204
1205void mhi_ep_suspend_channels(struct mhi_ep_cntrl *mhi_cntrl)
1206{
1207	struct mhi_ep_chan *mhi_chan;
1208	u32 tmp;
1209	int i;
1210
1211	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1212		mhi_chan = &mhi_cntrl->mhi_chan[i];
1213
1214		if (!mhi_chan->mhi_dev)
1215			continue;
1216
1217		mutex_lock(&mhi_chan->lock);
1218		/* Skip if the channel is not currently running */
1219		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1220		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_RUNNING) {
1221			mutex_unlock(&mhi_chan->lock);
1222			continue;
1223		}
1224
1225		dev_dbg(&mhi_chan->mhi_dev->dev, "Suspending channel\n");
1226		/* Set channel state to SUSPENDED */
1227		mhi_chan->state = MHI_CH_STATE_SUSPENDED;
1228		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1229		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_SUSPENDED);
1230		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1231		mutex_unlock(&mhi_chan->lock);
1232	}
1233}
1234
1235void mhi_ep_resume_channels(struct mhi_ep_cntrl *mhi_cntrl)
1236{
1237	struct mhi_ep_chan *mhi_chan;
1238	u32 tmp;
1239	int i;
1240
1241	for (i = 0; i < mhi_cntrl->max_chan; i++) {
1242		mhi_chan = &mhi_cntrl->mhi_chan[i];
1243
1244		if (!mhi_chan->mhi_dev)
1245			continue;
1246
1247		mutex_lock(&mhi_chan->lock);
1248		/* Skip if the channel is not currently suspended */
1249		tmp = le32_to_cpu(mhi_cntrl->ch_ctx_cache[i].chcfg);
1250		if (FIELD_GET(CHAN_CTX_CHSTATE_MASK, tmp) != MHI_CH_STATE_SUSPENDED) {
1251			mutex_unlock(&mhi_chan->lock);
1252			continue;
1253		}
1254
1255		dev_dbg(&mhi_chan->mhi_dev->dev, "Resuming channel\n");
1256		/* Set channel state to RUNNING */
1257		mhi_chan->state = MHI_CH_STATE_RUNNING;
1258		tmp &= ~CHAN_CTX_CHSTATE_MASK;
1259		tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_RUNNING);
1260		mhi_cntrl->ch_ctx_cache[i].chcfg = cpu_to_le32(tmp);
1261		mutex_unlock(&mhi_chan->lock);
1262	}
1263}
1264
1265static void mhi_ep_release_device(struct device *dev)
1266{
1267	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1268
1269	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1270		mhi_dev->mhi_cntrl->mhi_dev = NULL;
1271
1272	/*
1273	 * We need to set the mhi_chan->mhi_dev to NULL here since the MHI
1274	 * devices for the channels will only get created in mhi_ep_create_device()
1275	 * if the mhi_dev associated with it is NULL.
1276	 */
1277	if (mhi_dev->ul_chan)
1278		mhi_dev->ul_chan->mhi_dev = NULL;
1279
1280	if (mhi_dev->dl_chan)
1281		mhi_dev->dl_chan->mhi_dev = NULL;
1282
1283	kfree(mhi_dev);
1284}
1285
1286static struct mhi_ep_device *mhi_ep_alloc_device(struct mhi_ep_cntrl *mhi_cntrl,
1287						 enum mhi_device_type dev_type)
1288{
1289	struct mhi_ep_device *mhi_dev;
1290	struct device *dev;
1291
1292	mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
1293	if (!mhi_dev)
1294		return ERR_PTR(-ENOMEM);
1295
1296	dev = &mhi_dev->dev;
1297	device_initialize(dev);
1298	dev->bus = &mhi_ep_bus_type;
1299	dev->release = mhi_ep_release_device;
1300
1301	/* Controller device is always allocated first */
1302	if (dev_type == MHI_DEVICE_CONTROLLER)
1303		/* for MHI controller device, parent is the bus device (e.g. PCI EPF) */
1304		dev->parent = mhi_cntrl->cntrl_dev;
1305	else
1306		/* for MHI client devices, parent is the MHI controller device */
1307		dev->parent = &mhi_cntrl->mhi_dev->dev;
1308
1309	mhi_dev->mhi_cntrl = mhi_cntrl;
1310	mhi_dev->dev_type = dev_type;
1311
1312	return mhi_dev;
1313}
1314
1315/*
1316 * MHI channels are always defined in pairs with UL as the even numbered
1317 * channel and DL as odd numbered one. This function gets UL channel (primary)
1318 * as the ch_id and always looks after the next entry in channel list for
1319 * the corresponding DL channel (secondary).
