1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 *  Bluetooth support for Intel PCIe devices
5 *
6 *  Copyright (C) 2024  Intel Corporation
7 */
8
9#include <linux/kernel.h>
10#include <linux/module.h>
11#include <linux/firmware.h>
12#include <linux/pci.h>
13#include <linux/wait.h>
14#include <linux/delay.h>
15#include <linux/interrupt.h>
16
17#include <asm/unaligned.h>
18
19#include <net/bluetooth/bluetooth.h>
20#include <net/bluetooth/hci_core.h>
21
22#include "btintel.h"
23#include "btintel_pcie.h"
24
25#define VERSION "0.1"
26
27#define BTINTEL_PCI_DEVICE(dev, subdev)	\
28	.vendor = PCI_VENDOR_ID_INTEL,	\
29	.device = (dev),		\
30	.subvendor = PCI_ANY_ID,	\
31	.subdevice = (subdev),		\
32	.driver_data = 0
33
34#define POLL_INTERVAL_US	10
35
36/* Intel Bluetooth PCIe device id table */
37static const struct pci_device_id btintel_pcie_table[] = {
38	{ BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) },
39	{ 0 }
40};
41MODULE_DEVICE_TABLE(pci, btintel_pcie_table);
42
43/* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */
44#define BTINTEL_PCIE_HCI_TYPE_LEN	4
45#define BTINTEL_PCIE_HCI_CMD_PKT	0x00000001
46#define BTINTEL_PCIE_HCI_ACL_PKT	0x00000002
47#define BTINTEL_PCIE_HCI_SCO_PKT	0x00000003
48#define BTINTEL_PCIE_HCI_EVT_PKT	0x00000004
49
50static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia,
51				     u16 queue_num)
52{
53	bt_dev_dbg(hdev, "IA: %s: tr-h:%02u  tr-t:%02u  cr-h:%02u  cr-t:%02u",
54		   queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ",
55		   ia->tr_hia[queue_num], ia->tr_tia[queue_num],
56		   ia->cr_hia[queue_num], ia->cr_tia[queue_num]);
57}
58
59static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1,
60				   u16 index)
61{
62	bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x",
63		   index, urbd1->frbd_tag, urbd1->status, urbd1->fixed);
64}
65
66static int btintel_pcie_poll_bit(struct btintel_pcie_data *data, u32 offset,
67				 u32 bits, u32 mask, int timeout_us)
68{
69	int t = 0;
70	u32 reg;
71
72	do {
73		reg = btintel_pcie_rd_reg32(data, offset);
74
75		if ((reg & mask) == (bits & mask))
76			return t;
77		udelay(POLL_INTERVAL_US);
78		t += POLL_INTERVAL_US;
79	} while (t < timeout_us);
80
81	return -ETIMEDOUT;
82}
83
84static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry)
85{
86	u8 queue = entry->entry;
87	struct msix_entry *entries = entry - queue;
88
89	return container_of(entries, struct btintel_pcie_data, msix_entries[0]);
90}
91
92/* Set the doorbell for TXQ to notify the device that @index (actually index-1)
93 * of the TFD is updated and ready to transmit.
94 */
95static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index)
96{
97	u32 val;
98
99	val = index;
100	val |= (BTINTEL_PCIE_TX_DB_VEC << 16);
101
102	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
103}
104
105/* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer
106 * descriptor) with the data length and the DMA address of the data buffer.
107 */
108static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index,
109				    struct sk_buff *skb)
110{
111	struct data_buf *buf;
112	struct tfd *tfd;
113
114	tfd = &txq->tfds[tfd_index];
115	memset(tfd, 0, sizeof(*tfd));
116
117	buf = &txq->bufs[tfd_index];
118
119	tfd->size = skb->len;
120	tfd->addr = buf->data_p_addr;
121
122	/* Copy the outgoing data to DMA buffer */
123	memcpy(buf->data, skb->data, tfd->size);
124}
125
126static int btintel_pcie_send_sync(struct btintel_pcie_data *data,
127				  struct sk_buff *skb)
128{
129	int ret;
130	u16 tfd_index;
131	struct txq *txq = &data->txq;
132
133	tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM];
134
135	if (tfd_index > txq->count)
136		return -ERANGE;
137
138	/* Prepare for TX. It updates the TFD with the length of data and
139	 * address of the DMA buffer, and copy the data to the DMA buffer
140	 */
141	btintel_pcie_prepare_tx(txq, tfd_index, skb);
142
143	tfd_index = (tfd_index + 1) % txq->count;
144	data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index;
145
146	/* Arm wait event condition */
147	data->tx_wait_done = false;
148
149	/* Set the doorbell to notify the device */
150	btintel_pcie_set_tx_db(data, tfd_index);
151
152	/* Wait for the complete interrupt - URBD0 */
153	ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done,
154				 msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS));
155	if (!ret)
156		return -ETIME;
157
158	return 0;
159}
160
161/* Set the doorbell for RXQ to notify the device that @index (actually index-1)
162 * is available to receive the data
163 */
164static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index)
165{
166	u32 val;
167
168	val = index;
169	val |= (BTINTEL_PCIE_RX_DB_VEC << 16);
170
171	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
172}
173
174/* Update the FRBD (free buffer descriptor) with the @frbd_index and the
175 * DMA address of the free buffer.
