1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3-*- linux-c -*-
4   drbd_receiver.c
5   This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7   Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8   Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9   Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11 */
12
13#ifndef _DRBD_VLI_H
14#define _DRBD_VLI_H
15
16/*
17 * At a granularity of 4KiB storage represented per bit,
18 * and stroage sizes of several TiB,
19 * and possibly small-bandwidth replication,
20 * the bitmap transfer time can take much too long,
21 * if transmitted in plain text.
22 *
23 * We try to reduce the transferred bitmap information
24 * by encoding runlengths of bit polarity.
25 *
26 * We never actually need to encode a "zero" (runlengths are positive).
27 * But then we have to store the value of the first bit.
28 * The first bit of information thus shall encode if the first runlength
29 * gives the number of set or unset bits.
30 *
31 * We assume that large areas are either completely set or unset,
32 * which gives good compression with any runlength method,
33 * even when encoding the runlength as fixed size 32bit/64bit integers.
34 *
35 * Still, there may be areas where the polarity flips every few bits,
36 * and encoding the runlength sequence of those areas with fix size
37 * integers would be much worse than plaintext.
38 *
39 * We want to encode small runlength values with minimum code length,
40 * while still being able to encode a Huge run of all zeros.
41 *
42 * Thus we need a Variable Length Integer encoding, VLI.
43 *
44 * For some cases, we produce more code bits than plaintext input.
45 * We need to send incompressible chunks as plaintext, skip over them
46 * and then see if the next chunk compresses better.
47 *
48 * We don't care too much about "excellent" compression ratio for large
49 * runlengths (all set/all clear): whether we achieve a factor of 100
50 * or 1000 is not that much of an issue.
51 * We do not want to waste too much on short runlengths in the "noisy"
52 * parts of the bitmap, though.
53 *
54 * There are endless variants of VLI, we experimented with:
55 *  * simple byte-based
56 *  * various bit based with different code word length.
57 *
58 * To avoid yet an other configuration parameter (choice of bitmap compression
59 * algorithm) which was difficult to explain and tune, we just chose the one
60 * variant that turned out best in all test cases.
61 * Based on real world usage patterns, with device sizes ranging from a few GiB
62 * to several TiB, file server/mailserver/webserver/mysql/postgress,
63 * mostly idle to really busy, the all time winner (though sometimes only
64 * marginally better) is:
65 */
66
67/*
68 * encoding is "visualised" as
69 * __little endian__ bitstream, least significant bit first (left most)
70 *
71 * this particular encoding is chosen so that the prefix code
72 * starts as unary encoding the level, then modified so that
73 * 10 levels can be described in 8bit, with minimal overhead
74 * for the smaller levels.
75 *
76 * Number of data bits follow fibonacci sequence, with the exception of the
77 * last level (+1 data bit, so it makes 64bit total).  The only worse code when
78 * encoding bit polarity runlength is 1 plain bits => 2 code bits.
79prefix    data bits                                    max val  N�� data bits
800 x                                                         0x2            1
8110 x                                                        0x4            1
82110 xx                                                      0x8            2
831110 xxx                                                   0x10            3
8411110 xxx xx                                               0x30            5
85111110 xx xxxxxx                                          0x130            8
8611111100  xxxxxxxx xxxxx                                 0x2130           13
8711111110  xxxxxxxx xxxxxxxx xxxxx                      0x202130           21
8811111101  xxxxxxxx xxxxxxxx xxxxxxxx  xxxxxxxx xx   0x400202130           34
8911111111  xxxxxxxx xxxxxxxx xxxxxxxx  xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 56
90 * maximum encodable value: 0x100000400202130 == 2**56 + some */
91
92/* compression "table":
93 transmitted   x                                0.29
94 as plaintext x                                  ........................
95             x                                   ........................
96            x                                    ........................
97           x    0.59                         0.21........................
98          x      ........................................................
99         x       .. c ...................................................
100        x    0.44.. o ...................................................
101       x .......... d ...................................................
102      x  .......... e ...................................................