1320 */
1321static int mhi_ep_create_device(struct mhi_ep_cntrl *mhi_cntrl, u32 ch_id)
1322{
1323	struct mhi_ep_chan *mhi_chan = &mhi_cntrl->mhi_chan[ch_id];
1324	struct device *dev = mhi_cntrl->cntrl_dev;
1325	struct mhi_ep_device *mhi_dev;
1326	int ret;
1327
1328	/* Check if the channel name is same for both UL and DL */
1329	if (strcmp(mhi_chan->name, mhi_chan[1].name)) {
1330		dev_err(dev, "UL and DL channel names are not same: (%s) != (%s)\n",
1331			mhi_chan->name, mhi_chan[1].name);
1332		return -EINVAL;
1333	}
1334
1335	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_XFER);
1336	if (IS_ERR(mhi_dev))
1337		return PTR_ERR(mhi_dev);
1338
1339	/* Configure primary channel */
1340	mhi_dev->ul_chan = mhi_chan;
1341	get_device(&mhi_dev->dev);
1342	mhi_chan->mhi_dev = mhi_dev;
1343
1344	/* Configure secondary channel as well */
1345	mhi_chan++;
1346	mhi_dev->dl_chan = mhi_chan;
1347	get_device(&mhi_dev->dev);
1348	mhi_chan->mhi_dev = mhi_dev;
1349
1350	/* Channel name is same for both UL and DL */
1351	mhi_dev->name = mhi_chan->name;
1352	ret = dev_set_name(&mhi_dev->dev, "%s_%s",
1353		     dev_name(&mhi_cntrl->mhi_dev->dev),
1354		     mhi_dev->name);
1355	if (ret) {
1356		put_device(&mhi_dev->dev);
1357		return ret;
1358	}
1359
1360	ret = device_add(&mhi_dev->dev);
1361	if (ret)
1362		put_device(&mhi_dev->dev);
1363
1364	return ret;
1365}
1366
1367static int mhi_ep_destroy_device(struct device *dev, void *data)
1368{
1369	struct mhi_ep_device *mhi_dev;
1370	struct mhi_ep_cntrl *mhi_cntrl;
1371	struct mhi_ep_chan *ul_chan, *dl_chan;
1372
1373	if (dev->bus != &mhi_ep_bus_type)
1374		return 0;
1375
1376	mhi_dev = to_mhi_ep_device(dev);
1377	mhi_cntrl = mhi_dev->mhi_cntrl;
1378
1379	/* Only destroy devices created for channels */
1380	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1381		return 0;
1382
1383	ul_chan = mhi_dev->ul_chan;
1384	dl_chan = mhi_dev->dl_chan;
1385
1386	if (ul_chan)
1387		put_device(&ul_chan->mhi_dev->dev);
1388
1389	if (dl_chan)
1390		put_device(&dl_chan->mhi_dev->dev);
1391
1392	dev_dbg(&mhi_cntrl->mhi_dev->dev, "Destroying device for chan:%s\n",
1393		 mhi_dev->name);
1394
1395	/* Notify the client and remove the device from MHI bus */
1396	device_del(dev);
1397	put_device(dev);
1398
1399	return 0;
1400}
1401
1402static int mhi_ep_chan_init(struct mhi_ep_cntrl *mhi_cntrl,
1403			    const struct mhi_ep_cntrl_config *config)
1404{
1405	const struct mhi_ep_channel_config *ch_cfg;
1406	struct device *dev = mhi_cntrl->cntrl_dev;
1407	u32 chan, i;
1408	int ret = -EINVAL;
1409
1410	mhi_cntrl->max_chan = config->max_channels;
1411
1412	/*
1413	 * Allocate max_channels supported by the MHI endpoint and populate
1414	 * only the defined channels
1415	 */