176 */
177static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index)
178{
179	struct data_buf *buf;
180	struct frbd *frbd;
181
182	/* Get the buffer of the FRBD for DMA */
183	buf = &rxq->bufs[frbd_index];
184
185	frbd = &rxq->frbds[frbd_index];
186	memset(frbd, 0, sizeof(*frbd));
187
188	/* Update FRBD */
189	frbd->tag = frbd_index;
190	frbd->addr = buf->data_p_addr;
191}
192
193static int btintel_pcie_submit_rx(struct btintel_pcie_data *data)
194{
195	u16 frbd_index;
196	struct rxq *rxq = &data->rxq;
197
198	frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM];
199
200	if (frbd_index > rxq->count)
201		return -ERANGE;
202
203	/* Prepare for RX submit. It updates the FRBD with the address of DMA
204	 * buffer
205	 */
206	btintel_pcie_prepare_rx(rxq, frbd_index);
207
208	frbd_index = (frbd_index + 1) % rxq->count;
209	data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index;
210	ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
211
212	/* Set the doorbell to notify the device */
213	btintel_pcie_set_rx_db(data, frbd_index);
214
215	return 0;
216}
217
218static int btintel_pcie_start_rx(struct btintel_pcie_data *data)
219{
220	int i, ret;
221
222	for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) {
223		ret = btintel_pcie_submit_rx(data);
224		if (ret)
225			return ret;
226	}
227
228	return 0;
229}
230
231static void btintel_pcie_reset_ia(struct btintel_pcie_data *data)
232{
233	memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
234	memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
235	memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
236	memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
237}
238
239static void btintel_pcie_reset_bt(struct btintel_pcie_data *data)
240{
241	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
242			      BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
243}
244
245/* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in
246 * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with
247 * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0.
248 * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage
249 * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG.
250 */
251static int btintel_pcie_enable_bt(struct btintel_pcie_data *data)
252{
253	int err;
254
255	data->gp0_received = false;
256
257	/* Update the DMA address of CI struct to CSR */
258	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG,
259			      data->ci_p_addr & 0xffffffff);
260	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG,
261			      (u64)data->ci_p_addr >> 32);
262
263	/* Reset the cached value of boot stage. it is updated by the MSI-X
264	 * gp0 interrupt handler.
265	 */
266	data->boot_stage_cache = 0x0;
267
268	/* Set MAC_INIT bit to start primary bootloader */
269	btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
270
271	btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
272				  BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
273
274	/* Wait until MAC_ACCESS is granted */
275	err = btintel_pcie_poll_bit(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
276				    BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS,
277				    BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_ACCESS_STS,
278				    BTINTEL_DEFAULT_MAC_ACCESS_TIMEOUT_US);
279	if (err < 0)
280		return -ENODEV;
281
282	/* MAC is ready. Enable BT FUNC */
283	btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
284				  BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
285				  BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
286
287	btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
288
289	/* wait for interrupt from the device after booting up to primary
290	 * bootloader.
291	 */
292	err = wait_event_timeout(data->gp0_wait_q, data->gp0_received,
293				 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT));
294	if (!err)
295		return -ETIME;
296
297	/* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */
298	if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM)
299		return -ENODEV;
300
301	return 0;
302}
303
304/* This function handles the MSI-X interrupt for gp0 cause (bit 0 in
305 * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response.
306 */
307static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data)
308{
309	u32 reg;
310
311	/* This interrupt is for three different causes and it is not easy to
312	 * know what causes the interrupt. So, it compares each register value
313	 * with cached value and update it before it wake up the queue.
