1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Memory subsystem support
4 *
5 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
6 *            Dave Hansen <haveblue@us.ibm.com>
7 *
8 * This file provides the necessary infrastructure to represent
9 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
10 * All arch-independent code that assumes MEMORY_HOTPLUG requires
11 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
12 */
13
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/topology.h>
17#include <linux/capability.h>
18#include <linux/device.h>
19#include <linux/memory.h>
20#include <linux/memory_hotplug.h>
21#include <linux/mm.h>
22#include <linux/stat.h>
23#include <linux/slab.h>
24#include <linux/xarray.h>
25
26#include <linux/atomic.h>
27#include <linux/uaccess.h>
28
29#define MEMORY_CLASS_NAME	"memory"
30
31static const char *const online_type_to_str[] = {
32	[MMOP_OFFLINE] = "offline",
33	[MMOP_ONLINE] = "online",
34	[MMOP_ONLINE_KERNEL] = "online_kernel",
35	[MMOP_ONLINE_MOVABLE] = "online_movable",
36};
37
38int mhp_online_type_from_str(const char *str)
39{
40	int i;
41
42	for (i = 0; i < ARRAY_SIZE(online_type_to_str); i++) {
43		if (sysfs_streq(str, online_type_to_str[i]))
44			return i;
45	}
46	return -EINVAL;
47}
48
49#define to_memory_block(dev) container_of(dev, struct memory_block, dev)
50
51static int sections_per_block;
52
53static inline unsigned long memory_block_id(unsigned long section_nr)
54{
55	return section_nr / sections_per_block;
56}
57
58static inline unsigned long pfn_to_block_id(unsigned long pfn)
59{
60	return memory_block_id(pfn_to_section_nr(pfn));
61}
62
63static inline unsigned long phys_to_block_id(unsigned long phys)
64{
65	return pfn_to_block_id(PFN_DOWN(phys));
66}
67
68static int memory_subsys_online(struct device *dev);
69static int memory_subsys_offline(struct device *dev);
70
71static const struct bus_type memory_subsys = {
72	.name = MEMORY_CLASS_NAME,
73	.dev_name = MEMORY_CLASS_NAME,
74	.online = memory_subsys_online,
75	.offline = memory_subsys_offline,
76};
77
78/*
79 * Memory blocks are cached in a local radix tree to avoid
80 * a costly linear search for the corresponding device on
81 * the subsystem bus.
82 */
83static DEFINE_XARRAY(memory_blocks);
84
85/*
86 * Memory groups, indexed by memory group id (mgid).
87 */
88static DEFINE_XARRAY_FLAGS(memory_groups, XA_FLAGS_ALLOC);
89#define MEMORY_GROUP_MARK_DYNAMIC	XA_MARK_1
90
91static BLOCKING_NOTIFIER_HEAD(memory_chain);
92
93int register_memory_notifier(struct notifier_block *nb)
94{
95	return blocking_notifier_chain_register(&memory_chain, nb);
96}
97EXPORT_SYMBOL(register_memory_notifier);
98
99void unregister_memory_notifier(struct notifier_block *nb)
100{
101	blocking_notifier_chain_unregister(&memory_chain, nb);
102}
103EXPORT_SYMBOL(unregister_memory_notifier);
104
105static void memory_block_release(struct device *dev)
106{
107	struct memory_block *mem = to_memory_block(dev);
108	/* Verify that the altmap is freed */
109	WARN_ON(mem->altmap);
110	kfree(mem);
111}
112
113unsigned long __weak memory_block_size_bytes(void)
114{
115	return MIN_MEMORY_BLOCK_SIZE;
116}
117EXPORT_SYMBOL_GPL(memory_block_size_bytes);
118
119/* Show the memory block ID, relative to the memory block size */
120static ssize_t phys_index_show(struct device *dev,
121			       struct device_attribute *attr, char *buf)
122{
123	struct memory_block *mem = to_memory_block(dev);
124
125	return sysfs_emit(buf, "%08lx\n", memory_block_id(mem->start_section_nr));
126}
127
128/*
129 * Legacy interface that we cannot remove. Always indicate "removable"
130 * with CONFIG_MEMORY_HOTREMOVE - bad heuristic.
131 */
132static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
133			      char *buf)
134{
135	return sysfs_emit(buf, "%d\n", (int)IS_ENABLED(CONFIG_MEMORY_HOTREMOVE));
136}
137
138/*
139 * online, offline, going offline, etc.
140 */
141static ssize_t state_show(struct device *dev, struct device_attribute *attr,
142			  char *buf)
143{
144	struct memory_block *mem = to_memory_block(dev);
145	const char *output;
146
147	/*
148	 * We can probably put these states in a nice little array
149	 * so that they're not open-coded
150	 */
151	switch (mem->state) {
152	case MEM_ONLINE:
153		output = "online";
154		break;
155	case MEM_OFFLINE:
156		output = "offline";
157		break;
158	case MEM_GOING_OFFLINE:
159		output = "going-offline";
160		break;
161	default:
162		WARN_ON(1);
163		return sysfs_emit(buf, "ERROR-UNKNOWN-%ld\n", mem->state);
164	}
165
166	return sysfs_emit(buf, "%s\n", output);
167}
168
169int memory_notify(unsigned long val, void *v)
170{
171	return blocking_notifier_call_chain(&memory_chain, val, v);
172}
173
174#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
175static unsigned long memblk_nr_poison(struct memory_block *mem);
176#else
177static inline unsigned long memblk_nr_poison(struct memory_block *mem)
178{
179	return 0;
180}
181#endif
182
183/*
184 * Must acquire mem_hotplug_lock in write mode.
