1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used.  For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46			       unsigned int mask, unsigned int val,
47			       bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50				unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52			    unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54				       unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56				 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58				 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61			  const struct regmap_range *ranges,
62			  unsigned int nranges)
63{
64	const struct regmap_range *r;
65	int i;
66
67	for (i = 0, r = ranges; i < nranges; i++, r++)
68		if (regmap_reg_in_range(reg, r))
69			return true;
70	return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75			      const struct regmap_access_table *table)
76{
77	/* Check "no ranges" first */
78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79		return false;
80
81	/* In case zero "yes ranges" are supplied, any reg is OK */
82	if (!table->n_yes_ranges)
83		return true;
84
85	return regmap_reg_in_ranges(reg, table->yes_ranges,
86				    table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92	if (map->max_register_is_set && reg > map->max_register)
93		return false;
94
95	if (map->writeable_reg)
96		return map->writeable_reg(map->dev, reg);
97
98	if (map->wr_table)
99		return regmap_check_range_table(map, reg, map->wr_table);
100
101	return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106	int ret;
107	unsigned int val;
108
109	if (map->cache_type == REGCACHE_NONE)
110		return false;
111
112	if (!map->cache_ops)
113		return false;
114
115	if (map->max_register_is_set && reg > map->max_register)
116		return false;
117
118	map->lock(map->lock_arg);
119	ret = regcache_read(map, reg, &val);
120	map->unlock(map->lock_arg);
121	if (ret)
122		return false;
123
124	return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129	if (!map->reg_read)
130		return false;
131
132	if (map->max_register_is_set && reg > map->max_register)
133		return false;
134
135	if (map->format.format_write)
136		return false;
137
138	if (map->readable_reg)
139		return map->readable_reg(map->dev, reg);
140
141	if (map->rd_table)
142		return regmap_check_range_table(map, reg, map->rd_table);
143
144	return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149	if (!map->format.format_write && !regmap_readable(map, reg))
150		return false;
151
152	if (map->volatile_reg)
153		return map->volatile_reg(map->dev, reg);
154
155	if (map->volatile_table)
156		return regmap_check_range_table(map, reg, map->volatile_table);
157
158	if (map->cache_ops)
159		return false;
160	else
161		return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166	if (!regmap_readable(map, reg))
167		return false;
168
169	if (map->precious_reg)
170		return map->precious_reg(map->dev, reg);
171
172	if (map->precious_table)
173		return regmap_check_range_table(map, reg, map->precious_table);
174
175	return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180	if (map->writeable_noinc_reg)
181		return map->writeable_noinc_reg(map->dev, reg);
182
183	if (map->wr_noinc_table)
184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186	return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191	if (map->readable_noinc_reg)
192		return map->readable_noinc_reg(map->dev, reg);
193
194	if (map->rd_noinc_table)
195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197	return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201	size_t num)
202{
203	unsigned int i;
204
205	for (i = 0; i < num; i++)
206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207			return false;
208
209	return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213				     unsigned int reg, unsigned int val)
214{
215	u8 *out = map->work_buf;
216
217	out[0] = reg >> 4;
218	out[1] = (reg << 4) | (val >> 16);
219	out[2] = val >> 8;
220	out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225				     unsigned int reg, unsigned int val)
226{
227	u8 *out = map->work_buf;
228
229	*out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233				     unsigned int reg, unsigned int val)
234{
235	__be16 *out = map->work_buf;
236	*out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240				    unsigned int reg, unsigned int val)
241{
242	__be16 *out = map->work_buf;
243	*out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247				    unsigned int reg, unsigned int val)
248{
249	u8 *out = map->work_buf;
250
251	out[2] = val;
252	out[1] = val >> 8;
253	out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257				    unsigned int reg, unsigned int val)
258{
259	u8 *out = map->work_buf;
260
261	out[2] = val;
262	out[1] = (val >> 8) | (reg << 6);
263	out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268	u8 *b = buf;
269
270	b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275	put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280	put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284				    unsigned int shift)
285{
286	u16 v = val << shift;
287
288	memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292{
293	put_unaligned_be24(val << shift, buf);
294}
295
296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297{
298	put_unaligned_be32(val << shift, buf);
299}
300
301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302{
303	put_unaligned_le32(val << shift, buf);
304}
305
306static void regmap_format_32_native(void *buf, unsigned int val,
307				    unsigned int shift)
308{
309	u32 v = val << shift;
310
311	memcpy(buf, &v, sizeof(v));
312}
313
314static void regmap_parse_inplace_noop(void *buf)
315{
316}
317
318static unsigned int regmap_parse_8(const void *buf)
319{
320	const u8 *b = buf;
321
322	return b[0];
323}
324
325static unsigned int regmap_parse_16_be(const void *buf)
326{
327	return get_unaligned_be16(buf);
328}
329
330static unsigned int regmap_parse_16_le(const void *buf)
331{
332	return get_unaligned_le16(buf);
333}
334
335static void regmap_parse_16_be_inplace(void *buf)
336{
337	u16 v = get_unaligned_be16(buf);
338
339	memcpy(buf, &v, sizeof(v));
340}
341
342static void regmap_parse_16_le_inplace(void *buf)
343{
344	u16 v = get_unaligned_le16(buf);
345
346	memcpy(buf, &v, sizeof(v));
347}
348
349static unsigned int regmap_parse_16_native(const void *buf)
350{
351	u16 v;
352
353	memcpy(&v, buf, sizeof(v));
354	return v;
355}
356
357static unsigned int regmap_parse_24_be(const void *buf)
358{
359	return get_unaligned_be24(buf);
360}
361
362static unsigned int regmap_parse_32_be(const void *buf)
363{
364	return get_unaligned_be32(buf);
365}
366
367static unsigned int regmap_parse_32_le(const void *buf)
368{
369	return get_unaligned_le32(buf);
370}
371
372static void regmap_parse_32_be_inplace(void *buf)
373{
374	u32 v = get_unaligned_be32(buf);
375
376	memcpy(buf, &v, sizeof(v));
377}
378
379static void regmap_parse_32_le_inplace(void *buf)
380{
381	u32 v = get_unaligned_le32(buf);
382
383	memcpy(buf, &v, sizeof(v));
384}
385
386static unsigned int regmap_parse_32_native(const void *buf)
387{
388	u32 v;
389
390	memcpy(&v, buf, sizeof(v));
391	return v;
392}
393
394static void regmap_lock_hwlock(void *__map)
395{
396	struct regmap *map = __map;
397
398	hwspin_lock_timeout(map->hwlock, UINT_MAX);
399}
400
401static void regmap_lock_hwlock_irq(void *__map)
402{
403	struct regmap *map = __map;
404
405	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
406}
407
408static void regmap_lock_hwlock_irqsave(void *__map)
409{
410	struct regmap *map = __map;
411
412	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
413				    &map->spinlock_flags);
414}
415
416static void regmap_unlock_hwlock(void *__map)
417{
418	struct regmap *map = __map;
419
420	hwspin_unlock(map->hwlock);
421}
422
423static void regmap_unlock_hwlock_irq(void *__map)
424{
425	struct regmap *map = __map;
426
427	hwspin_unlock_irq(map->hwlock);
428}
429
430static void regmap_unlock_hwlock_irqrestore(void *__map)
431{
432	struct regmap *map = __map;
433
434	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
435}
436
437static void regmap_lock_unlock_none(void *__map)
438{
439
440}
441
442static void regmap_lock_mutex(void *__map)
443{
444	struct regmap *map = __map;
445	mutex_lock(&map->mutex);
446}
447
448static void regmap_unlock_mutex(void *__map)
449{
450	struct regmap *map = __map;
451	mutex_unlock(&map->mutex);
452}
453
454static void regmap_lock_spinlock(void *__map)
455__acquires(&map->spinlock)
456{
457	struct regmap *map = __map;
458	unsigned long flags;
459
460	spin_lock_irqsave(&map->spinlock, flags);
461	map->spinlock_flags = flags;
462}
463
464static void regmap_unlock_spinlock(void *__map)
465__releases(&map->spinlock)
466{
467	struct regmap *map = __map;
468	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
469}
470
471static void regmap_lock_raw_spinlock(void *__map)
472__acquires(&map->raw_spinlock)
473{
474	struct regmap *map = __map;
475	unsigned long flags;
476
477	raw_spin_lock_irqsave(&map->raw_spinlock, flags);
478	map->raw_spinlock_flags = flags;
479}
480
481static void regmap_unlock_raw_spinlock(void *__map)
482__releases(&map->raw_spinlock)
483{
484	struct regmap *map = __map;
485	raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
486}
487
488static void dev_get_regmap_release(struct device *dev, void *res)
489{
490	/*
491	 * We don't actually have anything to do here; the goal here
492	 * is not to manage the regmap but to provide a simple way to
493	 * get the regmap back given a struct device.