314	 */
315	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
316	if (reg != data->boot_stage_cache)
317		data->boot_stage_cache = reg;
318
319	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG);
320	if (reg != data->img_resp_cache)
321		data->img_resp_cache = reg;
322
323	data->gp0_received = true;
324
325	/* If the boot stage is OP or IML, reset IA and start RX again */
326	if (data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW ||
327	    data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) {
328		btintel_pcie_reset_ia(data);
329		btintel_pcie_start_rx(data);
330	}
331
332	wake_up(&data->gp0_wait_q);
333}
334
335/* This function handles the MSX-X interrupt for rx queue 0 which is for TX
336 */
337static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data)
338{
339	u16 cr_tia, cr_hia;
340	struct txq *txq;
341	struct urbd0 *urbd0;
342
343	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
344	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
345
346	if (cr_tia == cr_hia)
347		return;
348
349	txq = &data->txq;
350
351	while (cr_tia != cr_hia) {
352		data->tx_wait_done = true;
353		wake_up(&data->tx_wait_q);
354
355		urbd0 = &txq->urbd0s[cr_tia];
356
357		if (urbd0->tfd_index > txq->count)
358			return;
359
360		cr_tia = (cr_tia + 1) % txq->count;
361		data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia;
362		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM);
363	}
364}
365
366/* Process the received rx data
367 * It check the frame header to identify the data type and create skb
368 * and calling HCI API
369 */
370static int btintel_pcie_recv_frame(struct btintel_pcie_data *data,
371				       struct sk_buff *skb)
372{
373	int ret;
374	u8 pkt_type;
375	u16 plen;
376	u32 pcie_pkt_type;
377	struct sk_buff *new_skb;
378	void *pdata;
379	struct hci_dev *hdev = data->hdev;
380
381	spin_lock(&data->hci_rx_lock);
382
383	/* The first 4 bytes indicates the Intel PCIe specific packet type */
384	pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN);
385	if (!data) {
386		bt_dev_err(hdev, "Corrupted packet received");
387		ret = -EILSEQ;
388		goto exit_error;
389	}
390
391	pcie_pkt_type = get_unaligned_le32(pdata);
392
393	switch (pcie_pkt_type) {
394	case BTINTEL_PCIE_HCI_ACL_PKT:
395		if (skb->len >= HCI_ACL_HDR_SIZE) {
396			plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen);
397			pkt_type = HCI_ACLDATA_PKT;
398		} else {
399			bt_dev_err(hdev, "ACL packet is too short");
400			ret = -EILSEQ;
401			goto exit_error;
402		}
403		break;
404
405	case BTINTEL_PCIE_HCI_SCO_PKT:
406		if (skb->len >= HCI_SCO_HDR_SIZE) {
407			plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen;
408			pkt_type = HCI_SCODATA_PKT;
409		} else {
410			bt_dev_err(hdev, "SCO packet is too short");
411			ret = -EILSEQ;
412			goto exit_error;
413		}
414		break;
415
416	case BTINTEL_PCIE_HCI_EVT_PKT:
417		if (skb->len >= HCI_EVENT_HDR_SIZE) {
418			plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen;
419			pkt_type = HCI_EVENT_PKT;
420		} else {
421			bt_dev_err(hdev, "Event packet is too short");
422			ret = -EILSEQ;
423			goto exit_error;
424		}
425		break;
426	default:
427		bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x",
428			   pcie_pkt_type);
429		ret = -EINVAL;
430		goto exit_error;
431	}
432
433	if (skb->len < plen) {
434		bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x",
435			   pkt_type);
436		ret = -EILSEQ;
437		goto exit_error;
438	}
439
440	bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen);
441
442	new_skb = bt_skb_alloc(plen, GFP_ATOMIC);
443	if (!new_skb) {
444		bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u",
445			   skb->len);
446		ret = -ENOMEM;
447		goto exit_error;
448	}
449
450	hci_skb_pkt_type(new_skb) = pkt_type;
451	skb_put_data(new_skb, skb->data, plen);
452	hdev->stat.byte_rx += plen;
453
454	if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT)
455		ret = btintel_recv_event(hdev, new_skb);
456	else
457		ret = hci_recv_frame(hdev, new_skb);
458
459exit_error:
460	if (ret)
461		hdev->stat.err_rx++;
462
463	spin_unlock(&data->hci_rx_lock);
464
465	return ret;
466}
467
468static void btintel_pcie_rx_work(struct work_struct *work)
469{
470	struct btintel_pcie_data *data = container_of(work,
471					struct btintel_pcie_data, rx_work);
472	struct sk_buff *skb;
473	int err;
474	struct hci_dev *hdev = data->hdev;
475
476	/* Process the sk_buf in queue and send to the HCI layer */
477	while ((skb = skb_dequeue(&data->rx_skb_q))) {
478		err = btintel_pcie_recv_frame(data, skb);
479		if (err)
480			bt_dev_err(hdev, "Failed to send received frame: %d",
481				   err);
482		kfree_skb(skb);
483	}
484}
485
486/* create sk_buff with data and save it to queue and start RX work */
487static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status,
488				       void *buf)
489{
490	int ret, len;
491	struct rfh_hdr *rfh_hdr;
492	struct sk_buff *skb;
493
494	rfh_hdr = buf;
495
496	len = rfh_hdr->packet_len;
497	if (len <= 0) {
498		ret = -EINVAL;
499		goto resubmit;
500	}
501
502	/* Remove RFH header */
503	buf += sizeof(*rfh_hdr);
504
505	skb = alloc_skb(len, GFP_ATOMIC);
506	if (!skb) {
507		ret = -ENOMEM;
508		goto resubmit;
509	}
510
511	skb_put_data(skb, buf, len);
512	skb_queue_tail(&data->rx_skb_q, skb);
513	queue_work(data->workqueue, &data->rx_work);
514
515resubmit:
516	ret = btintel_pcie_submit_rx(data);
517
518	return ret;
519}
520
521/* Handles the MSI-X interrupt for rx queue 1 which is for RX */
522static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data)
523{
524	u16 cr_hia, cr_tia;
525	struct rxq *rxq;
526	struct urbd1 *urbd1;
527	struct data_buf *buf;
528	int ret;
529	struct hci_dev *hdev = data->hdev;
530
531	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
532	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
533
534	bt_dev_dbg(hdev, "RXQ: cr_hia: %u  cr_tia: %u", cr_hia, cr_tia);
535
536	/* Check CR_TIA and CR_HIA for change */
537	if (cr_tia == cr_hia) {
538		bt_dev_warn(hdev, "RXQ: no new CD found");
539		return;
540	}
541
542	rxq = &data->rxq;
543
544	/* The firmware sends multiple CD in a single MSI-X and it needs to
545	 * process all received CDs in this interrupt.