185 */
186static int memory_block_online(struct memory_block *mem)
187{
188	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
189	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
190	unsigned long nr_vmemmap_pages = 0;
191	struct memory_notify arg;
192	struct zone *zone;
193	int ret;
194
195	if (memblk_nr_poison(mem))
196		return -EHWPOISON;
197
198	zone = zone_for_pfn_range(mem->online_type, mem->nid, mem->group,
199				  start_pfn, nr_pages);
200
201	/*
202	 * Although vmemmap pages have a different lifecycle than the pages
203	 * they describe (they remain until the memory is unplugged), doing
204	 * their initialization and accounting at memory onlining/offlining
205	 * stage helps to keep accounting easier to follow - e.g vmemmaps
206	 * belong to the same zone as the memory they backed.
207	 */
208	if (mem->altmap)
209		nr_vmemmap_pages = mem->altmap->free;
210
211	arg.altmap_start_pfn = start_pfn;
212	arg.altmap_nr_pages = nr_vmemmap_pages;
213	arg.start_pfn = start_pfn + nr_vmemmap_pages;
214	arg.nr_pages = nr_pages - nr_vmemmap_pages;
215	mem_hotplug_begin();
216	ret = memory_notify(MEM_PREPARE_ONLINE, &arg);
217	ret = notifier_to_errno(ret);
218	if (ret)
219		goto out_notifier;
220
221	if (nr_vmemmap_pages) {
222		ret = mhp_init_memmap_on_memory(start_pfn, nr_vmemmap_pages,
223						zone, mem->altmap->inaccessible);
224		if (ret)
225			goto out;
226	}
227
228	ret = online_pages(start_pfn + nr_vmemmap_pages,
229			   nr_pages - nr_vmemmap_pages, zone, mem->group);
230	if (ret) {
231		if (nr_vmemmap_pages)
232			mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
233		goto out;
234	}
235
236	/*
237	 * Account once onlining succeeded. If the zone was unpopulated, it is
238	 * now already properly populated.
239	 */
240	if (nr_vmemmap_pages)
241		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
242					  nr_vmemmap_pages);
243
244	mem->zone = zone;
245	mem_hotplug_done();
246	return ret;
247out:
248	memory_notify(MEM_FINISH_OFFLINE, &arg);
249out_notifier:
250	mem_hotplug_done();
251	return ret;
252}
253
254/*
255 * Must acquire mem_hotplug_lock in write mode.
256 */
257static int memory_block_offline(struct memory_block *mem)
258{
259	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
260	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
261	unsigned long nr_vmemmap_pages = 0;
262	struct memory_notify arg;
263	int ret;
264
265	if (!mem->zone)
266		return -EINVAL;
267
268	/*
269	 * Unaccount before offlining, such that unpopulated zone and kthreads
270	 * can properly be torn down in offline_pages().
271	 */
272	if (mem->altmap)
273		nr_vmemmap_pages = mem->altmap->free;
274
275	mem_hotplug_begin();
276	if (nr_vmemmap_pages)
277		adjust_present_page_count(pfn_to_page(start_pfn), mem->group,
278					  -nr_vmemmap_pages);
279
280	ret = offline_pages(start_pfn + nr_vmemmap_pages,
281			    nr_pages - nr_vmemmap_pages, mem->zone, mem->group);
282	if (ret) {
283		/* offline_pages() failed. Account back. */
284		if (nr_vmemmap_pages)
285			adjust_present_page_count(pfn_to_page(start_pfn),
286						  mem->group, nr_vmemmap_pages);
287		goto out;
288	}
289
290	if (nr_vmemmap_pages)
291		mhp_deinit_memmap_on_memory(start_pfn, nr_vmemmap_pages);
292
293	mem->zone = NULL;
294	arg.altmap_start_pfn = start_pfn;
295	arg.altmap_nr_pages = nr_vmemmap_pages;
296	arg.start_pfn = start_pfn + nr_vmemmap_pages;
297	arg.nr_pages = nr_pages - nr_vmemmap_pages;
298	memory_notify(MEM_FINISH_OFFLINE, &arg);
299out:
300	mem_hotplug_done();
301	return ret;
302}
303
304/*
305 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
306 * OK to have direct references to sparsemem variables in here.