494	 */
495}
496
497static bool _regmap_range_add(struct regmap *map,
498			      struct regmap_range_node *data)
499{
500	struct rb_root *root = &map->range_tree;
501	struct rb_node **new = &(root->rb_node), *parent = NULL;
502
503	while (*new) {
504		struct regmap_range_node *this =
505			rb_entry(*new, struct regmap_range_node, node);
506
507		parent = *new;
508		if (data->range_max < this->range_min)
509			new = &((*new)->rb_left);
510		else if (data->range_min > this->range_max)
511			new = &((*new)->rb_right);
512		else
513			return false;
514	}
515
516	rb_link_node(&data->node, parent, new);
517	rb_insert_color(&data->node, root);
518
519	return true;
520}
521
522static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
523						      unsigned int reg)
524{
525	struct rb_node *node = map->range_tree.rb_node;
526
527	while (node) {
528		struct regmap_range_node *this =
529			rb_entry(node, struct regmap_range_node, node);
530
531		if (reg < this->range_min)
532			node = node->rb_left;
533		else if (reg > this->range_max)
534			node = node->rb_right;
535		else
536			return this;
537	}
538
539	return NULL;
540}
541
542static void regmap_range_exit(struct regmap *map)
543{
544	struct rb_node *next;
545	struct regmap_range_node *range_node;
546
547	next = rb_first(&map->range_tree);
548	while (next) {
549		range_node = rb_entry(next, struct regmap_range_node, node);
550		next = rb_next(&range_node->node);
551		rb_erase(&range_node->node, &map->range_tree);
552		kfree(range_node);
553	}
554
555	kfree(map->selector_work_buf);
556}
557
558static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
559{
560	if (config->name) {
561		const char *name = kstrdup_const(config->name, GFP_KERNEL);
562
563		if (!name)
564			return -ENOMEM;
565
566		kfree_const(map->name);
567		map->name = name;
568	}
569
570	return 0;
571}
572
573int regmap_attach_dev(struct device *dev, struct regmap *map,
574		      const struct regmap_config *config)
575{
576	struct regmap **m;
577	int ret;
578
579	map->dev = dev;
580
581	ret = regmap_set_name(map, config);
582	if (ret)
583		return ret;
584
585	regmap_debugfs_exit(map);
586	regmap_debugfs_init(map);
587
588	/* Add a devres resource for dev_get_regmap() */
589	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
590	if (!m) {
591		regmap_debugfs_exit(map);
592		return -ENOMEM;
593	}
594	*m = map;
595	devres_add(dev, m);
596
597	return 0;
598}
599EXPORT_SYMBOL_GPL(regmap_attach_dev);
600
601static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
602					const struct regmap_config *config)
603{
604	enum regmap_endian endian;
605
606	/* Retrieve the endianness specification from the regmap config */
607	endian = config->reg_format_endian;
608
609	/* If the regmap config specified a non-default value, use that */
610	if (endian != REGMAP_ENDIAN_DEFAULT)
611		return endian;
612
613	/* Retrieve the endianness specification from the bus config */
614	if (bus && bus->reg_format_endian_default)
615		endian = bus->reg_format_endian_default;
616
617	/* If the bus specified a non-default value, use that */
618	if (endian != REGMAP_ENDIAN_DEFAULT)
619		return endian;
620
621	/* Use this if no other value was found */
622	return REGMAP_ENDIAN_BIG;
623}
624
625enum regmap_endian regmap_get_val_endian(struct device *dev,
626					 const struct regmap_bus *bus,
627					 const struct regmap_config *config)
628{
629	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
630	enum regmap_endian endian;
631
632	/* Retrieve the endianness specification from the regmap config */
633	endian = config->val_format_endian;
634
635	/* If the regmap config specified a non-default value, use that */
636	if (endian != REGMAP_ENDIAN_DEFAULT)
637		return endian;
638
639	/* If the firmware node exist try to get endianness from it */
640	if (fwnode_property_read_bool(fwnode, "big-endian"))
641		endian = REGMAP_ENDIAN_BIG;
642	else if (fwnode_property_read_bool(fwnode, "little-endian"))
643		endian = REGMAP_ENDIAN_LITTLE;
644	else if (fwnode_property_read_bool(fwnode, "native-endian"))
645		endian = REGMAP_ENDIAN_NATIVE;
646
647	/* If the endianness was specified in fwnode, use that */
648	if (endian != REGMAP_ENDIAN_DEFAULT)
649		return endian;
650
651	/* Retrieve the endianness specification from the bus config */
652	if (bus && bus->val_format_endian_default)
653		endian = bus->val_format_endian_default;
654
655	/* If the bus specified a non-default value, use that */
656	if (endian != REGMAP_ENDIAN_DEFAULT)
657		return endian;
658
659	/* Use this if no other value was found */
660	return REGMAP_ENDIAN_BIG;
661}
662EXPORT_SYMBOL_GPL(regmap_get_val_endian);
663
664struct regmap *__regmap_init(struct device *dev,
665			     const struct regmap_bus *bus,
666			     void *bus_context,
667			     const struct regmap_config *config,
668			     struct lock_class_key *lock_key,
669			     const char *lock_name)
670{
671	struct regmap *map;
672	int ret = -EINVAL;
673	enum regmap_endian reg_endian, val_endian;
674	int i, j;
675
676	if (!config)
677		goto err;
678
679	map = kzalloc(sizeof(*map), GFP_KERNEL);
680	if (map == NULL) {
681		ret = -ENOMEM;
682		goto err;
683	}
684
685	ret = regmap_set_name(map, config);
686	if (ret)
687		goto err_map;
688
689	ret = -EINVAL; /* Later error paths rely on this */
690
691	if (config->disable_locking) {
692		map->lock = map->unlock = regmap_lock_unlock_none;
693		map->can_sleep = config->can_sleep;
694		regmap_debugfs_disable(map);
695	} else if (config->lock && config->unlock) {
696		map->lock = config->lock;
697		map->unlock = config->unlock;
698		map->lock_arg = config->lock_arg;
699		map->can_sleep = config->can_sleep;
700	} else if (config->use_hwlock) {
701		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
702		if (!map->hwlock) {
703			ret = -ENXIO;
704			goto err_name;
705		}
706
707		switch (config->hwlock_mode) {
708		case HWLOCK_IRQSTATE:
709			map->lock = regmap_lock_hwlock_irqsave;
710			map->unlock = regmap_unlock_hwlock_irqrestore;
711			break;
712		case HWLOCK_IRQ:
713			map->lock = regmap_lock_hwlock_irq;
714			map->unlock = regmap_unlock_hwlock_irq;
715			break;
716		default:
717			map->lock = regmap_lock_hwlock;
718			map->unlock = regmap_unlock_hwlock;
719			break;
720		}
721
722		map->lock_arg = map;
723	} else {
724		if ((bus && bus->fast_io) ||
725		    config->fast_io) {
726			if (config->use_raw_spinlock) {
727				raw_spin_lock_init(&map->raw_spinlock);
728				map->lock = regmap_lock_raw_spinlock;
729				map->unlock = regmap_unlock_raw_spinlock;
730				lockdep_set_class_and_name(&map->raw_spinlock,
731							   lock_key, lock_name);
732			} else {
733				spin_lock_init(&map->spinlock);
734				map->lock = regmap_lock_spinlock;
735				map->unlock = regmap_unlock_spinlock;
736				lockdep_set_class_and_name(&map->spinlock,
737							   lock_key, lock_name);
738			}
739		} else {
740			mutex_init(&map->mutex);
741			map->lock = regmap_lock_mutex;
742			map->unlock = regmap_unlock_mutex;
743			map->can_sleep = true;
744			lockdep_set_class_and_name(&map->mutex,
745						   lock_key, lock_name);
746		}
747		map->lock_arg = map;
748	}
749
750	/*
751	 * When we write in fast-paths with regmap_bulk_write() don't allocate
752	 * scratch buffers with sleeping allocations.
753	 */
754	if ((bus && bus->fast_io) || config->fast_io)
755		map->alloc_flags = GFP_ATOMIC;
756	else
757		map->alloc_flags = GFP_KERNEL;
758
759	map->reg_base = config->reg_base;
760
761	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
762	map->format.pad_bytes = config->pad_bits / 8;
763	map->format.reg_shift = config->reg_shift;
764	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
765	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
766			config->val_bits + config->pad_bits, 8);
767	map->reg_shift = config->pad_bits % 8;
768	if (config->reg_stride)
769		map->reg_stride = config->reg_stride;
770	else
771		map->reg_stride = 1;
772	if (is_power_of_2(map->reg_stride))
773		map->reg_stride_order = ilog2(map->reg_stride);
774	else
775		map->reg_stride_order = -1;
776	map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
777	map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
778	map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
779	if (bus) {
780		map->max_raw_read = bus->max_raw_read;
781		map->max_raw_write = bus->max_raw_write;
782	} else if (config->max_raw_read && config->max_raw_write) {
783		map->max_raw_read = config->max_raw_read;
784		map->max_raw_write = config->max_raw_write;
785	}
786	map->dev = dev;
787	map->bus = bus;
788	map->bus_context = bus_context;
789	map->max_register = config->max_register;
790	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
791	map->wr_table = config->wr_table;
792	map->rd_table = config->rd_table;
793	map->volatile_table = config->volatile_table;
794	map->precious_table = config->precious_table;
795	map->wr_noinc_table = config->wr_noinc_table;
796	map->rd_noinc_table = config->rd_noinc_table;
797	map->writeable_reg = config->writeable_reg;
798	map->readable_reg = config->readable_reg;
799	map->volatile_reg = config->volatile_reg;
800	map->precious_reg = config->precious_reg;
801	map->writeable_noinc_reg = config->writeable_noinc_reg;
802	map->readable_noinc_reg = config->readable_noinc_reg;
803	map->cache_type = config->cache_type;
804
805	spin_lock_init(&map->async_lock);
806	INIT_LIST_HEAD(&map->async_list);
807	INIT_LIST_HEAD(&map->async_free);
808	init_waitqueue_head(&map->async_waitq);
809
810	if (config->read_flag_mask ||
811	    config->write_flag_mask ||
812	    config->zero_flag_mask) {
813		map->read_flag_mask = config->read_flag_mask;
814		map->write_flag_mask = config->write_flag_mask;
815	} else if (bus) {
816		map->read_flag_mask = bus->read_flag_mask;
817	}
818
819	if (config && config->read && config->write) {
820		map->reg_read  = _regmap_bus_read;
821		if (config->reg_update_bits)
822			map->reg_update_bits = config->reg_update_bits;
823
824		/* Bulk read/write */
825		map->read = config->read;
826		map->write = config->write;
827
828		reg_endian = REGMAP_ENDIAN_NATIVE;
829		val_endian = REGMAP_ENDIAN_NATIVE;
830	} else if (!bus) {
831		map->reg_read  = config->reg_read;
832		map->reg_write = config->reg_write;
833		map->reg_update_bits = config->reg_update_bits;
834
835		map->defer_caching = false;
836		goto skip_format_initialization;
837	} else if (!bus->read || !bus->write) {
838		map->reg_read = _regmap_bus_reg_read;
839		map->reg_write = _regmap_bus_reg_write;
840		map->reg_update_bits = bus->reg_update_bits;
841
842		map->defer_caching = false;
843		goto skip_format_initialization;
844	} else {
845		map->reg_read  = _regmap_bus_read;
846		map->reg_update_bits = bus->reg_update_bits;
847		/* Bulk read/write */
848		map->read = bus->read;
849		map->write = bus->write;
850
851		reg_endian = regmap_get_reg_endian(bus, config);
852		val_endian = regmap_get_val_endian(dev, bus, config);
853	}
854
855	switch (config->reg_bits + map->reg_shift) {
856	case 2:
857		switch (config->val_bits) {
858		case 6:
859			map->format.format_write = regmap_format_2_6_write;
860			break;
861		default:
862			goto err_hwlock;
863		}
864		break;
865
866	case 4:
867		switch (config->val_bits) {
868		case 12:
869			map->format.format_write = regmap_format_4_12_write;
870			break;
871		default:
872			goto err_hwlock;
873		}
874		break;
875
876	case 7:
877		switch (config->val_bits) {
878		case 9:
879			map->format.format_write = regmap_format_7_9_write;
880			break;
881		case 17:
882			map->format.format_write = regmap_format_7_17_write;
883			break;
884		default:
885			goto err_hwlock;
886		}
887		break;
888
889	case 10:
890		switch (config->val_bits) {
891		case 14:
892			map->format.format_write = regmap_format_10_14_write;
893			break;
894		default:
895			goto err_hwlock;
896		}
897		break;
898
899	case 12:
900		switch (config->val_bits) {
901		case 20:
902			map->format.format_write = regmap_format_12_20_write;
903			break;
904		default:
905			goto err_hwlock;
906		}
907		break;
908
909	case 8:
910		map->format.format_reg = regmap_format_8;
911		break;
912
913	case 16:
914		switch (reg_endian) {
915		case REGMAP_ENDIAN_BIG:
916			map->format.format_reg = regmap_format_16_be;
917			break;
918		case REGMAP_ENDIAN_LITTLE:
919			map->format.format_reg = regmap_format_16_le;
920			break;
921		case REGMAP_ENDIAN_NATIVE:
922			map->format.format_reg = regmap_format_16_native;
923			break;
924		default:
925			goto err_hwlock;
926		}
927		break;
928
929	case 24:
930		switch (reg_endian) {
931		case REGMAP_ENDIAN_BIG:
932			map->format.format_reg = regmap_format_24_be;
933			break;
934		default:
935			goto err_hwlock;
936		}
937		break;
938
939	case 32:
940		switch (reg_endian) {
941		case REGMAP_ENDIAN_BIG:
942			map->format.format_reg = regmap_format_32_be;
943			break;
944		case REGMAP_ENDIAN_LITTLE:
945			map->format.format_reg = regmap_format_32_le;
946			break;
947		case REGMAP_ENDIAN_NATIVE:
948			map->format.format_reg = regmap_format_32_native;
949			break;
950		default:
951			goto err_hwlock;
952		}
953		break;
954
955	default:
956		goto err_hwlock;
957	}
958
959	if (val_endian == REGMAP_ENDIAN_NATIVE)
960		map->format.parse_inplace = regmap_parse_inplace_noop;
961
962	switch (config->val_bits) {
963	case 8:
964		map->format.format_val = regmap_format_8;
965		map->format.parse_val = regmap_parse_8;
966		map->format.parse_inplace = regmap_parse_inplace_noop;
967		break;
968	case 16:
969		switch (val_endian) {
970		case REGMAP_ENDIAN_BIG:
971			map->format.format_val = regmap_format_16_be;
972			map->format.parse_val = regmap_parse_16_be;
973			map->format.parse_inplace = regmap_parse_16_be_inplace;
974			break;
975		case REGMAP_ENDIAN_LITTLE:
976			map->format.format_val = regmap_format_16_le;
977			map->format.parse_val = regmap_parse_16_le;
978			map->format.parse_inplace = regmap_parse_16_le_inplace;
979			break;
980		case REGMAP_ENDIAN_NATIVE:
981			map->format.format_val = regmap_format_16_native;
982			map->format.parse_val = regmap_parse_16_native;
983			break;
984		default:
985			goto err_hwlock;
986		}
987		break;
988	case 24:
989		switch (val_endian) {
990		case REGMAP_ENDIAN_BIG:
991			map->format.format_val = regmap_format_24_be;
992			map->format.parse_val = regmap_parse_24_be;
993			break;
994		default:
995			goto err_hwlock;
996		}
997		break;
998	case 32:
999		switch (val_endian) {
1000		case REGMAP_ENDIAN_BIG:
1001			map->format.format_val = regmap_format_32_be;
1002			map->format.parse_val = regmap_parse_32_be;
1003			map->format.parse_inplace = regmap_parse_32_be_inplace;
1004			break;
1005		case REGMAP_ENDIAN_LITTLE:
1006			map->format.format_val = regmap_format_32_le;
1007			map->format.parse_val = regmap_parse_32_le;
1008			map->format.parse_inplace = regmap_parse_32_le_inplace;
1009			break;
1010		case REGMAP_ENDIAN_NATIVE:
1011			map->format.format_val = regmap_format_32_native;
1012			map->format.parse_val = regmap_parse_32_native;
1013			break;
1014		default:
1015			goto err_hwlock;
1016		}
1017		break;
1018	}
1019
1020	if (map->format.format_write) {
1021		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1022		    (val_endian != REGMAP_ENDIAN_BIG))
1023			goto err_hwlock;
1024		map->use_single_write = true;
1025	}
1026
1027	if (!map->format.format_write &&
1028	    !(map->format.format_reg && map->format.format_val))
1029		goto err_hwlock;
1030
1031	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1032	if (map->work_buf == NULL) {
1033		ret = -ENOMEM;
1034		goto err_hwlock;
1035	}
1036
1037	if (map->format.format_write) {
1038		map->defer_caching = false;
1039		map->reg_write = _regmap_bus_formatted_write;
1040	} else if (map->format.format_val) {
1041		map->defer_caching = true;
1042		map->reg_write = _regmap_bus_raw_write;
1043	}
1044
1045skip_format_initialization:
1046
1047	map->range_tree = RB_ROOT;
1048	for (i = 0; i < config->num_ranges; i++) {
1049		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1050		struct regmap_range_node *new;
1051
1052		/* Sanity check */
1053		if (range_cfg->range_max < range_cfg->range_min) {
1054			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1055				range_cfg->range_max, range_cfg->range_min);
1056			goto err_range;
1057		}
1058
1059		if (range_cfg->range_max > map->max_register) {
1060			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1061				range_cfg->range_max, map->max_register);
1062			goto err_range;
1063		}
1064
1065		if (range_cfg->selector_reg > map->max_register) {
1066			dev_err(map->dev,
1067				"Invalid range %d: selector out of map\n", i);
1068			goto err_range;
1069		}
1070
1071		if (range_cfg->window_len == 0) {
1072			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1073				i);
1074			goto err_range;
1075		}
1076
1077		/* Make sure, that this register range has no selector
1078		   or data window within its boundary */
1079		for (j = 0; j < config->num_ranges; j++) {
1080			unsigned int sel_reg = config->ranges[j].selector_reg;
1081			unsigned int win_min = config->ranges[j].window_start;
1082			unsigned int win_max = win_min +
1083					       config->ranges[j].window_len - 1;
1084
1085			/* Allow data window inside its own virtual range */
1086			if (j == i)
1087				continue;
1088
1089			if (range_cfg->range_min <= sel_reg &&
1090			    sel_reg <= range_cfg->range_max) {
1091				dev_err(map->dev,
1092					"Range %d: selector for %d in window\n",
1093					i, j);
1094				goto err_range;
1095			}
1096
1097			if (!(win_max < range_cfg->range_min ||
1098			      win_min > range_cfg->range_max)) {
1099				dev_err(map->dev,
1100					"Range %d: window for %d in window\n",
1101					i, j);
1102				goto err_range;
1103			}
1104		}
1105
1106		new = kzalloc(sizeof(*new), GFP_KERNEL);
1107		if (new == NULL) {
1108			ret = -ENOMEM;
1109			goto err_range;
1110		}
1111
1112		new->map = map;
1113		new->name = range_cfg->name;
1114		new->range_min = range_cfg->range_min;
1115		new->range_max = range_cfg->range_max;
1116		new->selector_reg = range_cfg->selector_reg;
1117		new->selector_mask = range_cfg->selector_mask;
1118		new->selector_shift = range_cfg->selector_shift;
1119		new->window_start = range_cfg->window_start;
1120		new->window_len = range_cfg->window_len;
1121
1122		if (!_regmap_range_add(map, new)) {
1123			dev_err(map->dev, "Failed to add range %d\n", i);
1124			kfree(new);
1125			goto err_range;
1126		}
1127
1128		if (map->selector_work_buf == NULL) {
1129			map->selector_work_buf =
1130				kzalloc(map->format.buf_size, GFP_KERNEL);
1131			if (map->selector_work_buf == NULL) {
1132				ret = -ENOMEM;
1133				goto err_range;
1134			}
1135		}
1136	}
1137
1138	ret = regcache_init(map, config);
1139	if (ret != 0)
1140		goto err_range;
1141
1142	if (dev) {
1143		ret = regmap_attach_dev(dev, map, config);
1144		if (ret != 0)
1145			goto err_regcache;
1146	} else {
1147		regmap_debugfs_init(map);
1148	}
1149
1150	return map;
1151
1152err_regcache:
1153	regcache_exit(map);
1154err_range:
1155	regmap_range_exit(map);
1156	kfree(map->work_buf);
1157err_hwlock:
1158	if (map->hwlock)
1159		hwspin_lock_free(map->hwlock);
1160err_name:
1161	kfree_const(map->name);
1162err_map:
1163	kfree(map);
1164err:
1165	return ERR_PTR(ret);
1166}
1167EXPORT_SYMBOL_GPL(__regmap_init);
1168
1169static void devm_regmap_release(struct device *dev, void *res)
1170{
1171	regmap_exit(*(struct regmap **)res);
1172}
1173
1174struct regmap *__devm_regmap_init(struct device *dev,
1175				  const struct regmap_bus *bus,
1176				  void *bus_context,
1177				  const struct regmap_config *config,
1178				  struct lock_class_key *lock_key,
1179				  const char *lock_name)
1180{
1181	struct regmap **ptr, *regmap;
1182
1183	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1184	if (!ptr)
1185		return ERR_PTR(-ENOMEM);
1186
1187	regmap = __regmap_init(dev, bus, bus_context, config,
1188			       lock_key, lock_name);
1189	if (!IS_ERR(regmap)) {
1190		*ptr = regmap;
1191		devres_add(dev, ptr);
1192	} else {
1193		devres_free(ptr);
1194	}
1195
1196	return regmap;
1197}
1198EXPORT_SYMBOL_GPL(__devm_regmap_init);
1199
1200static void regmap_field_init(struct regmap_field *rm_field,
1201	struct regmap *regmap, struct reg_field reg_field)
1202{
1203	rm_field->regmap = regmap;
1204	rm_field->reg = reg_field.reg;
1205	rm_field->shift = reg_field.lsb;
1206	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1207
1208	WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1209
1210	rm_field->id_size = reg_field.id_size;
1211	rm_field->id_offset = reg_field.id_offset;
1212}
1213
1214/**
1215 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1216 *
1217 * @dev: Device that will be interacted with
1218 * @regmap: regmap bank in which this register field is located.
1219 * @reg_field: Register field with in the bank.
1220 *
1221 * The return value will be an ERR_PTR() on error or a valid pointer
1222 * to a struct regmap_field. The regmap_field will be automatically freed
1223 * by the device management code.
1224 */
1225struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1226		struct regmap *regmap, struct reg_field reg_field)
1227{
1228	struct regmap_field *rm_field = devm_kzalloc(dev,
1229					sizeof(*rm_field), GFP_KERNEL);
1230	if (!rm_field)
1231		return ERR_PTR(-ENOMEM);
1232
1233	regmap_field_init(rm_field, regmap, reg_field);
1234
1235	return rm_field;
1236
1237}
1238EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1239
1240
1241/**
1242 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1243 *
1244 * @regmap: regmap bank in which this register field is located.
1245 * @rm_field: regmap register fields within the bank.
1246 * @reg_field: Register fields within the bank.
1247 * @num_fields: Number of register fields.
1248 *
1249 * The return value will be an -ENOMEM on error or zero for success.
1250 * Newly allocated regmap_fields should be freed by calling
1251 * regmap_field_bulk_free()
1252 */
1253int regmap_field_bulk_alloc(struct regmap *regmap,
1254			    struct regmap_field **rm_field,
1255			    const struct reg_field *reg_field,
1256			    int num_fields)
1257{
1258	struct regmap_field *rf;
1259	int i;
1260
1261	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1262	if (!rf)
1263		return -ENOMEM;
1264
1265	for (i = 0; i < num_fields; i++) {
1266		regmap_field_init(&rf[i], regmap, reg_field[i]);
1267		rm_field[i] = &rf[i];
1268	}
1269
1270	return 0;
1271}
1272EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1273
1274/**
1275 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1276 * fields.
1277 *
1278 * @dev: Device that will be interacted with
1279 * @regmap: regmap bank in which this register field is located.
1280 * @rm_field: regmap register fields within the bank.
1281 * @reg_field: Register fields within the bank.
1282 * @num_fields: Number of register fields.
1283 *
1284 * The return value will be an -ENOMEM on error or zero for success.
1285 * Newly allocated regmap_fields will be automatically freed by the
1286 * device management code.
1287 */
1288int devm_regmap_field_bulk_alloc(struct device *dev,
1289				 struct regmap *regmap,
1290				 struct regmap_field **rm_field,
1291				 const struct reg_field *reg_field,
1292				 int num_fields)
1293{
1294	struct regmap_field *rf;
1295	int i;
1296
1297	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1298	if (!rf)
1299		return -ENOMEM;
1300
1301	for (i = 0; i < num_fields; i++) {
1302		regmap_field_init(&rf[i], regmap, reg_field[i]);
1303		rm_field[i] = &rf[i];
1304	}
1305
1306	return 0;
1307}
1308EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1309
1310/**
1311 * regmap_field_bulk_free() - Free register field allocated using
1312 *                       regmap_field_bulk_alloc.
1313 *
1314 * @field: regmap fields which should be freed.
1315 */
1316void regmap_field_bulk_free(struct regmap_field *field)
1317{
1318	kfree(field);
1319}
1320EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1321
1322/**
1323 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1324 *                            devm_regmap_field_bulk_alloc.
1325 *
1326 * @dev: Device that will be interacted with
1327 * @field: regmap field which should be freed.
1328 *
1329 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1330 * drivers need not call this function, as the memory allocated via devm
1331 * will be freed as per device-driver life-cycle.
1332 */
1333void devm_regmap_field_bulk_free(struct device *dev,
1334				 struct regmap_field *field)
1335{
1336	devm_kfree(dev, field);
1337}
1338EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1339
1340/**
1341 * devm_regmap_field_free() - Free a register field allocated using
1342 *                            devm_regmap_field_alloc.
1343 *
1344 * @dev: Device that will be interacted with
1345 * @field: regmap field which should be freed.
1346 *
1347 * Free register field allocated using devm_regmap_field_alloc(). Usually
1348 * drivers need not call this function, as the memory allocated via devm
1349 * will be freed as per device-driver life-cyle.
1350 */
1351void devm_regmap_field_free(struct device *dev,
1352	struct regmap_field *field)
1353{
1354	devm_kfree(dev, field);
1355}
1356EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1357
1358/**
1359 * regmap_field_alloc() - Allocate and initialise a register field.
1360 *
1361 * @regmap: regmap bank in which this register field is located.
1362 * @reg_field: Register field with in the bank.
1363 *
1364 * The return value will be an ERR_PTR() on error or a valid pointer
1365 * to a struct regmap_field. The regmap_field should be freed by the
1366 * user once its finished working with it using regmap_field_free().