546	 */
547	while (cr_tia != cr_hia) {
548		urbd1 = &rxq->urbd1s[cr_tia];
549		ipc_print_urbd1(data->hdev, urbd1, cr_tia);
550
551		buf = &rxq->bufs[urbd1->frbd_tag];
552		if (!buf) {
553			bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d",
554				   urbd1->frbd_tag);
555			return;
556		}
557
558		ret = btintel_pcie_submit_rx_work(data, urbd1->status,
559						  buf->data);
560		if (ret) {
561			bt_dev_err(hdev, "RXQ: failed to submit rx request");
562			return;
563		}
564
565		cr_tia = (cr_tia + 1) % rxq->count;
566		data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia;
567		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
568	}
569}
570
571static irqreturn_t btintel_pcie_msix_isr(int irq, void *data)
572{
573	return IRQ_WAKE_THREAD;
574}
575
576static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id)
577{
578	struct msix_entry *entry = dev_id;
579	struct btintel_pcie_data *data = btintel_pcie_get_data(entry);
580	u32 intr_fh, intr_hw;
581
582	spin_lock(&data->irq_lock);
583	intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES);
584	intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES);
585
586	/* Clear causes registers to avoid being handling the same cause */
587	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh);
588	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw);
589	spin_unlock(&data->irq_lock);
590
591	if (unlikely(!(intr_fh | intr_hw))) {
592		/* Ignore interrupt, inta == 0 */
593		return IRQ_NONE;
594	}
595
596	/* This interrupt is triggered by the firmware after updating
597	 * boot_stage register and image_response register
598	 */
599	if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0)
600		btintel_pcie_msix_gp0_handler(data);
601
602	/* For TX */
603	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0)
604		btintel_pcie_msix_tx_handle(data);
605
606	/* For RX */
607	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1)
608		btintel_pcie_msix_rx_handle(data);
609
610	/*
611	 * Before sending the interrupt the HW disables it to prevent a nested
612	 * interrupt. This is done by writing 1 to the corresponding bit in
613	 * the mask register. After handling the interrupt, it should be
614	 * re-enabled by clearing this bit. This register is defined as write 1
615	 * clear (W1C) register, meaning that it's cleared by writing 1
616	 * to the bit.
617	 */
618	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST,
619			      BIT(entry->entry));
620
621	return IRQ_HANDLED;
622}
623
624/* This function requests the irq for MSI-X and registers the handlers per irq.
625 * Currently, it requests only 1 irq for all interrupt causes.
626 */
627static int btintel_pcie_setup_irq(struct btintel_pcie_data *data)
628{
629	int err;
630	int num_irqs, i;
631
632	for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++)
633		data->msix_entries[i].entry = i;
634
635	num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN,
636					 BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX);
637	if (num_irqs < 0)
638		return num_irqs;
639
640	data->alloc_vecs = num_irqs;
641	data->msix_enabled = 1;
642	data->def_irq = 0;
643
644	/* setup irq handler */
645	for (i = 0; i < data->alloc_vecs; i++) {
646		struct msix_entry *msix_entry;
647
648		msix_entry = &data->msix_entries[i];
649		msix_entry->vector = pci_irq_vector(data->pdev, i);
650
651		err = devm_request_threaded_irq(&data->pdev->dev,
652						msix_entry->vector,
653						btintel_pcie_msix_isr,
654						btintel_pcie_irq_msix_handler,
655						IRQF_SHARED,
656						KBUILD_MODNAME,
657						msix_entry);
658		if (err) {
659			pci_free_irq_vectors(data->pdev);
660			data->alloc_vecs = 0;
661			return err;
662		}
663	}
664	return 0;
665}
666
667struct btintel_pcie_causes_list {
668	u32 cause;
669	u32 mask_reg;
670	u8 cause_num;
671};
672
673static struct btintel_pcie_causes_list causes_list[] = {
674	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x00 },
675	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x01 },
676	{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK,	0x20 },
677};
678
679/* This function configures the interrupt masks for both HW_INT_CAUSES and
680 * FH_INT_CAUSES which are meaningful to us.
681 *
682 * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver
683 * need to call this function again to configure since the masks
684 * are reset to 0xFFFFFFFF after reset.