1416	mhi_cntrl->mhi_chan = kcalloc(mhi_cntrl->max_chan, sizeof(*mhi_cntrl->mhi_chan),
1417				      GFP_KERNEL);
1418	if (!mhi_cntrl->mhi_chan)
1419		return -ENOMEM;
1420
1421	for (i = 0; i < config->num_channels; i++) {
1422		struct mhi_ep_chan *mhi_chan;
1423
1424		ch_cfg = &config->ch_cfg[i];
1425
1426		chan = ch_cfg->num;
1427		if (chan >= mhi_cntrl->max_chan) {
1428			dev_err(dev, "Channel (%u) exceeds maximum available channels (%u)\n",
1429				chan, mhi_cntrl->max_chan);
1430			goto error_chan_cfg;
1431		}
1432
1433		/* Bi-directional and direction less channels are not supported */
1434		if (ch_cfg->dir == DMA_BIDIRECTIONAL || ch_cfg->dir == DMA_NONE) {
1435			dev_err(dev, "Invalid direction (%u) for channel (%u)\n",
1436				ch_cfg->dir, chan);
1437			goto error_chan_cfg;
1438		}
1439
1440		mhi_chan = &mhi_cntrl->mhi_chan[chan];
1441		mhi_chan->name = ch_cfg->name;
1442		mhi_chan->chan = chan;
1443		mhi_chan->dir = ch_cfg->dir;
1444		mutex_init(&mhi_chan->lock);
1445	}
1446
1447	return 0;
1448
1449error_chan_cfg:
1450	kfree(mhi_cntrl->mhi_chan);
1451
1452	return ret;
1453}
1454
1455/*
1456 * Allocate channel and command rings here. Event rings will be allocated
1457 * in mhi_ep_power_up() as the config comes from the host.
1458 */
1459int mhi_ep_register_controller(struct mhi_ep_cntrl *mhi_cntrl,
1460				const struct mhi_ep_cntrl_config *config)
1461{
1462	struct mhi_ep_device *mhi_dev;
1463	int ret;
1464
1465	if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->mmio || !mhi_cntrl->irq)
1466		return -EINVAL;
1467
1468	if (!mhi_cntrl->read_sync || !mhi_cntrl->write_sync ||
1469	    !mhi_cntrl->read_async || !mhi_cntrl->write_async)
1470		return -EINVAL;
1471
1472	ret = mhi_ep_chan_init(mhi_cntrl, config);
1473	if (ret)
1474		return ret;
1475
1476	mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS, sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
1477	if (!mhi_cntrl->mhi_cmd) {
1478		ret = -ENOMEM;
1479		goto err_free_ch;
1480	}
1481
1482	mhi_cntrl->ev_ring_el_cache = kmem_cache_create("mhi_ep_event_ring_el",
1483							sizeof(struct mhi_ring_element), 0,
1484							SLAB_CACHE_DMA, NULL);
1485	if (!mhi_cntrl->ev_ring_el_cache) {
1486		ret = -ENOMEM;
1487		goto err_free_cmd;
1488	}
1489
1490	mhi_cntrl->tre_buf_cache = kmem_cache_create("mhi_ep_tre_buf", MHI_EP_DEFAULT_MTU, 0,
1491						      SLAB_CACHE_DMA, NULL);
1492	if (!mhi_cntrl->tre_buf_cache) {
1493		ret = -ENOMEM;
1494		goto err_destroy_ev_ring_el_cache;
1495	}
1496
1497	mhi_cntrl->ring_item_cache = kmem_cache_create("mhi_ep_ring_item",
1498							sizeof(struct mhi_ep_ring_item), 0,
1499							0, NULL);
1500	if (!mhi_cntrl->ring_item_cache) {
1501		ret = -ENOMEM;
1502		goto err_destroy_tre_buf_cache;
1503	}
1504
1505	INIT_WORK(&mhi_cntrl->state_work, mhi_ep_state_worker);