1367 */
1368struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1369		struct reg_field reg_field)
1370{
1371	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1372
1373	if (!rm_field)
1374		return ERR_PTR(-ENOMEM);
1375
1376	regmap_field_init(rm_field, regmap, reg_field);
1377
1378	return rm_field;
1379}
1380EXPORT_SYMBOL_GPL(regmap_field_alloc);
1381
1382/**
1383 * regmap_field_free() - Free register field allocated using
1384 *                       regmap_field_alloc.
1385 *
1386 * @field: regmap field which should be freed.
1387 */
1388void regmap_field_free(struct regmap_field *field)
1389{
1390	kfree(field);
1391}
1392EXPORT_SYMBOL_GPL(regmap_field_free);
1393
1394/**
1395 * regmap_reinit_cache() - Reinitialise the current register cache
1396 *
1397 * @map: Register map to operate on.
1398 * @config: New configuration.  Only the cache data will be used.
1399 *
1400 * Discard any existing register cache for the map and initialize a
1401 * new cache.  This can be used to restore the cache to defaults or to
1402 * update the cache configuration to reflect runtime discovery of the
1403 * hardware.
1404 *
1405 * No explicit locking is done here, the user needs to ensure that
1406 * this function will not race with other calls to regmap.
1407 */
1408int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1409{
1410	int ret;
1411
1412	regcache_exit(map);
1413	regmap_debugfs_exit(map);
1414
1415	map->max_register = config->max_register;
1416	map->max_register_is_set = map->max_register ?: config->max_register_is_0;
1417	map->writeable_reg = config->writeable_reg;
1418	map->readable_reg = config->readable_reg;
1419	map->volatile_reg = config->volatile_reg;
1420	map->precious_reg = config->precious_reg;
1421	map->writeable_noinc_reg = config->writeable_noinc_reg;
1422	map->readable_noinc_reg = config->readable_noinc_reg;
1423	map->cache_type = config->cache_type;
1424
1425	ret = regmap_set_name(map, config);
1426	if (ret)
1427		return ret;
1428
1429	regmap_debugfs_init(map);
1430
1431	map->cache_bypass = false;
1432	map->cache_only = false;
1433
1434	return regcache_init(map, config);
1435}
1436EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1437
1438/**
1439 * regmap_exit() - Free a previously allocated register map
1440 *
1441 * @map: Register map to operate on.
1442 */
1443void regmap_exit(struct regmap *map)
1444{
1445	struct regmap_async *async;
1446
1447	regcache_exit(map);
1448	regmap_debugfs_exit(map);
1449	regmap_range_exit(map);
1450	if (map->bus && map->bus->free_context)
1451		map->bus->free_context(map->bus_context);
1452	kfree(map->work_buf);
1453	while (!list_empty(&map->async_free)) {
1454		async = list_first_entry_or_null(&map->async_free,
1455						 struct regmap_async,
1456						 list);
1457		list_del(&async->list);
1458		kfree(async->work_buf);
1459		kfree(async);
1460	}
1461	if (map->hwlock)
1462		hwspin_lock_free(map->hwlock);
1463	if (map->lock == regmap_lock_mutex)
1464		mutex_destroy(&map->mutex);
1465	kfree_const(map->name);
1466	kfree(map->patch);
1467	if (map->bus && map->bus->free_on_exit)
1468		kfree(map->bus);
1469	kfree(map);
1470}
1471EXPORT_SYMBOL_GPL(regmap_exit);
1472
1473static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1474{
1475	struct regmap **r = res;
1476	if (!r || !*r) {
1477		WARN_ON(!r || !*r);
1478		return 0;
1479	}
1480
1481	/* If the user didn't specify a name match any */
1482	if (data)
1483		return (*r)->name && !strcmp((*r)->name, data);
1484	else
1485		return 1;
1486}
1487
1488/**
1489 * dev_get_regmap() - Obtain the regmap (if any) for a device
1490 *
1491 * @dev: Device to retrieve the map for
1492 * @name: Optional name for the register map, usually NULL.
1493 *
1494 * Returns the regmap for the device if one is present, or NULL.  If
1495 * name is specified then it must match the name specified when
1496 * registering the device, if it is NULL then the first regmap found
1497 * will be used.  Devices with multiple register maps are very rare,
1498 * generic code should normally not need to specify a name.
1499 */
1500struct regmap *dev_get_regmap(struct device *dev, const char *name)
1501{
1502	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1503					dev_get_regmap_match, (void *)name);
1504
1505	if (!r)
1506		return NULL;
1507	return *r;
1508}
1509EXPORT_SYMBOL_GPL(dev_get_regmap);
1510
1511/**
1512 * regmap_get_device() - Obtain the device from a regmap
1513 *
1514 * @map: Register map to operate on.
1515 *
1516 * Returns the underlying device that the regmap has been created for.
1517 */
1518struct device *regmap_get_device(struct regmap *map)
1519{
1520	return map->dev;
1521}
1522EXPORT_SYMBOL_GPL(regmap_get_device);
1523
1524static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1525			       struct regmap_range_node *range,
1526			       unsigned int val_num)
1527{
1528	void *orig_work_buf;
1529	unsigned int win_offset;
1530	unsigned int win_page;
1531	bool page_chg;
1532	int ret;
1533
1534	win_offset = (*reg - range->range_min) % range->window_len;
1535	win_page = (*reg - range->range_min) / range->window_len;
1536
1537	if (val_num > 1) {
1538		/* Bulk write shouldn't cross range boundary */
1539		if (*reg + val_num - 1 > range->range_max)
1540			return -EINVAL;
1541
1542		/* ... or single page boundary */
1543		if (val_num > range->window_len - win_offset)
1544			return -EINVAL;
1545	}
1546
1547	/* It is possible to have selector register inside data window.
1548	   In that case, selector register is located on every page and
1549	   it needs no page switching, when accessed alone. */
1550	if (val_num > 1 ||
1551	    range->window_start + win_offset != range->selector_reg) {
1552		/* Use separate work_buf during page switching */
1553		orig_work_buf = map->work_buf;
1554		map->work_buf = map->selector_work_buf;
1555
1556		ret = _regmap_update_bits(map, range->selector_reg,
1557					  range->selector_mask,
1558					  win_page << range->selector_shift,
1559					  &page_chg, false);
1560
1561		map->work_buf = orig_work_buf;
1562
1563		if (ret != 0)
1564			return ret;
1565	}
1566
1567	*reg = range->window_start + win_offset;
1568
1569	return 0;
1570}
1571
1572static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1573					  unsigned long mask)
1574{
1575	u8 *buf;
1576	int i;
1577
1578	if (!mask || !map->work_buf)
1579		return;
1580
1581	buf = map->work_buf;
1582
1583	for (i = 0; i < max_bytes; i++)
1584		buf[i] |= (mask >> (8 * i)) & 0xff;
1585}
1586
1587static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1588{
1589	reg += map->reg_base;
1590
1591	if (map->format.reg_shift > 0)
1592		reg >>= map->format.reg_shift;
1593	else if (map->format.reg_shift < 0)
1594		reg <<= -(map->format.reg_shift);
1595
1596	return reg;
1597}
1598
1599static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1600				  const void *val, size_t val_len, bool noinc)
1601{
1602	struct regmap_range_node *range;
1603	unsigned long flags;
1604	void *work_val = map->work_buf + map->format.reg_bytes +
1605		map->format.pad_bytes;
1606	void *buf;
1607	int ret = -ENOTSUPP;
1608	size_t len;
1609	int i;
1610
1611	/* Check for unwritable or noinc registers in range
1612	 * before we start
1613	 */
1614	if (!regmap_writeable_noinc(map, reg)) {
1615		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1616			unsigned int element =
1617				reg + regmap_get_offset(map, i);
1618			if (!regmap_writeable(map, element) ||
1619				regmap_writeable_noinc(map, element))
1620				return -EINVAL;
1621		}
1622	}
1623
1624	if (!map->cache_bypass && map->format.parse_val) {
1625		unsigned int ival, offset;
1626		int val_bytes = map->format.val_bytes;
1627
1628		/* Cache the last written value for noinc writes */
1629		i = noinc ? val_len - val_bytes : 0;
1630		for (; i < val_len; i += val_bytes) {
1631			ival = map->format.parse_val(val + i);
1632			offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1633			ret = regcache_write(map, reg + offset, ival);
1634			if (ret) {
1635				dev_err(map->dev,
1636					"Error in caching of register: %x ret: %d\n",
1637					reg + offset, ret);
1638				return ret;
1639			}
1640		}
1641		if (map->cache_only) {
1642			map->cache_dirty = true;
1643			return 0;
1644		}
1645	}
1646
1647	range = _regmap_range_lookup(map, reg);
1648	if (range) {
1649		int val_num = val_len / map->format.val_bytes;
1650		int win_offset = (reg - range->range_min) % range->window_len;
1651		int win_residue = range->window_len - win_offset;
1652
1653		/* If the write goes beyond the end of the window split it */
1654		while (val_num > win_residue) {
1655			dev_dbg(map->dev, "Writing window %d/%zu\n",
1656				win_residue, val_len / map->format.val_bytes);
1657			ret = _regmap_raw_write_impl(map, reg, val,
1658						     win_residue *
1659						     map->format.val_bytes, noinc);
1660			if (ret != 0)
1661				return ret;
1662
1663			reg += win_residue;
1664			val_num -= win_residue;
1665			val += win_residue * map->format.val_bytes;
1666			val_len -= win_residue * map->format.val_bytes;
1667
1668			win_offset = (reg - range->range_min) %
1669				range->window_len;
1670			win_residue = range->window_len - win_offset;
1671		}
1672
1673		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1674		if (ret != 0)
1675			return ret;
1676	}
1677
1678	reg = regmap_reg_addr(map, reg);
1679	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1680	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1681				      map->write_flag_mask);
1682
1683	/*
1684	 * Essentially all I/O mechanisms will be faster with a single
1685	 * buffer to write.  Since register syncs often generate raw
1686	 * writes of single registers optimise that case.
1687	 */
1688	if (val != work_val && val_len == map->format.val_bytes) {
1689		memcpy(work_val, val, map->format.val_bytes);
1690		val = work_val;
1691	}
1692
1693	if (map->async && map->bus && map->bus->async_write) {
1694		struct regmap_async *async;
1695
1696		trace_regmap_async_write_start(map, reg, val_len);
1697
1698		spin_lock_irqsave(&map->async_lock, flags);
1699		async = list_first_entry_or_null(&map->async_free,
1700						 struct regmap_async,
1701						 list);
1702		if (async)
1703			list_del(&async->list);
1704		spin_unlock_irqrestore(&map->async_lock, flags);
1705
1706		if (!async) {
1707			async = map->bus->async_alloc();
1708			if (!async)
1709				return -ENOMEM;
1710
1711			async->work_buf = kzalloc(map->format.buf_size,
1712						  GFP_KERNEL | GFP_DMA);
1713			if (!async->work_buf) {
1714				kfree(async);
1715				return -ENOMEM;
1716			}
1717		}
1718
1719		async->map = map;
1720
1721		/* If the caller supplied the value we can use it safely. */
1722		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1723		       map->format.reg_bytes + map->format.val_bytes);
1724
1725		spin_lock_irqsave(&map->async_lock, flags);
1726		list_add_tail(&async->list, &map->async_list);
1727		spin_unlock_irqrestore(&map->async_lock, flags);
1728
1729		if (val != work_val)
1730			ret = map->bus->async_write(map->bus_context,
1731						    async->work_buf,
1732						    map->format.reg_bytes +
1733						    map->format.pad_bytes,
1734						    val, val_len, async);
1735		else
1736			ret = map->bus->async_write(map->bus_context,
1737						    async->work_buf,
1738						    map->format.reg_bytes +
1739						    map->format.pad_bytes +
1740						    val_len, NULL, 0, async);
1741
1742		if (ret != 0) {
1743			dev_err(map->dev, "Failed to schedule write: %d\n",
1744				ret);
1745
1746			spin_lock_irqsave(&map->async_lock, flags);
1747			list_move(&async->list, &map->async_free);
1748			spin_unlock_irqrestore(&map->async_lock, flags);
1749		}
1750
1751		return ret;
1752	}
1753
1754	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1755
1756	/* If we're doing a single register write we can probably just
1757	 * send the work_buf directly, otherwise try to do a gather
1758	 * write.