685 */
686static void btintel_pcie_config_msix(struct btintel_pcie_data *data)
687{
688	int i;
689	int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE;
690
691	/* Set Non Auto Clear Cause */
692	for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
693		btintel_pcie_wr_reg8(data,
694				     BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num),
695				     val);
696		btintel_pcie_clr_reg_bits(data,
697					  causes_list[i].mask_reg,
698					  causes_list[i].cause);
699	}
700
701	/* Save the initial interrupt mask */
702	data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK);
703	data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK);
704}
705
706static int btintel_pcie_config_pcie(struct pci_dev *pdev,
707				    struct btintel_pcie_data *data)
708{
709	int err;
710
711	err = pcim_enable_device(pdev);
712	if (err)
713		return err;
714
715	pci_set_master(pdev);
716
717	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
718	if (err) {
719		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
720		if (err)
721			return err;
722	}
723
724	err = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
725	if (err)
726		return err;
727
728	data->base_addr = pcim_iomap_table(pdev)[0];
729	if (!data->base_addr)
730		return -ENODEV;
731
732	err = btintel_pcie_setup_irq(data);
733	if (err)
734		return err;
735
736	/* Configure MSI-X with causes list */
737	btintel_pcie_config_msix(data);
738
739	return 0;
740}
741
742static void btintel_pcie_init_ci(struct btintel_pcie_data *data,
743				 struct ctx_info *ci)
744{
745	ci->version = 0x1;
746	ci->size = sizeof(*ci);
747	ci->config = 0x0000;
748	ci->addr_cr_hia = data->ia.cr_hia_p_addr;
749	ci->addr_tr_tia = data->ia.tr_tia_p_addr;
750	ci->addr_cr_tia = data->ia.cr_tia_p_addr;
751	ci->addr_tr_hia = data->ia.tr_hia_p_addr;
752	ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES;
753	ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES;
754	ci->addr_urbdq0 = data->txq.urbd0s_p_addr;
755	ci->addr_tfdq = data->txq.tfds_p_addr;
756	ci->num_tfdq = data->txq.count;
757	ci->num_urbdq0 = data->txq.count;
758	ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM;
759	ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM;
760	ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K;
761	ci->addr_frbdq = data->rxq.frbds_p_addr;
762	ci->num_frbdq = data->rxq.count;
763	ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
764	ci->addr_urbdq1 = data->rxq.urbd1s_p_addr;
765	ci->num_urbdq1 = data->rxq.count;
766	ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
767}
768
769static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data,
770				       struct txq *txq)
771{
772	/* Free data buffers first */
773	dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE,
774			  txq->buf_v_addr, txq->buf_p_addr);
775	kfree(txq->bufs);
776}
777
778static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data,
779				       struct txq *txq)
780{
781	int i;
782	struct data_buf *buf;
783
784	/* Allocate the same number of buffers as the descriptor */
785	txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL);
786	if (!txq->bufs)
787		return -ENOMEM;
788
789	/* Allocate full chunk of data buffer for DMA first and do indexing and
790	 * initialization next, so it can be freed easily
791	 */
792	txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
793					     txq->count * BTINTEL_PCIE_BUFFER_SIZE,
794					     &txq->buf_p_addr,
795					     GFP_KERNEL | __GFP_NOWARN);
796	if (!txq->buf_v_addr) {
797		kfree(txq->bufs);
798		return -ENOMEM;
799	}
800	memset(txq->buf_v_addr, 0, txq->count * BTINTEL_PCIE_BUFFER_SIZE);
801
802	/* Setup the allocated DMA buffer to bufs. Each data_buf should
803	 * have virtual address and physical address
804	 */
805	for (i = 0; i < txq->count; i++) {
806		buf = &txq->bufs[i];
807		buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
808		buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
809	}
810
811	return 0;
812}
813
814static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data,
815				       struct rxq *rxq)
816{
817	/* Free data buffers first */
818	dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
819			  rxq->buf_v_addr, rxq->buf_p_addr);
820	kfree(rxq->bufs);
821}
822
823static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data,
824				       struct rxq *rxq)
825{
826	int i;
827	struct data_buf *buf;
828
829	/* Allocate the same number of buffers as the descriptor */
830	rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL);
831	if (!rxq->bufs)
832		return -ENOMEM;
833
834	/* Allocate full chunk of data buffer for DMA first and do indexing and
835	 * initialization next, so it can be freed easily
836	 */
837	rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
838					     rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
839					     &rxq->buf_p_addr,
840					     GFP_KERNEL | __GFP_NOWARN);
841	if (!rxq->buf_v_addr) {
842		kfree(rxq->bufs);
843		return -ENOMEM;
844	}
845	memset(rxq->buf_v_addr, 0, rxq->count * BTINTEL_PCIE_BUFFER_SIZE);
846
847	/* Setup the allocated DMA buffer to bufs. Each data_buf should
848	 * have virtual address and physical address
849	 */
850	for (i = 0; i < rxq->count; i++) {
851		buf = &rxq->bufs[i];
852		buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
853		buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
854	}
855
856	return 0;
857}
858
859static void btintel_pcie_setup_ia(struct btintel_pcie_data *data,
860				  dma_addr_t p_addr, void *v_addr,
861				  struct ia *ia)
862{
863	/* TR Head Index Array */
864	ia->tr_hia_p_addr = p_addr;
865	ia->tr_hia = v_addr;
866
867	/* TR Tail Index Array */
868	ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
869	ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
870
871	/* CR Head index Array */
872	ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
873	ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
874
875	/* CR Tail Index Array */
876	ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
877	ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
878}
879
880static void btintel_pcie_free(struct btintel_pcie_data *data)
881{
882	btintel_pcie_free_rxq_bufs(data, &data->rxq);
883	btintel_pcie_free_txq_bufs(data, &data->txq);
884
885	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
886	dma_pool_destroy(data->dma_pool);
887}
888
889/* Allocate tx and rx queues, any related data structures and buffers.