1506	INIT_WORK(&mhi_cntrl->reset_work, mhi_ep_reset_worker);
1507	INIT_WORK(&mhi_cntrl->cmd_ring_work, mhi_ep_cmd_ring_worker);
1508	INIT_WORK(&mhi_cntrl->ch_ring_work, mhi_ep_ch_ring_worker);
1509
1510	mhi_cntrl->wq = alloc_workqueue("mhi_ep_wq", 0, 0);
1511	if (!mhi_cntrl->wq) {
1512		ret = -ENOMEM;
1513		goto err_destroy_ring_item_cache;
1514	}
1515
1516	INIT_LIST_HEAD(&mhi_cntrl->st_transition_list);
1517	INIT_LIST_HEAD(&mhi_cntrl->ch_db_list);
1518	spin_lock_init(&mhi_cntrl->list_lock);
1519	mutex_init(&mhi_cntrl->state_lock);
1520	mutex_init(&mhi_cntrl->event_lock);
1521
1522	/* Set MHI version and AMSS EE before enumeration */
1523	mhi_ep_mmio_write(mhi_cntrl, EP_MHIVER, config->mhi_version);
1524	mhi_ep_mmio_set_env(mhi_cntrl, MHI_EE_AMSS);
1525
1526	/* Set controller index */
1527	ret = ida_alloc(&mhi_ep_cntrl_ida, GFP_KERNEL);
1528	if (ret < 0)
1529		goto err_destroy_wq;
1530
1531	mhi_cntrl->index = ret;
1532
1533	irq_set_status_flags(mhi_cntrl->irq, IRQ_NOAUTOEN);
1534	ret = request_irq(mhi_cntrl->irq, mhi_ep_irq, IRQF_TRIGGER_HIGH,
1535			  "doorbell_irq", mhi_cntrl);
1536	if (ret) {
1537		dev_err(mhi_cntrl->cntrl_dev, "Failed to request Doorbell IRQ\n");
1538		goto err_ida_free;
1539	}
1540
1541	/* Allocate the controller device */
1542	mhi_dev = mhi_ep_alloc_device(mhi_cntrl, MHI_DEVICE_CONTROLLER);
1543	if (IS_ERR(mhi_dev)) {
1544		dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate controller device\n");
1545		ret = PTR_ERR(mhi_dev);
1546		goto err_free_irq;
1547	}
1548
1549	ret = dev_set_name(&mhi_dev->dev, "mhi_ep%u", mhi_cntrl->index);
1550	if (ret)
1551		goto err_put_dev;
1552
1553	mhi_dev->name = dev_name(&mhi_dev->dev);
1554	mhi_cntrl->mhi_dev = mhi_dev;
1555
1556	ret = device_add(&mhi_dev->dev);
1557	if (ret)
1558		goto err_put_dev;
1559
1560	dev_dbg(&mhi_dev->dev, "MHI EP Controller registered\n");
1561
1562	return 0;
1563
1564err_put_dev:
1565	put_device(&mhi_dev->dev);
1566err_free_irq:
1567	free_irq(mhi_cntrl->irq, mhi_cntrl);
1568err_ida_free:
1569	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1570err_destroy_wq:
1571	destroy_workqueue(mhi_cntrl->wq);
1572err_destroy_ring_item_cache:
1573	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1574err_destroy_ev_ring_el_cache:
1575	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1576err_destroy_tre_buf_cache:
1577	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1578err_free_cmd:
1579	kfree(mhi_cntrl->mhi_cmd);
1580err_free_ch:
1581	kfree(mhi_cntrl->mhi_chan);
1582
1583	return ret;
1584}
1585EXPORT_SYMBOL_GPL(mhi_ep_register_controller);
1586
1587/*
1588 * It is expected that the controller drivers will power down the MHI EP stack
1589 * using "mhi_ep_power_down()" before calling this function to unregister themselves.