307 */
308static int
309memory_block_action(struct memory_block *mem, unsigned long action)
310{
311	int ret;
312
313	switch (action) {
314	case MEM_ONLINE:
315		ret = memory_block_online(mem);
316		break;
317	case MEM_OFFLINE:
318		ret = memory_block_offline(mem);
319		break;
320	default:
321		WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
322		     "%ld\n", __func__, mem->start_section_nr, action, action);
323		ret = -EINVAL;
324	}
325
326	return ret;
327}
328
329static int memory_block_change_state(struct memory_block *mem,
330		unsigned long to_state, unsigned long from_state_req)
331{
332	int ret = 0;
333
334	if (mem->state != from_state_req)
335		return -EINVAL;
336
337	if (to_state == MEM_OFFLINE)
338		mem->state = MEM_GOING_OFFLINE;
339
340	ret = memory_block_action(mem, to_state);
341	mem->state = ret ? from_state_req : to_state;
342
343	return ret;
344}
345
346/* The device lock serializes operations on memory_subsys_[online|offline] */
347static int memory_subsys_online(struct device *dev)
348{
349	struct memory_block *mem = to_memory_block(dev);
350	int ret;
351
352	if (mem->state == MEM_ONLINE)
353		return 0;
354
355	/*
356	 * When called via device_online() without configuring the online_type,
357	 * we want to default to MMOP_ONLINE.
358	 */
359	if (mem->online_type == MMOP_OFFLINE)
360		mem->online_type = MMOP_ONLINE;
361
362	ret = memory_block_change_state(mem, MEM_ONLINE, MEM_OFFLINE);
363	mem->online_type = MMOP_OFFLINE;
364
365	return ret;
366}
367
368static int memory_subsys_offline(struct device *dev)
369{
370	struct memory_block *mem = to_memory_block(dev);
371
372	if (mem->state == MEM_OFFLINE)
373		return 0;
374
375	return memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
376}
377
378static ssize_t state_store(struct device *dev, struct device_attribute *attr,
379			   const char *buf, size_t count)
380{
381	const int online_type = mhp_online_type_from_str(buf);
382	struct memory_block *mem = to_memory_block(dev);
383	int ret;
384
385	if (online_type < 0)
386		return -EINVAL;
387
388	ret = lock_device_hotplug_sysfs();
389	if (ret)
390		return ret;
391
392	switch (online_type) {
393	case MMOP_ONLINE_KERNEL:
394	case MMOP_ONLINE_MOVABLE:
395	case MMOP_ONLINE:
396		/* mem->online_type is protected by device_hotplug_lock */
397		mem->online_type = online_type;
398		ret = device_online(&mem->dev);
399		break;
400	case MMOP_OFFLINE:
401		ret = device_offline(&mem->dev);
402		break;
403	default:
404		ret = -EINVAL; /* should never happen */
405	}
406
407	unlock_device_hotplug();
408
409	if (ret < 0)
410		return ret;
411	if (ret)
412		return -EINVAL;
413
414	return count;
415}
416
417/*
418 * Legacy interface that we cannot remove: s390x exposes the storage increment
419 * covered by a memory block, allowing for identifying which memory blocks
420 * comprise a storage increment. Since a memory block spans complete
421 * storage increments nowadays, this interface is basically unused. Other
422 * archs never exposed != 0.
423 */
424static ssize_t phys_device_show(struct device *dev,
425				struct device_attribute *attr, char *buf)
426{
427	struct memory_block *mem = to_memory_block(dev);
428	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
429
430	return sysfs_emit(buf, "%d\n",
431			  arch_get_memory_phys_device(start_pfn));
432}
433
434#ifdef CONFIG_MEMORY_HOTREMOVE
435static int print_allowed_zone(char *buf, int len, int nid,
436			      struct memory_group *group,
437			      unsigned long start_pfn, unsigned long nr_pages,
438			      int online_type, struct zone *default_zone)
439{
440	struct zone *zone;
441
442	zone = zone_for_pfn_range(online_type, nid, group, start_pfn, nr_pages);
443	if (zone == default_zone)
444		return 0;
445
446	return sysfs_emit_at(buf, len, " %s", zone->name);
447}
448
449static ssize_t valid_zones_show(struct device *dev,
450				struct device_attribute *attr, char *buf)
451{
452	struct memory_block *mem = to_memory_block(dev);
453	unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
454	unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
455	struct memory_group *group = mem->group;
456	struct zone *default_zone;
457	int nid = mem->nid;
458	int len = 0;
459
460	/*
461	 * Check the existing zone. Make sure that we do that only on the
462	 * online nodes otherwise the page_zone is not reliable
463	 */
464	if (mem->state == MEM_ONLINE) {
465		/*
466		 * If !mem->zone, the memory block spans multiple zones and
467		 * cannot get offlined.
468		 */
469		default_zone = mem->zone;
470		if (!default_zone)
471			return sysfs_emit(buf, "%s\n", "none");
472		len += sysfs_emit_at(buf, len, "%s", default_zone->name);
473		goto out;
474	}
475
476	default_zone = zone_for_pfn_range(MMOP_ONLINE, nid, group,
477					  start_pfn, nr_pages);
478
479	len += sysfs_emit_at(buf, len, "%s", default_zone->name);
480	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
481				  MMOP_ONLINE_KERNEL, default_zone);
482	len += print_allowed_zone(buf, len, nid, group, start_pfn, nr_pages,
483				  MMOP_ONLINE_MOVABLE, default_zone);
484out:
485	len += sysfs_emit_at(buf, len, "\n");
486	return len;
487}
488static DEVICE_ATTR_RO(valid_zones);
489#endif
490
491static DEVICE_ATTR_RO(phys_index);
492static DEVICE_ATTR_RW(state);
493static DEVICE_ATTR_RO(phys_device);
494static DEVICE_ATTR_RO(removable);
495
496/*
497 * Show the memory block size (shared by all memory blocks).