890 */
891static int btintel_pcie_alloc(struct btintel_pcie_data *data)
892{
893	int err = 0;
894	size_t total;
895	dma_addr_t p_addr;
896	void *v_addr;
897
898	/* Allocate the chunk of DMA memory for descriptors, index array, and
899	 * context information, instead of allocating individually.
900	 * The DMA memory for data buffer is allocated while setting up the
901	 * each queue.
902	 *
903	 * Total size is sum of the following
904	 *  + size of TFD * Number of descriptors in queue
905	 *  + size of URBD0 * Number of descriptors in queue
906	 *  + size of FRBD * Number of descriptors in queue
907	 *  + size of URBD1 * Number of descriptors in queue
908	 *  + size of index * Number of queues(2) * type of index array(4)
909	 *  + size of context information
910	 */
911	total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd)
912		+ sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT;
913
914	/* Add the sum of size of index array and size of ci struct */
915	total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info);
916
917	/* Allocate DMA Pool */
918	data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev,
919					 total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0);
920	if (!data->dma_pool) {
921		err = -ENOMEM;
922		goto exit_error;
923	}
924
925	v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN,
926				 &p_addr);
927	if (!v_addr) {
928		dma_pool_destroy(data->dma_pool);
929		err = -ENOMEM;
930		goto exit_error;
931	}
932
933	data->dma_p_addr = p_addr;
934	data->dma_v_addr = v_addr;
935
936	/* Setup descriptor count */
937	data->txq.count = BTINTEL_DESCS_COUNT;
938	data->rxq.count = BTINTEL_DESCS_COUNT;
939
940	/* Setup tfds */
941	data->txq.tfds_p_addr = p_addr;
942	data->txq.tfds = v_addr;
943
944	p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
945	v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
946
947	/* Setup urbd0 */
948	data->txq.urbd0s_p_addr = p_addr;
949	data->txq.urbd0s = v_addr;
950
951	p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
952	v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
953
954	/* Setup FRBD*/
955	data->rxq.frbds_p_addr = p_addr;
956	data->rxq.frbds = v_addr;
957
958	p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
959	v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
960
961	/* Setup urbd1 */
962	data->rxq.urbd1s_p_addr = p_addr;
963	data->rxq.urbd1s = v_addr;
964
965	p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
966	v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
967
968	/* Setup data buffers for txq */
969	err = btintel_pcie_setup_txq_bufs(data, &data->txq);
970	if (err)
971		goto exit_error_pool;
972
973	/* Setup data buffers for rxq */
974	err = btintel_pcie_setup_rxq_bufs(data, &data->rxq);
975	if (err)
976		goto exit_error_txq;
977
978	/* Setup Index Array */
979	btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia);
980
981	/* Setup Context Information */
982	p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
983	v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
984
985	data->ci = v_addr;
986	data->ci_p_addr = p_addr;
987
988	/* Initialize the CI */
989	btintel_pcie_init_ci(data, data->ci);
990
991	return 0;
992
993exit_error_txq:
994	btintel_pcie_free_txq_bufs(data, &data->txq);
995exit_error_pool:
996	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
997	dma_pool_destroy(data->dma_pool);
998exit_error:
999	return err;
1000}
1001
1002static int btintel_pcie_open(struct hci_dev *hdev)
1003{
1004	bt_dev_dbg(hdev, "");
1005
1006	return 0;
1007}
1008
1009static int btintel_pcie_close(struct hci_dev *hdev)
1010{
1011	bt_dev_dbg(hdev, "");
1012
1013	return 0;
1014}
1015
1016static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
1017{
1018	struct sk_buff *skb;
1019	struct hci_event_hdr *hdr;
1020	struct hci_ev_cmd_complete *evt;
1021
1022	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
1023	if (!skb)
1024		return -ENOMEM;
1025
1026	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
1027	hdr->evt = HCI_EV_CMD_COMPLETE;
1028	hdr->plen = sizeof(*evt) + 1;
1029
1030	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
1031	evt->ncmd = 0x01;
1032	evt->opcode = cpu_to_le16(opcode);
1033
1034	*(u8 *)skb_put(skb, 1) = 0x00;
1035
1036	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1037
1038	return hci_recv_frame(hdev, skb);
1039}
1040
1041static int btintel_pcie_send_frame(struct hci_dev *hdev,
1042				       struct sk_buff *skb)
1043{
1044	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
1045	int ret;
1046	u32 type;
1047
1048	/* Due to the fw limitation, the type header of the packet should be
1049	 * 4 bytes unlike 1 byte for UART. In UART, the firmware can read
1050	 * the first byte to get the packet type and redirect the rest of data
1051	 * packet to the right handler.