103     X.............   ...................................................
104    x.............. b ...................................................
1052.0x............... i ...................................................
106 #X................ t ...................................................
107 #................. s ...........................  plain bits  ..........
108-+-----------------------------------------------------------------------
109 1             16              32                              64
110*/
111
112/* LEVEL: (total bits, prefix bits, prefix value),
113 * sorted ascending by number of total bits.
114 * The rest of the code table is calculated at compiletime from this. */
115
116/* fibonacci data 1, 1, ... */
117#define VLI_L_1_1() do { \
118	LEVEL( 2, 1, 0x00); \
119	LEVEL( 3, 2, 0x01); \
120	LEVEL( 5, 3, 0x03); \
121	LEVEL( 7, 4, 0x07); \
122	LEVEL(10, 5, 0x0f); \
123	LEVEL(14, 6, 0x1f); \
124	LEVEL(21, 8, 0x3f); \
125	LEVEL(29, 8, 0x7f); \
126	LEVEL(42, 8, 0xbf); \
127	LEVEL(64, 8, 0xff); \
128	} while (0)
129
130/* finds a suitable level to decode the least significant part of in.
131 * returns number of bits consumed.
132 *
133 * BUG() for bad input, as that would mean a buggy code table. */
134static inline int vli_decode_bits(u64 *out, const u64 in)
135{
136	u64 adj = 1;
137
138#define LEVEL(t,b,v)					\
139	do {						\
140		if ((in & ((1 << b) -1)) == v) {	\
141			*out = ((in & ((~0ULL) >> (64-t))) >> b) + adj;	\
142			return t;			\
143		}					\
144		adj += 1ULL << (t - b);			\
145	} while (0)
146
147	VLI_L_1_1();
148
149	/* NOT REACHED, if VLI_LEVELS code table is defined properly */
150	BUG();
151#undef LEVEL
152}
153
154/* return number of code bits needed,
155 * or negative error number */
156static inline int __vli_encode_bits(u64 *out, const u64 in)
157{
158	u64 max = 0;
159	u64 adj = 1;
160
161	if (in == 0)
162		return -EINVAL;
163
164#define LEVEL(t,b,v) do {		\
165		max += 1ULL << (t - b);	\
166		if (in <= max) {	\
167			if (out)	\
168				*out = ((in - adj) << b) | v;	\
169			return t;	\
170		}			\
171		adj = max + 1;		\
172	} while (0)
173
174	VLI_L_1_1();
175
176	return -EOVERFLOW;
177#undef LEVEL
178}
179
180#undef VLI_L_1_1
181
182/* code from here down is independend of actually used bit code */
183
184/*
185 * Code length is determined by some unique (e.g. unary) prefix.
186 * This encodes arbitrary bit length, not whole bytes: we have a bit-stream,
187 * not a byte stream.
188 */
189
190/* for the bitstream, we need a cursor */
191struct bitstream_cursor {
192	/* the current byte */
193	u8 *b;
194	/* the current bit within *b, nomalized: 0..7 */
195	unsigned int bit;
196};
197
198/* initialize cursor to point to first bit of stream */
199static inline void bitstream_cursor_reset(struct bitstream_cursor *cur, void *s)
200{
201	cur->b = s;
202	cur->bit = 0;
203}
204
205/* advance cursor by that many bits; maximum expected input value: 64,
206 * but depending on VLI implementation, it may be more. */
207static inline void bitstream_cursor_advance(struct bitstream_cursor *cur, unsigned int bits)
208{
209	bits += cur->bit;
210	cur->b = cur->b + (bits >> 3);
211	cur->bit = bits & 7;
212}
213
214/* the bitstream itself knows its length */
215struct bitstream {
216	struct bitstream_cursor cur;
217	unsigned char *buf;
218	size_t buf_len;		/* in bytes */
219
220	/* for input stream:
221	 * number of trailing 0 bits for padding
222	 * total number of valid bits in stream: buf_len * 8 - pad_bits */
223	unsigned int pad_bits;
224};
225
226static inline void bitstream_init(struct bitstream *bs, void *s, size_t len, unsigned int pad_bits)
227{
228	bs->buf = s;
229	bs->buf_len = len;
230	bs->pad_bits = pad_bits;
231	bitstream_cursor_reset(&bs->cur, bs->buf);
232}
233
234static inline void bitstream_rewind(struct bitstream *bs)
235{
236	bitstream_cursor_reset(&bs->cur, bs->buf);
237	memset(bs->buf, 0, bs->buf_len);
238}
239
240/* Put (at most 64) least significant bits of val into bitstream, and advance cursor.