498 */
499static ssize_t block_size_bytes_show(struct device *dev,
500				     struct device_attribute *attr, char *buf)
501{
502	return sysfs_emit(buf, "%lx\n", memory_block_size_bytes());
503}
504
505static DEVICE_ATTR_RO(block_size_bytes);
506
507/*
508 * Memory auto online policy.
509 */
510
511static ssize_t auto_online_blocks_show(struct device *dev,
512				       struct device_attribute *attr, char *buf)
513{
514	return sysfs_emit(buf, "%s\n",
515			  online_type_to_str[mhp_default_online_type]);
516}
517
518static ssize_t auto_online_blocks_store(struct device *dev,
519					struct device_attribute *attr,
520					const char *buf, size_t count)
521{
522	const int online_type = mhp_online_type_from_str(buf);
523
524	if (online_type < 0)
525		return -EINVAL;
526
527	mhp_default_online_type = online_type;
528	return count;
529}
530
531static DEVICE_ATTR_RW(auto_online_blocks);
532
533#ifdef CONFIG_CRASH_HOTPLUG
534#include <linux/kexec.h>
535static ssize_t crash_hotplug_show(struct device *dev,
536				       struct device_attribute *attr, char *buf)
537{
538	return sysfs_emit(buf, "%d\n", crash_hotplug_memory_support());
539}
540static DEVICE_ATTR_RO(crash_hotplug);
541#endif
542
543/*
544 * Some architectures will have custom drivers to do this, and
545 * will not need to do it from userspace.  The fake hot-add code
546 * as well as ppc64 will do all of their discovery in userspace
547 * and will require this interface.
548 */
549#ifdef CONFIG_ARCH_MEMORY_PROBE
550static ssize_t probe_store(struct device *dev, struct device_attribute *attr,
551			   const char *buf, size_t count)
552{
553	u64 phys_addr;
554	int nid, ret;
555	unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
556
557	ret = kstrtoull(buf, 0, &phys_addr);
558	if (ret)
559		return ret;
560
561	if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
562		return -EINVAL;
563
564	ret = lock_device_hotplug_sysfs();
565	if (ret)
566		return ret;
567
568	nid = memory_add_physaddr_to_nid(phys_addr);
569	ret = __add_memory(nid, phys_addr,
570			   MIN_MEMORY_BLOCK_SIZE * sections_per_block,
571			   MHP_NONE);
572
573	if (ret)
574		goto out;
575
576	ret = count;
577out:
578	unlock_device_hotplug();
579	return ret;
580}
581
582static DEVICE_ATTR_WO(probe);
583#endif
584
585#ifdef CONFIG_MEMORY_FAILURE
586/*
587 * Support for offlining pages of memory
588 */
589
590/* Soft offline a page */
591static ssize_t soft_offline_page_store(struct device *dev,
592				       struct device_attribute *attr,
593				       const char *buf, size_t count)
594{
595	int ret;
596	u64 pfn;
597	if (!capable(CAP_SYS_ADMIN))
598		return -EPERM;
599	if (kstrtoull(buf, 0, &pfn) < 0)
600		return -EINVAL;
601	pfn >>= PAGE_SHIFT;
602	ret = soft_offline_page(pfn, 0);
603	return ret == 0 ? count : ret;
604}
605
606/* Forcibly offline a page, including killing processes. */
607static ssize_t hard_offline_page_store(struct device *dev,
608				       struct device_attribute *attr,
609				       const char *buf, size_t count)
610{
611	int ret;
612	u64 pfn;
613	if (!capable(CAP_SYS_ADMIN))
614		return -EPERM;
615	if (kstrtoull(buf, 0, &pfn) < 0)
616		return -EINVAL;
617	pfn >>= PAGE_SHIFT;
618	ret = memory_failure(pfn, MF_SW_SIMULATED);
619	if (ret == -EOPNOTSUPP)
620		ret = 0;
621	return ret ? ret : count;
622}
623
624static DEVICE_ATTR_WO(soft_offline_page);
625static DEVICE_ATTR_WO(hard_offline_page);
626#endif
627
628/* See phys_device_show(). */
629int __weak arch_get_memory_phys_device(unsigned long start_pfn)
630{
631	return 0;
632}
633
634/*
635 * A reference for the returned memory block device is acquired.
636 *
637 * Called under device_hotplug_lock.
638 */
639static struct memory_block *find_memory_block_by_id(unsigned long block_id)
640{
641	struct memory_block *mem;
642
643	mem = xa_load(&memory_blocks, block_id);
644	if (mem)
645		get_device(&mem->dev);
646	return mem;
647}
648
649/*
650 * Called under device_hotplug_lock.