1759	 */
1760	if (val == work_val)
1761		ret = map->write(map->bus_context, map->work_buf,
1762				 map->format.reg_bytes +
1763				 map->format.pad_bytes +
1764				 val_len);
1765	else if (map->bus && map->bus->gather_write)
1766		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1767					     map->format.reg_bytes +
1768					     map->format.pad_bytes,
1769					     val, val_len);
1770	else
1771		ret = -ENOTSUPP;
1772
1773	/* If that didn't work fall back on linearising by hand. */
1774	if (ret == -ENOTSUPP) {
1775		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1776		buf = kzalloc(len, GFP_KERNEL);
1777		if (!buf)
1778			return -ENOMEM;
1779
1780		memcpy(buf, map->work_buf, map->format.reg_bytes);
1781		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1782		       val, val_len);
1783		ret = map->write(map->bus_context, buf, len);
1784
1785		kfree(buf);
1786	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1787		/* regcache_drop_region() takes lock that we already have,
1788		 * thus call map->cache_ops->drop() directly
1789		 */
1790		if (map->cache_ops && map->cache_ops->drop)
1791			map->cache_ops->drop(map, reg, reg + 1);
1792	}
1793
1794	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1795
1796	return ret;
1797}
1798
1799/**
1800 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1801 *
1802 * @map: Map to check.
1803 */
1804bool regmap_can_raw_write(struct regmap *map)
1805{
1806	return map->write && map->format.format_val && map->format.format_reg;
1807}
1808EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1809
1810/**
1811 * regmap_get_raw_read_max - Get the maximum size we can read
1812 *
1813 * @map: Map to check.
1814 */
1815size_t regmap_get_raw_read_max(struct regmap *map)
1816{
1817	return map->max_raw_read;
1818}
1819EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1820
1821/**
1822 * regmap_get_raw_write_max - Get the maximum size we can read
1823 *
1824 * @map: Map to check.
1825 */
1826size_t regmap_get_raw_write_max(struct regmap *map)
1827{
1828	return map->max_raw_write;
1829}
1830EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1831
1832static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1833				       unsigned int val)
1834{
1835	int ret;
1836	struct regmap_range_node *range;
1837	struct regmap *map = context;
1838
1839	WARN_ON(!map->format.format_write);
1840
1841	range = _regmap_range_lookup(map, reg);
1842	if (range) {
1843		ret = _regmap_select_page(map, &reg, range, 1);
1844		if (ret != 0)
1845			return ret;
1846	}
1847
1848	reg = regmap_reg_addr(map, reg);
1849	map->format.format_write(map, reg, val);
1850
1851	trace_regmap_hw_write_start(map, reg, 1);
1852
1853	ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1854
1855	trace_regmap_hw_write_done(map, reg, 1);
1856
1857	return ret;
1858}
1859
1860static int _regmap_bus_reg_write(void *context, unsigned int reg,
1861				 unsigned int val)
1862{
1863	struct regmap *map = context;
1864	struct regmap_range_node *range;
1865	int ret;
1866
1867	range = _regmap_range_lookup(map, reg);
1868	if (range) {
1869		ret = _regmap_select_page(map, &reg, range, 1);
1870		if (ret != 0)
1871			return ret;
1872	}
1873
1874	reg = regmap_reg_addr(map, reg);
1875	return map->bus->reg_write(map->bus_context, reg, val);
1876}
1877
1878static int _regmap_bus_raw_write(void *context, unsigned int reg,
1879				 unsigned int val)
1880{
1881	struct regmap *map = context;
1882
1883	WARN_ON(!map->format.format_val);
1884
1885	map->format.format_val(map->work_buf + map->format.reg_bytes
1886			       + map->format.pad_bytes, val, 0);
1887	return _regmap_raw_write_impl(map, reg,
1888				      map->work_buf +
1889				      map->format.reg_bytes +
1890				      map->format.pad_bytes,
1891				      map->format.val_bytes,
1892				      false);
1893}
1894
1895static inline void *_regmap_map_get_context(struct regmap *map)
1896{
1897	return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1898}
1899
1900int _regmap_write(struct regmap *map, unsigned int reg,
1901		  unsigned int val)
1902{
1903	int ret;
1904	void *context = _regmap_map_get_context(map);
1905
1906	if (!regmap_writeable(map, reg))
1907		return -EIO;
1908
1909	if (!map->cache_bypass && !map->defer_caching) {
1910		ret = regcache_write(map, reg, val);
1911		if (ret != 0)
1912			return ret;
1913		if (map->cache_only) {
1914			map->cache_dirty = true;
1915			return 0;
1916		}
1917	}
1918
1919	ret = map->reg_write(context, reg, val);
1920	if (ret == 0) {
1921		if (regmap_should_log(map))
1922			dev_info(map->dev, "%x <= %x\n", reg, val);
1923
1924		trace_regmap_reg_write(map, reg, val);
1925	}
1926
1927	return ret;
1928}
1929
1930/**
1931 * regmap_write() - Write a value to a single register
1932 *
1933 * @map: Register map to write to
1934 * @reg: Register to write to
1935 * @val: Value to be written
1936 *
1937 * A value of zero will be returned on success, a negative errno will
1938 * be returned in error cases.
1939 */
1940int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1941{
1942	int ret;
1943
1944	if (!IS_ALIGNED(reg, map->reg_stride))
1945		return -EINVAL;
1946
1947	map->lock(map->lock_arg);
1948
1949	ret = _regmap_write(map, reg, val);
1950
1951	map->unlock(map->lock_arg);
1952
1953	return ret;
1954}
1955EXPORT_SYMBOL_GPL(regmap_write);
1956
1957/**
1958 * regmap_write_async() - Write a value to a single register asynchronously
1959 *
1960 * @map: Register map to write to
1961 * @reg: Register to write to
1962 * @val: Value to be written
1963 *
1964 * A value of zero will be returned on success, a negative errno will
1965 * be returned in error cases.
1966 */
1967int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1968{
1969	int ret;
1970
1971	if (!IS_ALIGNED(reg, map->reg_stride))
1972		return -EINVAL;
1973
1974	map->lock(map->lock_arg);
1975
1976	map->async = true;
1977
1978	ret = _regmap_write(map, reg, val);
1979
1980	map->async = false;
1981
1982	map->unlock(map->lock_arg);
1983
1984	return ret;
1985}
1986EXPORT_SYMBOL_GPL(regmap_write_async);
1987
1988int _regmap_raw_write(struct regmap *map, unsigned int reg,
1989		      const void *val, size_t val_len, bool noinc)
1990{
1991	size_t val_bytes = map->format.val_bytes;
1992	size_t val_count = val_len / val_bytes;
1993	size_t chunk_count, chunk_bytes;
1994	size_t chunk_regs = val_count;
1995	int ret, i;
1996
1997	if (!val_count)
1998		return -EINVAL;
1999
2000	if (map->use_single_write)
2001		chunk_regs = 1;
2002	else if (map->max_raw_write && val_len > map->max_raw_write)
2003		chunk_regs = map->max_raw_write / val_bytes;
2004
2005	chunk_count = val_count / chunk_regs;
2006	chunk_bytes = chunk_regs * val_bytes;
2007
2008	/* Write as many bytes as possible with chunk_size */
2009	for (i = 0; i < chunk_count; i++) {
2010		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2011		if (ret)
2012			return ret;
2013
2014		reg += regmap_get_offset(map, chunk_regs);
2015		val += chunk_bytes;
2016		val_len -= chunk_bytes;
2017	}
2018
2019	/* Write remaining bytes */
2020	if (val_len)
2021		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2022
2023	return ret;
2024}
2025
2026/**
2027 * regmap_raw_write() - Write raw values to one or more registers
2028 *
2029 * @map: Register map to write to
2030 * @reg: Initial register to write to
2031 * @val: Block of data to be written, laid out for direct transmission to the
2032 *       device
2033 * @val_len: Length of data pointed to by val.
2034 *
2035 * This function is intended to be used for things like firmware
2036 * download where a large block of data needs to be transferred to the
2037 * device.  No formatting will be done on the data provided.
2038 *
2039 * A value of zero will be returned on success, a negative errno will
2040 * be returned in error cases.
2041 */
2042int regmap_raw_write(struct regmap *map, unsigned int reg,
2043		     const void *val, size_t val_len)
2044{
2045	int ret;
2046
2047	if (!regmap_can_raw_write(map))
2048		return -EINVAL;
2049	if (val_len % map->format.val_bytes)
2050		return -EINVAL;
2051
2052	map->lock(map->lock_arg);
2053
2054	ret = _regmap_raw_write(map, reg, val, val_len, false);
2055
2056	map->unlock(map->lock_arg);
2057
2058	return ret;
2059}
2060EXPORT_SYMBOL_GPL(regmap_raw_write);
2061
2062static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2063				  void *val, unsigned int val_len, bool write)
2064{
2065	size_t val_bytes = map->format.val_bytes;
2066	size_t val_count = val_len / val_bytes;
2067	unsigned int lastval;
2068	u8 *u8p;
2069	u16 *u16p;
2070	u32 *u32p;
2071	int ret;
2072	int i;
2073
2074	switch (val_bytes) {
2075	case 1:
2076		u8p = val;
2077		if (write)
2078			lastval = (unsigned int)u8p[val_count - 1];
2079		break;
2080	case 2:
2081		u16p = val;
2082		if (write)
2083			lastval = (unsigned int)u16p[val_count - 1];
2084		break;
2085	case 4:
2086		u32p = val;
2087		if (write)
2088			lastval = (unsigned int)u32p[val_count - 1];
2089		break;
2090	default:
2091		return -EINVAL;
2092	}
2093
2094	/*
2095	 * Update the cache with the last value we write, the rest is just
2096	 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2097	 * sure a single read from the cache will work.
2098	 */
2099	if (write) {
2100		if (!map->cache_bypass && !map->defer_caching) {
2101			ret = regcache_write(map, reg, lastval);
2102			if (ret != 0)
2103				return ret;
2104			if (map->cache_only) {
2105				map->cache_dirty = true;
2106				return 0;
2107			}
2108		}
2109		ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2110	} else {
2111		ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2112	}
2113
2114	if (!ret && regmap_should_log(map)) {
2115		dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2116		for (i = 0; i < val_count; i++) {
2117			switch (val_bytes) {
2118			case 1:
2119				pr_cont("%x", u8p[i]);
2120				break;
2121			case 2:
2122				pr_cont("%x", u16p[i]);
2123				break;
2124			case 4:
2125				pr_cont("%x", u32p[i]);
2126				break;
2127			default:
2128				break;
2129			}
2130			if (i == (val_count - 1))
2131				pr_cont("]\n");
2132			else
2133				pr_cont(",");
2134		}
2135	}
2136
2137	return 0;
2138}
2139
2140/**
2141 * regmap_noinc_write(): Write data to a register without incrementing the
2142 *			register number
2143 *
2144 * @map: Register map to write to
2145 * @reg: Register to write to
2146 * @val: Pointer to data buffer
2147 * @val_len: Length of output buffer in bytes.
2148 *
2149 * The regmap API usually assumes that bulk bus write operations will write a
2150 * range of registers. Some devices have certain registers for which a write
2151 * operation can write to an internal FIFO.
2152 *
2153 * The target register must be volatile but registers after it can be
2154 * completely unrelated cacheable registers.
2155 *
2156 * This will attempt multiple writes as required to write val_len bytes.
2157 *
2158 * A value of zero will be returned on success, a negative errno will be
2159 * returned in error cases.