241 * Ignores "pad_bits".
242 * Returns zero if bits == 0 (nothing to do).
243 * Returns number of bits used if successful.
244 *
245 * If there is not enough room left in bitstream,
246 * leaves bitstream unchanged and returns -ENOBUFS.
247 */
248static inline int bitstream_put_bits(struct bitstream *bs, u64 val, const unsigned int bits)
249{
250	unsigned char *b = bs->cur.b;
251	unsigned int tmp;
252
253	if (bits == 0)
254		return 0;
255
256	if ((bs->cur.b + ((bs->cur.bit + bits -1) >> 3)) - bs->buf >= bs->buf_len)
257		return -ENOBUFS;
258
259	/* paranoia: strip off hi bits; they should not be set anyways. */
260	if (bits < 64)
261		val &= ~0ULL >> (64 - bits);
262
263	*b++ |= (val & 0xff) << bs->cur.bit;
264
265	for (tmp = 8 - bs->cur.bit; tmp < bits; tmp += 8)
266		*b++ |= (val >> tmp) & 0xff;
267
268	bitstream_cursor_advance(&bs->cur, bits);
269	return bits;
270}
271
272/* Fetch (at most 64) bits from bitstream into *out, and advance cursor.
273 *
274 * If more than 64 bits are requested, returns -EINVAL and leave *out unchanged.
275 *
276 * If there are less than the requested number of valid bits left in the
277 * bitstream, still fetches all available bits.
278 *
279 * Returns number of actually fetched bits.
280 */
281static inline int bitstream_get_bits(struct bitstream *bs, u64 *out, int bits)
282{
283	u64 val;
284	unsigned int n;
285
286	if (bits > 64)
287		return -EINVAL;
288
289	if (bs->cur.b + ((bs->cur.bit + bs->pad_bits + bits -1) >> 3) - bs->buf >= bs->buf_len)
290		bits = ((bs->buf_len - (bs->cur.b - bs->buf)) << 3)
291			- bs->cur.bit - bs->pad_bits;
292
293	if (bits == 0) {
294		*out = 0;
295		return 0;
296	}
297
298	/* get the high bits */
299	val = 0;
300	n = (bs->cur.bit + bits + 7) >> 3;
301	/* n may be at most 9, if cur.bit + bits > 64 */
302	/* which means this copies at most 8 byte */
303	if (n) {
304		memcpy(&val, bs->cur.b+1, n - 1);
305		val = le64_to_cpu(val) << (8 - bs->cur.bit);
306	}
307
308	/* we still need the low bits */
309	val |= bs->cur.b[0] >> bs->cur.bit;
310
311	/* and mask out bits we don't want */
312	val &= ~0ULL >> (64 - bits);
313
314	bitstream_cursor_advance(&bs->cur, bits);
315	*out = val;
316
317	return bits;
318}
319
320/* encodes @in as vli into @bs;
321
322 * return values
323 *  > 0: number of bits successfully stored in bitstream
324 * -ENOBUFS @bs is full
325 * -EINVAL input zero (invalid)
326 * -EOVERFLOW input too large for this vli code (invalid)
327 */
328static inline int vli_encode_bits(struct bitstream *bs, u64 in)
329{
330	u64 code;
331	int bits = __vli_encode_bits(&code, in);
332
333	if (bits <= 0)
334		return bits;
335
336	return bitstream_put_bits(bs, code, bits);
337}
338
339#endif
340