651 */
652struct memory_block *find_memory_block(unsigned long section_nr)
653{
654	unsigned long block_id = memory_block_id(section_nr);
655
656	return find_memory_block_by_id(block_id);
657}
658
659static struct attribute *memory_memblk_attrs[] = {
660	&dev_attr_phys_index.attr,
661	&dev_attr_state.attr,
662	&dev_attr_phys_device.attr,
663	&dev_attr_removable.attr,
664#ifdef CONFIG_MEMORY_HOTREMOVE
665	&dev_attr_valid_zones.attr,
666#endif
667	NULL
668};
669
670static const struct attribute_group memory_memblk_attr_group = {
671	.attrs = memory_memblk_attrs,
672};
673
674static const struct attribute_group *memory_memblk_attr_groups[] = {
675	&memory_memblk_attr_group,
676	NULL,
677};
678
679static int __add_memory_block(struct memory_block *memory)
680{
681	int ret;
682
683	memory->dev.bus = &memory_subsys;
684	memory->dev.id = memory->start_section_nr / sections_per_block;
685	memory->dev.release = memory_block_release;
686	memory->dev.groups = memory_memblk_attr_groups;
687	memory->dev.offline = memory->state == MEM_OFFLINE;
688
689	ret = device_register(&memory->dev);
690	if (ret) {
691		put_device(&memory->dev);
692		return ret;
693	}
694	ret = xa_err(xa_store(&memory_blocks, memory->dev.id, memory,
695			      GFP_KERNEL));
696	if (ret)
697		device_unregister(&memory->dev);
698
699	return ret;
700}
701
702static struct zone *early_node_zone_for_memory_block(struct memory_block *mem,
703						     int nid)
704{
705	const unsigned long start_pfn = section_nr_to_pfn(mem->start_section_nr);
706	const unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
707	struct zone *zone, *matching_zone = NULL;
708	pg_data_t *pgdat = NODE_DATA(nid);
709	int i;
710
711	/*
712	 * This logic only works for early memory, when the applicable zones
713	 * already span the memory block. We don't expect overlapping zones on
714	 * a single node for early memory. So if we're told that some PFNs
715	 * of a node fall into this memory block, we can assume that all node
716	 * zones that intersect with the memory block are actually applicable.
717	 * No need to look at the memmap.
718	 */
719	for (i = 0; i < MAX_NR_ZONES; i++) {
720		zone = pgdat->node_zones + i;
721		if (!populated_zone(zone))
722			continue;
723		if (!zone_intersects(zone, start_pfn, nr_pages))
724			continue;
725		if (!matching_zone) {
726			matching_zone = zone;
727			continue;
728		}
729		/* Spans multiple zones ... */
730		matching_zone = NULL;
731		break;
732	}
733	return matching_zone;
734}
735
736#ifdef CONFIG_NUMA
737/**
738 * memory_block_add_nid() - Indicate that system RAM falling into this memory
739 *			    block device (partially) belongs to the given node.
740 * @mem: The memory block device.
741 * @nid: The node id.
742 * @context: The memory initialization context.
743 *
744 * Indicate that system RAM falling into this memory block (partially) belongs
745 * to the given node. If the context indicates ("early") that we are adding the
746 * node during node device subsystem initialization, this will also properly
747 * set/adjust mem->zone based on the zone ranges of the given node.
748 */
749void memory_block_add_nid(struct memory_block *mem, int nid,
750			  enum meminit_context context)
751{
752	if (context == MEMINIT_EARLY && mem->nid != nid) {
753		/*
754		 * For early memory we have to determine the zone when setting
755		 * the node id and handle multiple nodes spanning a single
756		 * memory block by indicate via zone == NULL that we're not
757		 * dealing with a single zone. So if we're setting the node id
758		 * the first time, determine if there is a single zone. If we're
759		 * setting the node id a second time to a different node,
760		 * invalidate the single detected zone.
761		 */
762		if (mem->nid == NUMA_NO_NODE)
763			mem->zone = early_node_zone_for_memory_block(mem, nid);
764		else
765			mem->zone = NULL;
766	}
767
768	/*
769	 * If this memory block spans multiple nodes, we only indicate
770	 * the last processed node. If we span multiple nodes (not applicable
771	 * to hotplugged memory), zone == NULL will prohibit memory offlining
772	 * and consequently unplug.
773	 */
774	mem->nid = nid;
775}
776#endif
777
778static int add_memory_block(unsigned long block_id, unsigned long state,
779			    struct vmem_altmap *altmap,
780			    struct memory_group *group)
781{
782	struct memory_block *mem;
783	int ret = 0;
784
785	mem = find_memory_block_by_id(block_id);
786	if (mem) {
787		put_device(&mem->dev);
788		return -EEXIST;
789	}
790	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
791	if (!mem)
792		return -ENOMEM;
793
794	mem->start_section_nr = block_id * sections_per_block;
795	mem->state = state;
796	mem->nid = NUMA_NO_NODE;
797	mem->altmap = altmap;
798	INIT_LIST_HEAD(&mem->group_next);
799
800#ifndef CONFIG_NUMA
801	if (state == MEM_ONLINE)
802		/*
803		 * MEM_ONLINE at this point implies early memory. With NUMA,
804		 * we'll determine the zone when setting the node id via
805		 * memory_block_add_nid(). Memory hotplug updated the zone
806		 * manually when memory onlining/offlining succeeds.