2160 */
2161int regmap_noinc_write(struct regmap *map, unsigned int reg,
2162		      const void *val, size_t val_len)
2163{
2164	size_t write_len;
2165	int ret;
2166
2167	if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2168		return -EINVAL;
2169	if (val_len % map->format.val_bytes)
2170		return -EINVAL;
2171	if (!IS_ALIGNED(reg, map->reg_stride))
2172		return -EINVAL;
2173	if (val_len == 0)
2174		return -EINVAL;
2175
2176	map->lock(map->lock_arg);
2177
2178	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2179		ret = -EINVAL;
2180		goto out_unlock;
2181	}
2182
2183	/*
2184	 * Use the accelerated operation if we can. The val drops the const
2185	 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2186	 */
2187	if (map->bus->reg_noinc_write) {
2188		ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2189		goto out_unlock;
2190	}
2191
2192	while (val_len) {
2193		if (map->max_raw_write && map->max_raw_write < val_len)
2194			write_len = map->max_raw_write;
2195		else
2196			write_len = val_len;
2197		ret = _regmap_raw_write(map, reg, val, write_len, true);
2198		if (ret)
2199			goto out_unlock;
2200		val = ((u8 *)val) + write_len;
2201		val_len -= write_len;
2202	}
2203
2204out_unlock:
2205	map->unlock(map->lock_arg);
2206	return ret;
2207}
2208EXPORT_SYMBOL_GPL(regmap_noinc_write);
2209
2210/**
2211 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2212 *                                   register field.
2213 *
2214 * @field: Register field to write to
2215 * @mask: Bitmask to change
2216 * @val: Value to be written
2217 * @change: Boolean indicating if a write was done
2218 * @async: Boolean indicating asynchronously
2219 * @force: Boolean indicating use force update
2220 *
2221 * Perform a read/modify/write cycle on the register field with change,
2222 * async, force option.
2223 *
2224 * A value of zero will be returned on success, a negative errno will
2225 * be returned in error cases.
2226 */
2227int regmap_field_update_bits_base(struct regmap_field *field,
2228				  unsigned int mask, unsigned int val,
2229				  bool *change, bool async, bool force)
2230{
2231	mask = (mask << field->shift) & field->mask;
2232
2233	return regmap_update_bits_base(field->regmap, field->reg,
2234				       mask, val << field->shift,
2235				       change, async, force);
2236}
2237EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2238
2239/**
2240 * regmap_field_test_bits() - Check if all specified bits are set in a
2241 *                            register field.
2242 *
2243 * @field: Register field to operate on
2244 * @bits: Bits to test
2245 *
2246 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2247 * tested bits is not set and 1 if all tested bits are set.
2248 */
2249int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2250{
2251	unsigned int val, ret;
2252
2253	ret = regmap_field_read(field, &val);
2254	if (ret)
2255		return ret;
2256
2257	return (val & bits) == bits;
2258}
2259EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2260
2261/**
2262 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2263 *                                    register field with port ID
2264 *
2265 * @field: Register field to write to
2266 * @id: port ID
2267 * @mask: Bitmask to change
2268 * @val: Value to be written
2269 * @change: Boolean indicating if a write was done
2270 * @async: Boolean indicating asynchronously
2271 * @force: Boolean indicating use force update
2272 *
2273 * A value of zero will be returned on success, a negative errno will
2274 * be returned in error cases.
2275 */
2276int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2277				   unsigned int mask, unsigned int val,
2278				   bool *change, bool async, bool force)
2279{
2280	if (id >= field->id_size)
2281		return -EINVAL;
2282
2283	mask = (mask << field->shift) & field->mask;
2284
2285	return regmap_update_bits_base(field->regmap,
2286				       field->reg + (field->id_offset * id),
2287				       mask, val << field->shift,
2288				       change, async, force);
2289}
2290EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2291
2292/**
2293 * regmap_bulk_write() - Write multiple registers to the device
2294 *
2295 * @map: Register map to write to
2296 * @reg: First register to be write from
2297 * @val: Block of data to be written, in native register size for device
2298 * @val_count: Number of registers to write
2299 *
2300 * This function is intended to be used for writing a large block of
2301 * data to the device either in single transfer or multiple transfer.
2302 *
2303 * A value of zero will be returned on success, a negative errno will
2304 * be returned in error cases.
2305 */
2306int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2307		     size_t val_count)
2308{
2309	int ret = 0, i;
2310	size_t val_bytes = map->format.val_bytes;
2311
2312	if (!IS_ALIGNED(reg, map->reg_stride))
2313		return -EINVAL;
2314
2315	/*
2316	 * Some devices don't support bulk write, for them we have a series of
2317	 * single write operations.
2318	 */
2319	if (!map->write || !map->format.parse_inplace) {
2320		map->lock(map->lock_arg);
2321		for (i = 0; i < val_count; i++) {
2322			unsigned int ival;
2323
2324			switch (val_bytes) {
2325			case 1:
2326				ival = *(u8 *)(val + (i * val_bytes));
2327				break;
2328			case 2:
2329				ival = *(u16 *)(val + (i * val_bytes));
2330				break;
2331			case 4:
2332				ival = *(u32 *)(val + (i * val_bytes));
2333				break;
2334			default:
2335				ret = -EINVAL;
2336				goto out;
2337			}
2338
2339			ret = _regmap_write(map,
2340					    reg + regmap_get_offset(map, i),
2341					    ival);
2342			if (ret != 0)
2343				goto out;
2344		}
2345out:
2346		map->unlock(map->lock_arg);
2347	} else {
2348		void *wval;
2349
2350		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2351		if (!wval)
2352			return -ENOMEM;
2353
2354		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2355			map->format.parse_inplace(wval + i);
2356
2357		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2358
2359		kfree(wval);
2360	}
2361
2362	if (!ret)
2363		trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2364
2365	return ret;
2366}
2367EXPORT_SYMBOL_GPL(regmap_bulk_write);
2368
2369/*
2370 * _regmap_raw_multi_reg_write()
2371 *
2372 * the (register,newvalue) pairs in regs have not been formatted, but
2373 * they are all in the same page and have been changed to being page
2374 * relative. The page register has been written if that was necessary.
2375 */
2376static int _regmap_raw_multi_reg_write(struct regmap *map,
2377				       const struct reg_sequence *regs,
2378				       size_t num_regs)
2379{
2380	int ret;
2381	void *buf;
2382	int i;
2383	u8 *u8;
2384	size_t val_bytes = map->format.val_bytes;
2385	size_t reg_bytes = map->format.reg_bytes;
2386	size_t pad_bytes = map->format.pad_bytes;
2387	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2388	size_t len = pair_size * num_regs;
2389
2390	if (!len)
2391		return -EINVAL;
2392
2393	buf = kzalloc(len, GFP_KERNEL);
2394	if (!buf)
2395		return -ENOMEM;
2396
2397	/* We have to linearise by hand. */
2398
2399	u8 = buf;
2400
2401	for (i = 0; i < num_regs; i++) {
2402		unsigned int reg = regs[i].reg;
2403		unsigned int val = regs[i].def;
2404		trace_regmap_hw_write_start(map, reg, 1);
2405		reg = regmap_reg_addr(map, reg);
2406		map->format.format_reg(u8, reg, map->reg_shift);
2407		u8 += reg_bytes + pad_bytes;
2408		map->format.format_val(u8, val, 0);
2409		u8 += val_bytes;
2410	}
2411	u8 = buf;
2412	*u8 |= map->write_flag_mask;
2413
2414	ret = map->write(map->bus_context, buf, len);
2415
2416	kfree(buf);
2417
2418	for (i = 0; i < num_regs; i++) {
2419		int reg = regs[i].reg;
2420		trace_regmap_hw_write_done(map, reg, 1);
2421	}
2422	return ret;
2423}
2424
2425static unsigned int _regmap_register_page(struct regmap *map,
2426					  unsigned int reg,
2427					  struct regmap_range_node *range)
2428{
2429	unsigned int win_page = (reg - range->range_min) / range->window_len;
2430
2431	return win_page;
2432}
2433
2434static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2435					       struct reg_sequence *regs,
2436					       size_t num_regs)
2437{
2438	int ret;
2439	int i, n;
2440	struct reg_sequence *base;
2441	unsigned int this_page = 0;
2442	unsigned int page_change = 0;
2443	/*
2444	 * the set of registers are not neccessarily in order, but
2445	 * since the order of write must be preserved this algorithm
2446	 * chops the set each time the page changes. This also applies
2447	 * if there is a delay required at any point in the sequence.
2448	 */
2449	base = regs;
2450	for (i = 0, n = 0; i < num_regs; i++, n++) {
2451		unsigned int reg = regs[i].reg;
2452		struct regmap_range_node *range;
2453
2454		range = _regmap_range_lookup(map, reg);
2455		if (range) {
2456			unsigned int win_page = _regmap_register_page(map, reg,
2457								      range);
2458
2459			if (i == 0)
2460				this_page = win_page;
2461			if (win_page != this_page) {
2462				this_page = win_page;
2463				page_change = 1;
2464			}
2465		}
2466
2467		/* If we have both a page change and a delay make sure to
2468		 * write the regs and apply the delay before we change the
2469		 * page.
2470		 */
2471
2472		if (page_change || regs[i].delay_us) {
2473
2474				/* For situations where the first write requires
2475				 * a delay we need to make sure we don't call
2476				 * raw_multi_reg_write with n=0
2477				 * This can't occur with page breaks as we
2478				 * never write on the first iteration
2479				 */
2480				if (regs[i].delay_us && i == 0)
2481					n = 1;
2482
2483				ret = _regmap_raw_multi_reg_write(map, base, n);
2484				if (ret != 0)
2485					return ret;
2486
2487				if (regs[i].delay_us) {
2488					if (map->can_sleep)
2489						fsleep(regs[i].delay_us);
2490					else
2491						udelay(regs[i].delay_us);
2492				}
2493
2494				base += n;
2495				n = 0;
2496
2497				if (page_change) {
2498					ret = _regmap_select_page(map,
2499								  &base[n].reg,
2500								  range, 1);
2501					if (ret != 0)
2502						return ret;
2503
2504					page_change = 0;
2505				}
2506
2507		}
2508
2509	}
2510	if (n > 0)
2511		return _regmap_raw_multi_reg_write(map, base, n);
2512	return 0;
2513}
2514
2515static int _regmap_multi_reg_write(struct regmap *map,
2516				   const struct reg_sequence *regs,
2517				   size_t num_regs)
2518{
2519	int i;
2520	int ret;
2521
2522	if (!map->can_multi_write) {
2523		for (i = 0; i < num_regs; i++) {
2524			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2525			if (ret != 0)
2526				return ret;
2527
2528			if (regs[i].delay_us) {
2529				if (map->can_sleep)
2530					fsleep(regs[i].delay_us);
2531				else
2532					udelay(regs[i].delay_us);
2533			}
2534		}
2535		return 0;
2536	}
2537
2538	if (!map->format.parse_inplace)
2539		return -EINVAL;
2540
2541	if (map->writeable_reg)
2542		for (i = 0; i < num_regs; i++) {
2543			int reg = regs[i].reg;
2544			if (!map->writeable_reg(map->dev, reg))
2545				return -EINVAL;
2546			if (!IS_ALIGNED(reg, map->reg_stride))
2547				return -EINVAL;
2548		}
2549
2550	if (!map->cache_bypass) {
2551		for (i = 0; i < num_regs; i++) {
2552			unsigned int val = regs[i].def;
2553			unsigned int reg = regs[i].reg;
2554			ret = regcache_write(map, reg, val);
2555			if (ret) {
2556				dev_err(map->dev,
2557				"Error in caching of register: %x ret: %d\n",
2558								reg, ret);
2559				return ret;
2560			}
2561		}
2562		if (map->cache_only) {
2563			map->cache_dirty = true;
2564			return 0;
2565		}
2566	}
2567
2568	WARN_ON(!map->bus);
2569
2570	for (i = 0; i < num_regs; i++) {
2571		unsigned int reg = regs[i].reg;
2572		struct regmap_range_node *range;
2573
2574		/* Coalesce all the writes between a page break or a delay
2575		 * in a sequence
2576		 */
2577		range = _regmap_range_lookup(map, reg);
2578		if (range || regs[i].delay_us) {
2579			size_t len = sizeof(struct reg_sequence)*num_regs;
2580			struct reg_sequence *base = kmemdup(regs, len,
2581							   GFP_KERNEL);
2582			if (!base)
2583				return -ENOMEM;
2584			ret = _regmap_range_multi_paged_reg_write(map, base,
2585								  num_regs);
2586			kfree(base);
2587
2588			return ret;
2589		}
2590	}
2591	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2592}
2593
2594/**
2595 * regmap_multi_reg_write() - Write multiple registers to the device
2596 *
2597 * @map: Register map to write to
2598 * @regs: Array of structures containing register,value to be written
2599 * @num_regs: Number of registers to write
2600 *
2601 * Write multiple registers to the device where the set of register, value
2602 * pairs are supplied in any order, possibly not all in a single range.