1590 */
1591void mhi_ep_unregister_controller(struct mhi_ep_cntrl *mhi_cntrl)
1592{
1593	struct mhi_ep_device *mhi_dev = mhi_cntrl->mhi_dev;
1594
1595	destroy_workqueue(mhi_cntrl->wq);
1596
1597	free_irq(mhi_cntrl->irq, mhi_cntrl);
1598
1599	kmem_cache_destroy(mhi_cntrl->tre_buf_cache);
1600	kmem_cache_destroy(mhi_cntrl->ev_ring_el_cache);
1601	kmem_cache_destroy(mhi_cntrl->ring_item_cache);
1602	kfree(mhi_cntrl->mhi_cmd);
1603	kfree(mhi_cntrl->mhi_chan);
1604
1605	device_del(&mhi_dev->dev);
1606	put_device(&mhi_dev->dev);
1607
1608	ida_free(&mhi_ep_cntrl_ida, mhi_cntrl->index);
1609}
1610EXPORT_SYMBOL_GPL(mhi_ep_unregister_controller);
1611
1612static int mhi_ep_driver_probe(struct device *dev)
1613{
1614	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1615	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1616	struct mhi_ep_chan *ul_chan = mhi_dev->ul_chan;
1617	struct mhi_ep_chan *dl_chan = mhi_dev->dl_chan;
1618
1619	ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
1620	dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
1621
1622	return mhi_drv->probe(mhi_dev, mhi_dev->id);
1623}
1624
1625static int mhi_ep_driver_remove(struct device *dev)
1626{
1627	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1628	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(dev->driver);
1629	struct mhi_result result = {};
1630	struct mhi_ep_chan *mhi_chan;
1631	int dir;
1632
1633	/* Skip if it is a controller device */
1634	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1635		return 0;
1636
1637	/* Disconnect the channels associated with the driver */
1638	for (dir = 0; dir < 2; dir++) {
1639		mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
1640
1641		if (!mhi_chan)
1642			continue;
1643
1644		mutex_lock(&mhi_chan->lock);
1645		/* Send channel disconnect status to the client driver */
1646		if (mhi_chan->xfer_cb) {
1647			result.transaction_status = -ENOTCONN;
1648			result.bytes_xferd = 0;
1649			mhi_chan->xfer_cb(mhi_chan->mhi_dev, &result);
1650		}
1651
1652		mhi_chan->state = MHI_CH_STATE_DISABLED;
1653		mhi_chan->xfer_cb = NULL;
1654		mutex_unlock(&mhi_chan->lock);
1655	}
1656
1657	/* Remove the client driver now */
1658	mhi_drv->remove(mhi_dev);
1659
1660	return 0;
1661}
1662
1663int __mhi_ep_driver_register(struct mhi_ep_driver *mhi_drv, struct module *owner)
1664{
1665	struct device_driver *driver = &mhi_drv->driver;
1666
1667	if (!mhi_drv->probe || !mhi_drv->remove)
1668		return -EINVAL;
1669
1670	/* Client drivers should have callbacks defined for both channels */
1671	if (!mhi_drv->ul_xfer_cb || !mhi_drv->dl_xfer_cb)
1672		return -EINVAL;
1673
1674	driver->bus = &mhi_ep_bus_type;
1675	driver->owner = owner;
1676	driver->probe = mhi_ep_driver_probe;
1677	driver->remove = mhi_ep_driver_remove;
1678
1679	return driver_register(driver);
1680}
1681EXPORT_SYMBOL_GPL(__mhi_ep_driver_register);
1682
1683void mhi_ep_driver_unregister(struct mhi_ep_driver *mhi_drv)
1684{
1685	driver_unregister(&mhi_drv->driver);
1686}
1687EXPORT_SYMBOL_GPL(mhi_ep_driver_unregister);
1688
1689static int mhi_ep_uevent(const struct device *dev, struct kobj_uevent_env *env)
1690{
1691	const struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1692
1693	return add_uevent_var(env, "MODALIAS=" MHI_EP_DEVICE_MODALIAS_FMT,
1694					mhi_dev->name);
1695}
1696
1697static int mhi_ep_match(struct device *dev, struct device_driver *drv)
1698{
1699	struct mhi_ep_device *mhi_dev = to_mhi_ep_device(dev);
1700	struct mhi_ep_driver *mhi_drv = to_mhi_ep_driver(drv);
1701	const struct mhi_device_id *id;
1702
1703	/*
1704	 * If the device is a controller type then there is no client driver
1705	 * associated with it
1706	 */
1707	if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
1708		return 0;
1709
1710	for (id = mhi_drv->id_table; id->chan[0]; id++)
1711		if (!strcmp(mhi_dev->name, id->chan)) {
1712			mhi_dev->id = id;
1713			return 1;
1714		}
1715
1716	return 0;
1717};
1718
1719struct bus_type mhi_ep_bus_type = {
1720	.name = "mhi_ep",
1721	.dev_name = "mhi_ep",
1722	.match = mhi_ep_match,
1723	.uevent = mhi_ep_uevent,
1724};
1725
1726static int __init mhi_ep_init(void)
1727{
1728	return bus_register(&mhi_ep_bus_type);
1729}
1730
1731static void __exit mhi_ep_exit(void)
1732{
1733	bus_unregister(&mhi_ep_bus_type);
1734}
1735
1736postcore_initcall(mhi_ep_init);
1737module_exit(mhi_ep_exit);
1738
1739MODULE_LICENSE("GPL v2");
1740MODULE_DESCRIPTION("MHI Bus Endpoint stack");
1741MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
1742