807		 */
808		mem->zone = early_node_zone_for_memory_block(mem, NUMA_NO_NODE);
809#endif /* CONFIG_NUMA */
810
811	ret = __add_memory_block(mem);
812	if (ret)
813		return ret;
814
815	if (group) {
816		mem->group = group;
817		list_add(&mem->group_next, &group->memory_blocks);
818	}
819
820	return 0;
821}
822
823static int __init add_boot_memory_block(unsigned long base_section_nr)
824{
825	int section_count = 0;
826	unsigned long nr;
827
828	for (nr = base_section_nr; nr < base_section_nr + sections_per_block;
829	     nr++)
830		if (present_section_nr(nr))
831			section_count++;
832
833	if (section_count == 0)
834		return 0;
835	return add_memory_block(memory_block_id(base_section_nr),
836				MEM_ONLINE, NULL,  NULL);
837}
838
839static int add_hotplug_memory_block(unsigned long block_id,
840				    struct vmem_altmap *altmap,
841				    struct memory_group *group)
842{
843	return add_memory_block(block_id, MEM_OFFLINE, altmap, group);
844}
845
846static void remove_memory_block(struct memory_block *memory)
847{
848	if (WARN_ON_ONCE(memory->dev.bus != &memory_subsys))
849		return;
850
851	WARN_ON(xa_erase(&memory_blocks, memory->dev.id) == NULL);
852
853	if (memory->group) {
854		list_del(&memory->group_next);
855		memory->group = NULL;
856	}
857
858	/* drop the ref. we got via find_memory_block() */
859	put_device(&memory->dev);
860	device_unregister(&memory->dev);
861}
862
863/*
864 * Create memory block devices for the given memory area. Start and size
865 * have to be aligned to memory block granularity. Memory block devices
866 * will be initialized as offline.
867 *
868 * Called under device_hotplug_lock.
869 */
870int create_memory_block_devices(unsigned long start, unsigned long size,
871				struct vmem_altmap *altmap,
872				struct memory_group *group)
873{
874	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
875	unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
876	struct memory_block *mem;
877	unsigned long block_id;
878	int ret = 0;
879
880	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
881			 !IS_ALIGNED(size, memory_block_size_bytes())))
882		return -EINVAL;
883
884	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
885		ret = add_hotplug_memory_block(block_id, altmap, group);
886		if (ret)
887			break;
888	}
889	if (ret) {
890		end_block_id = block_id;
891		for (block_id = start_block_id; block_id != end_block_id;
892		     block_id++) {
893			mem = find_memory_block_by_id(block_id);
894			if (WARN_ON_ONCE(!mem))
895				continue;
896			remove_memory_block(mem);
897		}
898	}
899	return ret;
900}
901
902/*
903 * Remove memory block devices for the given memory area. Start and size
904 * have to be aligned to memory block granularity. Memory block devices
905 * have to be offline.
906 *
907 * Called under device_hotplug_lock.
908 */
909void remove_memory_block_devices(unsigned long start, unsigned long size)
910{
911	const unsigned long start_block_id = pfn_to_block_id(PFN_DOWN(start));
912	const unsigned long end_block_id = pfn_to_block_id(PFN_DOWN(start + size));
913	struct memory_block *mem;
914	unsigned long block_id;
915
916	if (WARN_ON_ONCE(!IS_ALIGNED(start, memory_block_size_bytes()) ||
917			 !IS_ALIGNED(size, memory_block_size_bytes())))
918		return;
919
920	for (block_id = start_block_id; block_id != end_block_id; block_id++) {
921		mem = find_memory_block_by_id(block_id);
922		if (WARN_ON_ONCE(!mem))
923			continue;
924		num_poisoned_pages_sub(-1UL, memblk_nr_poison(mem));
925		unregister_memory_block_under_nodes(mem);
926		remove_memory_block(mem);
927	}
928}
929
930static struct attribute *memory_root_attrs[] = {
931#ifdef CONFIG_ARCH_MEMORY_PROBE
932	&dev_attr_probe.attr,
933#endif
934
935#ifdef CONFIG_MEMORY_FAILURE
936	&dev_attr_soft_offline_page.attr,
937	&dev_attr_hard_offline_page.attr,
938#endif
939
940	&dev_attr_block_size_bytes.attr,
941	&dev_attr_auto_online_blocks.attr,
942#ifdef CONFIG_CRASH_HOTPLUG
943	&dev_attr_crash_hotplug.attr,
944#endif
945	NULL
946};
947
948static const struct attribute_group memory_root_attr_group = {
949	.attrs = memory_root_attrs,
950};
951
952static const struct attribute_group *memory_root_attr_groups[] = {
953	&memory_root_attr_group,
954	NULL,
955};
956
957/*
958 * Initialize the sysfs support for memory devices. At the time this function
959 * is called, we cannot have concurrent creation/deletion of memory block
960 * devices, the device_hotplug_lock is not needed.