2603 *
2604 * The 'normal' block write mode will send ultimately send data on the
2605 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2606 * addressed. However, this alternative block multi write mode will send
2607 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2608 * must of course support the mode.
2609 *
2610 * A value of zero will be returned on success, a negative errno will be
2611 * returned in error cases.
2612 */
2613int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2614			   int num_regs)
2615{
2616	int ret;
2617
2618	map->lock(map->lock_arg);
2619
2620	ret = _regmap_multi_reg_write(map, regs, num_regs);
2621
2622	map->unlock(map->lock_arg);
2623
2624	return ret;
2625}
2626EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2627
2628/**
2629 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2630 *                                     device but not the cache
2631 *
2632 * @map: Register map to write to
2633 * @regs: Array of structures containing register,value to be written
2634 * @num_regs: Number of registers to write
2635 *
2636 * Write multiple registers to the device but not the cache where the set
2637 * of register are supplied in any order.
2638 *
2639 * This function is intended to be used for writing a large block of data
2640 * atomically to the device in single transfer for those I2C client devices
2641 * that implement this alternative block write mode.
2642 *
2643 * A value of zero will be returned on success, a negative errno will
2644 * be returned in error cases.
2645 */
2646int regmap_multi_reg_write_bypassed(struct regmap *map,
2647				    const struct reg_sequence *regs,
2648				    int num_regs)
2649{
2650	int ret;
2651	bool bypass;
2652
2653	map->lock(map->lock_arg);
2654
2655	bypass = map->cache_bypass;
2656	map->cache_bypass = true;
2657
2658	ret = _regmap_multi_reg_write(map, regs, num_regs);
2659
2660	map->cache_bypass = bypass;
2661
2662	map->unlock(map->lock_arg);
2663
2664	return ret;
2665}
2666EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2667
2668/**
2669 * regmap_raw_write_async() - Write raw values to one or more registers
2670 *                            asynchronously
2671 *
2672 * @map: Register map to write to
2673 * @reg: Initial register to write to
2674 * @val: Block of data to be written, laid out for direct transmission to the
2675 *       device.  Must be valid until regmap_async_complete() is called.
2676 * @val_len: Length of data pointed to by val.
2677 *
2678 * This function is intended to be used for things like firmware
2679 * download where a large block of data needs to be transferred to the
2680 * device.  No formatting will be done on the data provided.
2681 *
2682 * If supported by the underlying bus the write will be scheduled
2683 * asynchronously, helping maximise I/O speed on higher speed buses
2684 * like SPI.  regmap_async_complete() can be called to ensure that all
2685 * asynchrnous writes have been completed.
2686 *
2687 * A value of zero will be returned on success, a negative errno will
2688 * be returned in error cases.
2689 */
2690int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2691			   const void *val, size_t val_len)
2692{
2693	int ret;
2694
2695	if (val_len % map->format.val_bytes)
2696		return -EINVAL;
2697	if (!IS_ALIGNED(reg, map->reg_stride))
2698		return -EINVAL;
2699
2700	map->lock(map->lock_arg);
2701
2702	map->async = true;
2703
2704	ret = _regmap_raw_write(map, reg, val, val_len, false);
2705
2706	map->async = false;
2707
2708	map->unlock(map->lock_arg);
2709
2710	return ret;
2711}
2712EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2713
2714static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2715			    unsigned int val_len, bool noinc)
2716{
2717	struct regmap_range_node *range;
2718	int ret;
2719
2720	if (!map->read)
2721		return -EINVAL;
2722
2723	range = _regmap_range_lookup(map, reg);
2724	if (range) {
2725		ret = _regmap_select_page(map, &reg, range,
2726					  noinc ? 1 : val_len / map->format.val_bytes);
2727		if (ret != 0)
2728			return ret;
2729	}
2730
2731	reg = regmap_reg_addr(map, reg);
2732	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2733	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2734				      map->read_flag_mask);
2735	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2736
2737	ret = map->read(map->bus_context, map->work_buf,
2738			map->format.reg_bytes + map->format.pad_bytes,
2739			val, val_len);
2740
2741	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2742
2743	return ret;
2744}
2745
2746static int _regmap_bus_reg_read(void *context, unsigned int reg,
2747				unsigned int *val)
2748{
2749	struct regmap *map = context;
2750	struct regmap_range_node *range;
2751	int ret;
2752
2753	range = _regmap_range_lookup(map, reg);
2754	if (range) {
2755		ret = _regmap_select_page(map, &reg, range, 1);
2756		if (ret != 0)
2757			return ret;
2758	}
2759
2760	reg = regmap_reg_addr(map, reg);
2761	return map->bus->reg_read(map->bus_context, reg, val);
2762}
2763
2764static int _regmap_bus_read(void *context, unsigned int reg,
2765			    unsigned int *val)
2766{
2767	int ret;
2768	struct regmap *map = context;
2769	void *work_val = map->work_buf + map->format.reg_bytes +
2770		map->format.pad_bytes;
2771
2772	if (!map->format.parse_val)
2773		return -EINVAL;
2774
2775	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2776	if (ret == 0)
2777		*val = map->format.parse_val(work_val);
2778
2779	return ret;
2780}
2781
2782static int _regmap_read(struct regmap *map, unsigned int reg,
2783			unsigned int *val)
2784{
2785	int ret;
2786	void *context = _regmap_map_get_context(map);
2787
2788	if (!map->cache_bypass) {
2789		ret = regcache_read(map, reg, val);
2790		if (ret == 0)
2791			return 0;
2792	}
2793
2794	if (map->cache_only)
2795		return -EBUSY;
2796
2797	if (!regmap_readable(map, reg))
2798		return -EIO;
2799
2800	ret = map->reg_read(context, reg, val);
2801	if (ret == 0) {
2802		if (regmap_should_log(map))
2803			dev_info(map->dev, "%x => %x\n", reg, *val);
2804
2805		trace_regmap_reg_read(map, reg, *val);
2806
2807		if (!map->cache_bypass)
2808			regcache_write(map, reg, *val);
2809	}
2810
2811	return ret;
2812}
2813
2814/**
2815 * regmap_read() - Read a value from a single register
2816 *
2817 * @map: Register map to read from
2818 * @reg: Register to be read from
2819 * @val: Pointer to store read value
2820 *
2821 * A value of zero will be returned on success, a negative errno will
2822 * be returned in error cases.
2823 */
2824int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2825{
2826	int ret;
2827
2828	if (!IS_ALIGNED(reg, map->reg_stride))
2829		return -EINVAL;
2830
2831	map->lock(map->lock_arg);
2832
2833	ret = _regmap_read(map, reg, val);
2834
2835	map->unlock(map->lock_arg);
2836
2837	return ret;
2838}
2839EXPORT_SYMBOL_GPL(regmap_read);
2840
2841/**
2842 * regmap_raw_read() - Read raw data from the device
2843 *
2844 * @map: Register map to read from
2845 * @reg: First register to be read from
2846 * @val: Pointer to store read value
2847 * @val_len: Size of data to read
2848 *
2849 * A value of zero will be returned on success, a negative errno will
2850 * be returned in error cases.
2851 */
2852int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2853		    size_t val_len)
2854{
2855	size_t val_bytes = map->format.val_bytes;
2856	size_t val_count = val_len / val_bytes;
2857	unsigned int v;
2858	int ret, i;
2859
2860	if (val_len % map->format.val_bytes)
2861		return -EINVAL;
2862	if (!IS_ALIGNED(reg, map->reg_stride))
2863		return -EINVAL;
2864	if (val_count == 0)
2865		return -EINVAL;
2866
2867	map->lock(map->lock_arg);
2868
2869	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2870	    map->cache_type == REGCACHE_NONE) {
2871		size_t chunk_count, chunk_bytes;
2872		size_t chunk_regs = val_count;
2873
2874		if (!map->cache_bypass && map->cache_only) {
2875			ret = -EBUSY;
2876			goto out;
2877		}
2878
2879		if (!map->read) {
2880			ret = -ENOTSUPP;
2881			goto out;
2882		}
2883
2884		if (map->use_single_read)
2885			chunk_regs = 1;
2886		else if (map->max_raw_read && val_len > map->max_raw_read)
2887			chunk_regs = map->max_raw_read / val_bytes;
2888
2889		chunk_count = val_count / chunk_regs;
2890		chunk_bytes = chunk_regs * val_bytes;
2891
2892		/* Read bytes that fit into whole chunks */
2893		for (i = 0; i < chunk_count; i++) {
2894			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2895			if (ret != 0)
2896				goto out;
2897
2898			reg += regmap_get_offset(map, chunk_regs);
2899			val += chunk_bytes;
2900			val_len -= chunk_bytes;
2901		}
2902
2903		/* Read remaining bytes */
2904		if (val_len) {
2905			ret = _regmap_raw_read(map, reg, val, val_len, false);
2906			if (ret != 0)
2907				goto out;
2908		}
2909	} else {
2910		/* Otherwise go word by word for the cache; should be low
2911		 * cost as we expect to hit the cache.
2912		 */
2913		for (i = 0; i < val_count; i++) {
2914			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2915					   &v);
2916			if (ret != 0)
2917				goto out;
2918
2919			map->format.format_val(val + (i * val_bytes), v, 0);
2920		}
2921	}
2922
2923 out:
2924	map->unlock(map->lock_arg);
2925
2926	return ret;
2927}
2928EXPORT_SYMBOL_GPL(regmap_raw_read);
2929
2930/**
2931 * regmap_noinc_read(): Read data from a register without incrementing the
2932 *			register number
2933 *
2934 * @map: Register map to read from
2935 * @reg: Register to read from
2936 * @val: Pointer to data buffer
2937 * @val_len: Length of output buffer in bytes.
2938 *
2939 * The regmap API usually assumes that bulk read operations will read a
2940 * range of registers. Some devices have certain registers for which a read
2941 * operation read will read from an internal FIFO.
2942 *
2943 * The target register must be volatile but registers after it can be
2944 * completely unrelated cacheable registers.
2945 *
2946 * This will attempt multiple reads as required to read val_len bytes.
2947 *
2948 * A value of zero will be returned on success, a negative errno will be
2949 * returned in error cases.
2950 */
2951int regmap_noinc_read(struct regmap *map, unsigned int reg,
2952		      void *val, size_t val_len)
2953{
2954	size_t read_len;
2955	int ret;
2956
2957	if (!map->read)
2958		return -ENOTSUPP;
2959
2960	if (val_len % map->format.val_bytes)
2961		return -EINVAL;
2962	if (!IS_ALIGNED(reg, map->reg_stride))
2963		return -EINVAL;
2964	if (val_len == 0)
2965		return -EINVAL;
2966
2967	map->lock(map->lock_arg);
2968
2969	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2970		ret = -EINVAL;
2971		goto out_unlock;
2972	}
2973
2974	/*
2975	 * We have not defined the FIFO semantics for cache, as the
2976	 * cache is just one value deep. Should we return the last
2977	 * written value? Just avoid this by always reading the FIFO
2978	 * even when using cache. Cache only will not work.
2979	 */
2980	if (!map->cache_bypass && map->cache_only) {
2981		ret = -EBUSY;
2982		goto out_unlock;
2983	}
2984
2985	/* Use the accelerated operation if we can */
2986	if (map->bus->reg_noinc_read) {
2987		ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
2988		goto out_unlock;
2989	}
2990
2991	while (val_len) {
2992		if (map->max_raw_read && map->max_raw_read < val_len)
2993			read_len = map->max_raw_read;
2994		else
2995			read_len = val_len;
2996		ret = _regmap_raw_read(map, reg, val, read_len, true);
2997		if (ret)
2998			goto out_unlock;
2999		val = ((u8 *)val) + read_len;
3000		val_len -= read_len;
3001	}
3002
3003out_unlock:
3004	map->unlock(map->lock_arg);
3005	return ret;
3006}
3007EXPORT_SYMBOL_GPL(regmap_noinc_read);
3008
3009/**
3010 * regmap_field_read(): Read a value to a single register field
3011 *
3012 * @field: Register field to read from
3013 * @val: Pointer to store read value
3014 *
3015 * A value of zero will be returned on success, a negative errno will
3016 * be returned in error cases.