1052	 *
1053	 * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data
1054	 * from DMA memory and by the time it reads the first 4 bytes, it has
1055	 * already consumed some part of packet. Thus the packet type indicator
1056	 * for iBT PCIe is 4 bytes.
1057	 *
1058	 * Luckily, when HCI core creates the skb, it allocates 8 bytes of
1059	 * head room for profile and driver use, and before sending the data
1060	 * to the device, append the iBT PCIe packet type in the front.
1061	 */
1062	switch (hci_skb_pkt_type(skb)) {
1063	case HCI_COMMAND_PKT:
1064		type = BTINTEL_PCIE_HCI_CMD_PKT;
1065		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1066			struct hci_command_hdr *cmd = (void *)skb->data;
1067			__u16 opcode = le16_to_cpu(cmd->opcode);
1068
1069			/* When the 0xfc01 command is issued to boot into
1070			 * the operational firmware, it will actually not
1071			 * send a command complete event. To keep the flow
1072			 * control working inject that event here.
1073			 */
1074			if (opcode == 0xfc01)
1075				btintel_pcie_inject_cmd_complete(hdev, opcode);
1076		}
1077		hdev->stat.cmd_tx++;
1078		break;
1079	case HCI_ACLDATA_PKT:
1080		type = BTINTEL_PCIE_HCI_ACL_PKT;
1081		hdev->stat.acl_tx++;
1082		break;
1083	case HCI_SCODATA_PKT:
1084		type = BTINTEL_PCIE_HCI_SCO_PKT;
1085		hdev->stat.sco_tx++;
1086		break;
1087	default:
1088		bt_dev_err(hdev, "Unknown HCI packet type");
1089		return -EILSEQ;
1090	}
1091	memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type,
1092	       BTINTEL_PCIE_HCI_TYPE_LEN);
1093
1094	ret = btintel_pcie_send_sync(data, skb);
1095	if (ret) {
1096		hdev->stat.err_tx++;
1097		bt_dev_err(hdev, "Failed to send frame (%d)", ret);
1098		goto exit_error;
1099	}
1100	hdev->stat.byte_tx += skb->len;
1101	kfree_skb(skb);
1102
1103exit_error:
1104	return ret;
1105}
1106
1107static void btintel_pcie_release_hdev(struct btintel_pcie_data *data)
1108{
1109	struct hci_dev *hdev;
1110
1111	hdev = data->hdev;
1112	hci_unregister_dev(hdev);
1113	hci_free_dev(hdev);
1114	data->hdev = NULL;
1115}
1116
1117static int btintel_pcie_setup(struct hci_dev *hdev)
1118{
1119	const u8 param[1] = { 0xFF };
1120	struct intel_version_tlv ver_tlv;
1121	struct sk_buff *skb;
1122	int err;
1123
1124	BT_DBG("%s", hdev->name);
1125
1126	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
1127	if (IS_ERR(skb)) {
1128		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
1129			   PTR_ERR(skb));
1130		return PTR_ERR(skb);
1131	}
1132
1133	/* Check the status */
1134	if (skb->data[0]) {
1135		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
1136			   skb->data[0]);
1137		err = -EIO;
1138		goto exit_error;
1139	}
1140
1141	/* Apply the common HCI quirks for Intel device */
1142	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
1143	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1144	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
1145
1146	/* Set up the quality report callback for Intel devices */
1147	hdev->set_quality_report = btintel_set_quality_report;
1148
1149	memset(&ver_tlv, 0, sizeof(ver_tlv));
1150	/* For TLV type device, parse the tlv data */
1151	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
1152	if (err) {
1153		bt_dev_err(hdev, "Failed to parse TLV version information");
1154		goto exit_error;
1155	}
1156
1157	switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) {
1158	case 0x37:
1159		break;
1160	default:
1161		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
1162			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
1163		err = -EINVAL;
1164		goto exit_error;
1165	}
1166
1167	/* Check for supported iBT hardware variants of this firmware
1168	 * loading method.
1169	 *
1170	 * This check has been put in place to ensure correct forward
1171	 * compatibility options when newer hardware variants come
1172	 * along.