961 */
962void __init memory_dev_init(void)
963{
964	int ret;
965	unsigned long block_sz, nr;
966
967	/* Validate the configured memory block size */
968	block_sz = memory_block_size_bytes();
969	if (!is_power_of_2(block_sz) || block_sz < MIN_MEMORY_BLOCK_SIZE)
970		panic("Memory block size not suitable: 0x%lx\n", block_sz);
971	sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
972
973	ret = subsys_system_register(&memory_subsys, memory_root_attr_groups);
974	if (ret)
975		panic("%s() failed to register subsystem: %d\n", __func__, ret);
976
977	/*
978	 * Create entries for memory sections that were found
979	 * during boot and have been initialized
980	 */
981	for (nr = 0; nr <= __highest_present_section_nr;
982	     nr += sections_per_block) {
983		ret = add_boot_memory_block(nr);
984		if (ret)
985			panic("%s() failed to add memory block: %d\n", __func__,
986			      ret);
987	}
988}
989
990/**
991 * walk_memory_blocks - walk through all present memory blocks overlapped
992 *			by the range [start, start + size)
993 *
994 * @start: start address of the memory range
995 * @size: size of the memory range
996 * @arg: argument passed to func
997 * @func: callback for each memory section walked
998 *
999 * This function walks through all present memory blocks overlapped by the
1000 * range [start, start + size), calling func on each memory block.
1001 *
1002 * In case func() returns an error, walking is aborted and the error is
1003 * returned.
1004 *
1005 * Called under device_hotplug_lock.
1006 */
1007int walk_memory_blocks(unsigned long start, unsigned long size,
1008		       void *arg, walk_memory_blocks_func_t func)
1009{
1010	const unsigned long start_block_id = phys_to_block_id(start);
1011	const unsigned long end_block_id = phys_to_block_id(start + size - 1);
1012	struct memory_block *mem;
1013	unsigned long block_id;
1014	int ret = 0;
1015
1016	if (!size)
1017		return 0;
1018
1019	for (block_id = start_block_id; block_id <= end_block_id; block_id++) {
1020		mem = find_memory_block_by_id(block_id);
1021		if (!mem)
1022			continue;
1023
1024		ret = func(mem, arg);
1025		put_device(&mem->dev);
1026		if (ret)
1027			break;
1028	}
1029	return ret;
1030}
1031
1032struct for_each_memory_block_cb_data {
1033	walk_memory_blocks_func_t func;
1034	void *arg;
1035};
1036
1037static int for_each_memory_block_cb(struct device *dev, void *data)
1038{
1039	struct memory_block *mem = to_memory_block(dev);
1040	struct for_each_memory_block_cb_data *cb_data = data;
1041
1042	return cb_data->func(mem, cb_data->arg);
1043}
1044
1045/**
1046 * for_each_memory_block - walk through all present memory blocks
1047 *
1048 * @arg: argument passed to func
1049 * @func: callback for each memory block walked
1050 *
1051 * This function walks through all present memory blocks, calling func on
1052 * each memory block.
1053 *
1054 * In case func() returns an error, walking is aborted and the error is
1055 * returned.
1056 */
1057int for_each_memory_block(void *arg, walk_memory_blocks_func_t func)
1058{
1059	struct for_each_memory_block_cb_data cb_data = {
1060		.func = func,
1061		.arg = arg,
1062	};
1063
1064	return bus_for_each_dev(&memory_subsys, NULL, &cb_data,
1065				for_each_memory_block_cb);
1066}
1067
1068/*
1069 * This is an internal helper to unify allocation and initialization of
1070 * memory groups. Note that the passed memory group will be copied to a
1071 * dynamically allocated memory group. After this call, the passed
1072 * memory group should no longer be used.
1073 */
1074static int memory_group_register(struct memory_group group)
1075{
1076	struct memory_group *new_group;
1077	uint32_t mgid;
1078	int ret;
1079
1080	if (!node_possible(group.nid))
1081		return -EINVAL;
1082
1083	new_group = kzalloc(sizeof(group), GFP_KERNEL);
1084	if (!new_group)
1085		return -ENOMEM;
1086	*new_group = group;
1087	INIT_LIST_HEAD(&new_group->memory_blocks);
1088
1089	ret = xa_alloc(&memory_groups, &mgid, new_group, xa_limit_31b,
1090		       GFP_KERNEL);
1091	if (ret) {
1092		kfree(new_group);
1093		return ret;
1094	} else if (group.is_dynamic) {
1095		xa_set_mark(&memory_groups, mgid, MEMORY_GROUP_MARK_DYNAMIC);
1096	}
1097	return mgid;
1098}
1099
1100/**
1101 * memory_group_register_static() - Register a static memory group.
1102 * @nid: The node id.
1103 * @max_pages: The maximum number of pages we'll have in this static memory
1104 *	       group.
1105 *
1106 * Register a new static memory group and return the memory group id.
1107 * All memory in the group belongs to a single unit, such as a DIMM. All
1108 * memory belonging to a static memory group is added in one go to be removed
1109 * in one go -- it's static.