3017 */
3018int regmap_field_read(struct regmap_field *field, unsigned int *val)
3019{
3020	int ret;
3021	unsigned int reg_val;
3022	ret = regmap_read(field->regmap, field->reg, &reg_val);
3023	if (ret != 0)
3024		return ret;
3025
3026	reg_val &= field->mask;
3027	reg_val >>= field->shift;
3028	*val = reg_val;
3029
3030	return ret;
3031}
3032EXPORT_SYMBOL_GPL(regmap_field_read);
3033
3034/**
3035 * regmap_fields_read() - Read a value to a single register field with port ID
3036 *
3037 * @field: Register field to read from
3038 * @id: port ID
3039 * @val: Pointer to store read value
3040 *
3041 * A value of zero will be returned on success, a negative errno will
3042 * be returned in error cases.
3043 */
3044int regmap_fields_read(struct regmap_field *field, unsigned int id,
3045		       unsigned int *val)
3046{
3047	int ret;
3048	unsigned int reg_val;
3049
3050	if (id >= field->id_size)
3051		return -EINVAL;
3052
3053	ret = regmap_read(field->regmap,
3054			  field->reg + (field->id_offset * id),
3055			  &reg_val);
3056	if (ret != 0)
3057		return ret;
3058
3059	reg_val &= field->mask;
3060	reg_val >>= field->shift;
3061	*val = reg_val;
3062
3063	return ret;
3064}
3065EXPORT_SYMBOL_GPL(regmap_fields_read);
3066
3067/**
3068 * regmap_bulk_read() - Read multiple registers from the device
3069 *
3070 * @map: Register map to read from
3071 * @reg: First register to be read from
3072 * @val: Pointer to store read value, in native register size for device
3073 * @val_count: Number of registers to read
3074 *
3075 * A value of zero will be returned on success, a negative errno will
3076 * be returned in error cases.
3077 */
3078int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3079		     size_t val_count)
3080{
3081	int ret, i;
3082	size_t val_bytes = map->format.val_bytes;
3083	bool vol = regmap_volatile_range(map, reg, val_count);
3084
3085	if (!IS_ALIGNED(reg, map->reg_stride))
3086		return -EINVAL;
3087	if (val_count == 0)
3088		return -EINVAL;
3089
3090	if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3091		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3092		if (ret != 0)
3093			return ret;
3094
3095		for (i = 0; i < val_count * val_bytes; i += val_bytes)
3096			map->format.parse_inplace(val + i);
3097	} else {
3098		u32 *u32 = val;
3099		u16 *u16 = val;
3100		u8 *u8 = val;
3101
3102		map->lock(map->lock_arg);
3103
3104		for (i = 0; i < val_count; i++) {
3105			unsigned int ival;
3106
3107			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3108					   &ival);
3109			if (ret != 0)
3110				goto out;
3111
3112			switch (map->format.val_bytes) {
3113			case 4:
3114				u32[i] = ival;
3115				break;
3116			case 2:
3117				u16[i] = ival;
3118				break;
3119			case 1:
3120				u8[i] = ival;
3121				break;
3122			default:
3123				ret = -EINVAL;
3124				goto out;
3125			}
3126		}
3127
3128out:
3129		map->unlock(map->lock_arg);
3130	}
3131
3132	if (!ret)
3133		trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3134
3135	return ret;
3136}
3137EXPORT_SYMBOL_GPL(regmap_bulk_read);
3138
3139static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3140			       unsigned int mask, unsigned int val,
3141			       bool *change, bool force_write)
3142{
3143	int ret;
3144	unsigned int tmp, orig;
3145
3146	if (change)
3147		*change = false;
3148
3149	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3150		reg = regmap_reg_addr(map, reg);
3151		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3152		if (ret == 0 && change)
3153			*change = true;
3154	} else {
3155		ret = _regmap_read(map, reg, &orig);
3156		if (ret != 0)
3157			return ret;
3158
3159		tmp = orig & ~mask;
3160		tmp |= val & mask;
3161
3162		if (force_write || (tmp != orig) || map->force_write_field) {
3163			ret = _regmap_write(map, reg, tmp);
3164			if (ret == 0 && change)
3165				*change = true;
3166		}
3167	}
3168
3169	return ret;
3170}
3171
3172/**
3173 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3174 *
3175 * @map: Register map to update
3176 * @reg: Register to update
3177 * @mask: Bitmask to change
3178 * @val: New value for bitmask
3179 * @change: Boolean indicating if a write was done
3180 * @async: Boolean indicating asynchronously
3181 * @force: Boolean indicating use force update
3182 *
3183 * Perform a read/modify/write cycle on a register map with change, async, force
3184 * options.
3185 *
3186 * If async is true:
3187 *
3188 * With most buses the read must be done synchronously so this is most useful
3189 * for devices with a cache which do not need to interact with the hardware to
3190 * determine the current register value.
3191 *
3192 * Returns zero for success, a negative number on error.
3193 */
3194int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3195			    unsigned int mask, unsigned int val,
3196			    bool *change, bool async, bool force)
3197{
3198	int ret;
3199
3200	map->lock(map->lock_arg);
3201
3202	map->async = async;
3203
3204	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3205
3206	map->async = false;
3207
3208	map->unlock(map->lock_arg);
3209
3210	return ret;
3211}
3212EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3213
3214/**
3215 * regmap_test_bits() - Check if all specified bits are set in a register.
3216 *
3217 * @map: Register map to operate on
3218 * @reg: Register to read from
3219 * @bits: Bits to test
3220 *
3221 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3222 * bits are set and a negative error number if the underlying regmap_read()
3223 * fails.
3224 */
3225int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3226{
3227	unsigned int val, ret;
3228
3229	ret = regmap_read(map, reg, &val);
3230	if (ret)
3231		return ret;
3232
3233	return (val & bits) == bits;
3234}
3235EXPORT_SYMBOL_GPL(regmap_test_bits);
3236
3237void regmap_async_complete_cb(struct regmap_async *async, int ret)
3238{
3239	struct regmap *map = async->map;
3240	bool wake;
3241
3242	trace_regmap_async_io_complete(map);
3243
3244	spin_lock(&map->async_lock);
3245	list_move(&async->list, &map->async_free);
3246	wake = list_empty(&map->async_list);
3247
3248	if (ret != 0)
3249		map->async_ret = ret;
3250
3251	spin_unlock(&map->async_lock);
3252
3253	if (wake)
3254		wake_up(&map->async_waitq);
3255}
3256EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3257
3258static int regmap_async_is_done(struct regmap *map)
3259{
3260	unsigned long flags;
3261	int ret;
3262
3263	spin_lock_irqsave(&map->async_lock, flags);
3264	ret = list_empty(&map->async_list);
3265	spin_unlock_irqrestore(&map->async_lock, flags);
3266
3267	return ret;
3268}
3269
3270/**
3271 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3272 *
3273 * @map: Map to operate on.
3274 *
3275 * Blocks until any pending asynchronous I/O has completed.  Returns
3276 * an error code for any failed I/O operations.
3277 */
3278int regmap_async_complete(struct regmap *map)
3279{
3280	unsigned long flags;
3281	int ret;
3282
3283	/* Nothing to do with no async support */
3284	if (!map->bus || !map->bus->async_write)
3285		return 0;
3286
3287	trace_regmap_async_complete_start(map);
3288
3289	wait_event(map->async_waitq, regmap_async_is_done(map));
3290
3291	spin_lock_irqsave(&map->async_lock, flags);
3292	ret = map->async_ret;
3293	map->async_ret = 0;
3294	spin_unlock_irqrestore(&map->async_lock, flags);
3295
3296	trace_regmap_async_complete_done(map);
3297
3298	return ret;
3299}
3300EXPORT_SYMBOL_GPL(regmap_async_complete);
3301
3302/**
3303 * regmap_register_patch - Register and apply register updates to be applied
3304 *                         on device initialistion
3305 *
3306 * @map: Register map to apply updates to.
3307 * @regs: Values to update.
3308 * @num_regs: Number of entries in regs.
3309 *
3310 * Register a set of register updates to be applied to the device
3311 * whenever the device registers are synchronised with the cache and
3312 * apply them immediately.  Typically this is used to apply
3313 * corrections to be applied to the device defaults on startup, such
3314 * as the updates some vendors provide to undocumented registers.
3315 *
3316 * The caller must ensure that this function cannot be called
3317 * concurrently with either itself or regcache_sync().
3318 */
3319int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3320			  int num_regs)
3321{
3322	struct reg_sequence *p;
3323	int ret;
3324	bool bypass;
3325
3326	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3327	    num_regs))
3328		return 0;
3329
3330	p = krealloc(map->patch,
3331		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3332		     GFP_KERNEL);
3333	if (p) {
3334		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3335		map->patch = p;
3336		map->patch_regs += num_regs;
3337	} else {
3338		return -ENOMEM;
3339	}
3340
3341	map->lock(map->lock_arg);
3342
3343	bypass = map->cache_bypass;
3344
3345	map->cache_bypass = true;
3346	map->async = true;
3347
3348	ret = _regmap_multi_reg_write(map, regs, num_regs);
3349
3350	map->async = false;
3351	map->cache_bypass = bypass;
3352
3353	map->unlock(map->lock_arg);
3354
3355	regmap_async_complete(map);
3356
3357	return ret;
3358}
3359EXPORT_SYMBOL_GPL(regmap_register_patch);
3360
3361/**
3362 * regmap_get_val_bytes() - Report the size of a register value
3363 *
3364 * @map: Register map to operate on.
3365 *
3366 * Report the size of a register value, mainly intended to for use by
3367 * generic infrastructure built on top of regmap.
3368 */
3369int regmap_get_val_bytes(struct regmap *map)
3370{
3371	if (map->format.format_write)
3372		return -EINVAL;
3373
3374	return map->format.val_bytes;
3375}
3376EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3377
3378/**
3379 * regmap_get_max_register() - Report the max register value
3380 *
3381 * @map: Register map to operate on.
3382 *
3383 * Report the max register value, mainly intended to for use by
3384 * generic infrastructure built on top of regmap.
3385 */
3386int regmap_get_max_register(struct regmap *map)
3387{
3388	return map->max_register_is_set ? map->max_register : -EINVAL;
3389}
3390EXPORT_SYMBOL_GPL(regmap_get_max_register);
3391
3392/**
3393 * regmap_get_reg_stride() - Report the register address stride
3394 *
3395 * @map: Register map to operate on.
3396 *
3397 * Report the register address stride, mainly intended to for use by
3398 * generic infrastructure built on top of regmap.
3399 */
3400int regmap_get_reg_stride(struct regmap *map)
3401{
3402	return map->reg_stride;
3403}
3404EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3405
3406/**
3407 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3408 *
3409 * @map: Register map to operate on.
3410 *
3411 * Returns true if an access to the register might sleep, else false.
3412 */
3413bool regmap_might_sleep(struct regmap *map)
3414{
3415	return map->can_sleep;
3416}
3417EXPORT_SYMBOL_GPL(regmap_might_sleep);
3418
3419int regmap_parse_val(struct regmap *map, const void *buf,
3420			unsigned int *val)
3421{
3422	if (!map->format.parse_val)
3423		return -EINVAL;
3424
3425	*val = map->format.parse_val(buf);
3426
3427	return 0;
3428}
3429EXPORT_SYMBOL_GPL(regmap_parse_val);
3430
3431static int __init regmap_initcall(void)
3432{
3433	regmap_debugfs_initcall();
3434
3435	return 0;
3436}
3437postcore_initcall(regmap_initcall);
3438