1173	 */
1174	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
1175	case 0x1e:	/* BzrI */
1176		/* Display version information of TLV type */
1177		btintel_version_info_tlv(hdev, &ver_tlv);
1178
1179		/* Apply the device specific HCI quirks for TLV based devices
1180		 *
1181		 * All TLV based devices support WBS
1182		 */
1183		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
1184
1185		/* Apply LE States quirk from solar onwards */
1186		set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
1187
1188		/* Setup MSFT Extension support */
1189		btintel_set_msft_opcode(hdev,
1190					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
1191
1192		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
1193		if (err)
1194			goto exit_error;
1195		break;
1196	default:
1197		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
1198			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
1199		err = -EINVAL;
1200		break;
1201	}
1202
1203exit_error:
1204	kfree_skb(skb);
1205
1206	return err;
1207}
1208
1209static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data)
1210{
1211	int err;
1212	struct hci_dev *hdev;
1213
1214	hdev = hci_alloc_dev();
1215	if (!hdev)
1216		return -ENOMEM;
1217
1218	hdev->bus = HCI_PCI;
1219	hci_set_drvdata(hdev, data);
1220
1221	data->hdev = hdev;
1222	SET_HCIDEV_DEV(hdev, &data->pdev->dev);
1223
1224	hdev->manufacturer = 2;
1225	hdev->open = btintel_pcie_open;
1226	hdev->close = btintel_pcie_close;
1227	hdev->send = btintel_pcie_send_frame;
1228	hdev->setup = btintel_pcie_setup;
1229	hdev->shutdown = btintel_shutdown_combined;
1230	hdev->hw_error = btintel_hw_error;
1231	hdev->set_diag = btintel_set_diag;
1232	hdev->set_bdaddr = btintel_set_bdaddr;
1233
1234	err = hci_register_dev(hdev);
1235	if (err < 0) {
1236		BT_ERR("Failed to register to hdev (%d)", err);
1237		goto exit_error;
1238	}
1239
1240	return 0;
1241
1242exit_error:
1243	hci_free_dev(hdev);
1244	return err;
1245}
1246
1247static int btintel_pcie_probe(struct pci_dev *pdev,
1248			      const struct pci_device_id *ent)
1249{
1250	int err;
1251	struct btintel_pcie_data *data;
1252
1253	if (!pdev)
1254		return -ENODEV;
1255
1256	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
1257	if (!data)
1258		return -ENOMEM;
1259
1260	data->pdev = pdev;
1261
1262	spin_lock_init(&data->irq_lock);
1263	spin_lock_init(&data->hci_rx_lock);
1264
1265	init_waitqueue_head(&data->gp0_wait_q);
1266	data->gp0_received = false;
1267
1268	init_waitqueue_head(&data->tx_wait_q);
1269	data->tx_wait_done = false;
1270
1271	data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI);
1272	if (!data->workqueue)
1273		return -ENOMEM;
1274
1275	skb_queue_head_init(&data->rx_skb_q);
1276	INIT_WORK(&data->rx_work, btintel_pcie_rx_work);
1277
1278	data->boot_stage_cache = 0x00;
1279	data->img_resp_cache = 0x00;
1280
1281	err = btintel_pcie_config_pcie(pdev, data);
1282	if (err)
1283		goto exit_error;
1284
1285	pci_set_drvdata(pdev, data);
1286
1287	err = btintel_pcie_alloc(data);
1288	if (err)
1289		goto exit_error;
1290
1291	err = btintel_pcie_enable_bt(data);
1292	if (err)
1293		goto exit_error;
1294
1295	/* CNV information (CNVi and CNVr) is in CSR */
1296	data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG);
1297
1298	data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG);
1299
1300	err = btintel_pcie_start_rx(data);
1301	if (err)
1302		goto exit_error;
1303
1304	err = btintel_pcie_setup_hdev(data);
1305	if (err)
1306		goto exit_error;
1307
1308	bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi,
1309		   data->cnvr);
1310	return 0;
1311
1312exit_error:
1313	/* reset device before exit */
1314	btintel_pcie_reset_bt(data);
1315
1316	pci_clear_master(pdev);
1317
1318	pci_set_drvdata(pdev, NULL);
1319
1320	return err;
1321}
1322
1323static void btintel_pcie_remove(struct pci_dev *pdev)
1324{
1325	struct btintel_pcie_data *data;
1326
1327	data = pci_get_drvdata(pdev);
1328
1329	btintel_pcie_reset_bt(data);
1330
1331	pci_free_irq_vectors(pdev);
1332
1333	btintel_pcie_release_hdev(data);
1334
1335	flush_work(&data->rx_work);
1336
1337	destroy_workqueue(data->workqueue);
1338
1339	btintel_pcie_free(data);
1340
1341	pci_clear_master(pdev);
1342
1343	pci_set_drvdata(pdev, NULL);
1344}
1345
1346static struct pci_driver btintel_pcie_driver = {
1347	.name = KBUILD_MODNAME,
1348	.id_table = btintel_pcie_table,
1349	.probe = btintel_pcie_probe,
1350	.remove = btintel_pcie_remove,
1351};
1352module_pci_driver(btintel_pcie_driver);
1353
1354MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>");
1355MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION);
1356MODULE_VERSION(VERSION);
1357MODULE_LICENSE("GPL");
1358