1110 *
1111 * Returns an error if out of memory, if the node id is invalid, if no new
1112 * memory groups can be registered, or if max_pages is invalid (0). Otherwise,
1113 * returns the new memory group id.
1114 */
1115int memory_group_register_static(int nid, unsigned long max_pages)
1116{
1117	struct memory_group group = {
1118		.nid = nid,
1119		.s = {
1120			.max_pages = max_pages,
1121		},
1122	};
1123
1124	if (!max_pages)
1125		return -EINVAL;
1126	return memory_group_register(group);
1127}
1128EXPORT_SYMBOL_GPL(memory_group_register_static);
1129
1130/**
1131 * memory_group_register_dynamic() - Register a dynamic memory group.
1132 * @nid: The node id.
1133 * @unit_pages: Unit in pages in which is memory added/removed in this dynamic
1134 *		memory group.
1135 *
1136 * Register a new dynamic memory group and return the memory group id.
1137 * Memory within a dynamic memory group is added/removed dynamically
1138 * in unit_pages.
1139 *
1140 * Returns an error if out of memory, if the node id is invalid, if no new
1141 * memory groups can be registered, or if unit_pages is invalid (0, not a
1142 * power of two, smaller than a single memory block). Otherwise, returns the
1143 * new memory group id.
1144 */
1145int memory_group_register_dynamic(int nid, unsigned long unit_pages)
1146{
1147	struct memory_group group = {
1148		.nid = nid,
1149		.is_dynamic = true,
1150		.d = {
1151			.unit_pages = unit_pages,
1152		},
1153	};
1154
1155	if (!unit_pages || !is_power_of_2(unit_pages) ||
1156	    unit_pages < PHYS_PFN(memory_block_size_bytes()))
1157		return -EINVAL;
1158	return memory_group_register(group);
1159}
1160EXPORT_SYMBOL_GPL(memory_group_register_dynamic);
1161
1162/**
1163 * memory_group_unregister() - Unregister a memory group.
1164 * @mgid: the memory group id
1165 *
1166 * Unregister a memory group. If any memory block still belongs to this
1167 * memory group, unregistering will fail.
1168 *
1169 * Returns -EINVAL if the memory group id is invalid, returns -EBUSY if some
1170 * memory blocks still belong to this memory group and returns 0 if
1171 * unregistering succeeded.
1172 */
1173int memory_group_unregister(int mgid)
1174{
1175	struct memory_group *group;
1176
1177	if (mgid < 0)
1178		return -EINVAL;
1179
1180	group = xa_load(&memory_groups, mgid);
1181	if (!group)
1182		return -EINVAL;
1183	if (!list_empty(&group->memory_blocks))
1184		return -EBUSY;
1185	xa_erase(&memory_groups, mgid);
1186	kfree(group);
1187	return 0;
1188}
1189EXPORT_SYMBOL_GPL(memory_group_unregister);
1190
1191/*
1192 * This is an internal helper only to be used in core memory hotplug code to
1193 * lookup a memory group. We don't care about locking, as we don't expect a
1194 * memory group to get unregistered while adding memory to it -- because
1195 * the group and the memory is managed by the same driver.
1196 */
1197struct memory_group *memory_group_find_by_id(int mgid)
1198{
1199	return xa_load(&memory_groups, mgid);
1200}
1201
1202/*
1203 * This is an internal helper only to be used in core memory hotplug code to
1204 * walk all dynamic memory groups excluding a given memory group, either
1205 * belonging to a specific node, or belonging to any node.
1206 */
1207int walk_dynamic_memory_groups(int nid, walk_memory_groups_func_t func,
1208			       struct memory_group *excluded, void *arg)
1209{
1210	struct memory_group *group;
1211	unsigned long index;
1212	int ret = 0;
1213
1214	xa_for_each_marked(&memory_groups, index, group,
1215			   MEMORY_GROUP_MARK_DYNAMIC) {
1216		if (group == excluded)
1217			continue;
1218#ifdef CONFIG_NUMA
1219		if (nid != NUMA_NO_NODE && group->nid != nid)
1220			continue;
1221#endif /* CONFIG_NUMA */
1222		ret = func(group, arg);
1223		if (ret)
1224			break;
1225	}
1226	return ret;
1227}
1228
1229#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
1230void memblk_nr_poison_inc(unsigned long pfn)
1231{
1232	const unsigned long block_id = pfn_to_block_id(pfn);
1233	struct memory_block *mem = find_memory_block_by_id(block_id);
1234
1235	if (mem)
1236		atomic_long_inc(&mem->nr_hwpoison);
1237}
1238
1239void memblk_nr_poison_sub(unsigned long pfn, long i)
1240{
1241	const unsigned long block_id = pfn_to_block_id(pfn);
1242	struct memory_block *mem = find_memory_block_by_id(block_id);
1243
1244	if (mem)
1245		atomic_long_sub(i, &mem->nr_hwpoison);
1246}
1247
1248static unsigned long memblk_nr_poison(struct memory_block *mem)
1249{
1250	return atomic_long_read(&mem->nr_hwpoison);
1251}
1252#endif
1253