1// SPDX-License-Identifier: GPL-2.0
2/*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/capability.h>
14#include <linux/device.h>
15#include <linux/kernel_read_file.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/initrd.h>
19#include <linux/timer.h>
20#include <linux/vmalloc.h>
21#include <linux/interrupt.h>
22#include <linux/bitops.h>
23#include <linux/mutex.h>
24#include <linux/workqueue.h>
25#include <linux/highmem.h>
26#include <linux/firmware.h>
27#include <linux/slab.h>
28#include <linux/sched.h>
29#include <linux/file.h>
30#include <linux/list.h>
31#include <linux/fs.h>
32#include <linux/async.h>
33#include <linux/pm.h>
34#include <linux/suspend.h>
35#include <linux/syscore_ops.h>
36#include <linux/reboot.h>
37#include <linux/security.h>
38#include <linux/zstd.h>
39#include <linux/xz.h>
40
41#include <generated/utsrelease.h>
42
43#include "../base.h"
44#include "firmware.h"
45#include "fallback.h"
46
47MODULE_AUTHOR("Manuel Estrada Sainz");
48MODULE_DESCRIPTION("Multi purpose firmware loading support");
49MODULE_LICENSE("GPL");
50
51struct firmware_cache {
52	/* firmware_buf instance will be added into the below list */
53	spinlock_t lock;
54	struct list_head head;
55	int state;
56
57#ifdef CONFIG_FW_CACHE
58	/*
59	 * Names of firmware images which have been cached successfully
60	 * will be added into the below list so that device uncache
61	 * helper can trace which firmware images have been cached
62	 * before.
63	 */
64	spinlock_t name_lock;
65	struct list_head fw_names;
66
67	struct delayed_work work;
68
69	struct notifier_block   pm_notify;
70#endif
71};
72
73struct fw_cache_entry {
74	struct list_head list;
75	const char *name;
76};
77
78struct fw_name_devm {
79	unsigned long magic;
80	const char *name;
81};
82
83static inline struct fw_priv *to_fw_priv(struct kref *ref)
84{
85	return container_of(ref, struct fw_priv, ref);
86}
87
88#define	FW_LOADER_NO_CACHE	0
89#define	FW_LOADER_START_CACHE	1
90
91/* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92 * guarding for corner cases a global lock should be OK */
93DEFINE_MUTEX(fw_lock);
94
95struct firmware_cache fw_cache;
96bool fw_load_abort_all;
97
98void fw_state_init(struct fw_priv *fw_priv)
99{
100	struct fw_state *fw_st = &fw_priv->fw_st;
101
102	init_completion(&fw_st->completion);
103	fw_st->status = FW_STATUS_UNKNOWN;
104}
105
106static inline int fw_state_wait(struct fw_priv *fw_priv)
107{
108	return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
109}
110
111static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
112
113static struct fw_priv *__allocate_fw_priv(const char *fw_name,
114					  struct firmware_cache *fwc,
115					  void *dbuf,
116					  size_t size,
117					  size_t offset,
118					  u32 opt_flags)
119{
120	struct fw_priv *fw_priv;
121
122	/* For a partial read, the buffer must be preallocated. */
123	if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
124		return NULL;
125
126	/* Only partial reads are allowed to use an offset. */
127	if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
128		return NULL;
129
130	fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
131	if (!fw_priv)
132		return NULL;
133
134	fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
135	if (!fw_priv->fw_name) {
136		kfree(fw_priv);
137		return NULL;
138	}
139
140	kref_init(&fw_priv->ref);
141	fw_priv->fwc = fwc;
142	fw_priv->data = dbuf;
143	fw_priv->allocated_size = size;
144	fw_priv->offset = offset;
145	fw_priv->opt_flags = opt_flags;
146	fw_state_init(fw_priv);
147#ifdef CONFIG_FW_LOADER_USER_HELPER
148	INIT_LIST_HEAD(&fw_priv->pending_list);
149#endif
150
151	pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
152
153	return fw_priv;
154}
155
156static struct fw_priv *__lookup_fw_priv(const char *fw_name)
157{
158	struct fw_priv *tmp;
159	struct firmware_cache *fwc = &fw_cache;
160
161	list_for_each_entry(tmp, &fwc->head, list)
162		if (!strcmp(tmp->fw_name, fw_name))
163			return tmp;
164	return NULL;
165}
166
167/* Returns 1 for batching firmware requests with the same name */
168int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
169			 struct fw_priv **fw_priv, void *dbuf, size_t size,
170			 size_t offset, u32 opt_flags)
171{
172	struct fw_priv *tmp;
173
174	spin_lock(&fwc->lock);
175	/*
176	 * Do not merge requests that are marked to be non-cached or
177	 * are performing partial reads.
178	 */
179	if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
180		tmp = __lookup_fw_priv(fw_name);
181		if (tmp) {
182			kref_get(&tmp->ref);
183			spin_unlock(&fwc->lock);
184			*fw_priv = tmp;
185			pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
186			return 1;
187		}
188	}
189
190	tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
191	if (tmp) {
192		INIT_LIST_HEAD(&tmp->list);
193		if (!(opt_flags & FW_OPT_NOCACHE))
194			list_add(&tmp->list, &fwc->head);
195	}
196	spin_unlock(&fwc->lock);
197
198	*fw_priv = tmp;
199
200	return tmp ? 0 : -ENOMEM;
201}
202
203static void __free_fw_priv(struct kref *ref)
204	__releases(&fwc->lock)
205{
206	struct fw_priv *fw_priv = to_fw_priv(ref);
207	struct firmware_cache *fwc = fw_priv->fwc;
208
209	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
210		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
211		 (unsigned int)fw_priv->size);
212
213	list_del(&fw_priv->list);
214	spin_unlock(&fwc->lock);
215
216	if (fw_is_paged_buf(fw_priv))
217		fw_free_paged_buf(fw_priv);
218	else if (!fw_priv->allocated_size)
219		vfree(fw_priv->data);
220
221	kfree_const(fw_priv->fw_name);
222	kfree(fw_priv);
223}
224
225void free_fw_priv(struct fw_priv *fw_priv)
226{
227	struct firmware_cache *fwc = fw_priv->fwc;
228	spin_lock(&fwc->lock);
229	if (!kref_put(&fw_priv->ref, __free_fw_priv))
230		spin_unlock(&fwc->lock);
231}
232
233#ifdef CONFIG_FW_LOADER_PAGED_BUF
234bool fw_is_paged_buf(struct fw_priv *fw_priv)
235{
236	return fw_priv->is_paged_buf;
237}
238
239void fw_free_paged_buf(struct fw_priv *fw_priv)
240{
241	int i;
242
243	if (!fw_priv->pages)
244		return;
245
246	vunmap(fw_priv->data);
247
248	for (i = 0; i < fw_priv->nr_pages; i++)
249		__free_page(fw_priv->pages[i]);
250	kvfree(fw_priv->pages);
251	fw_priv->pages = NULL;
252	fw_priv->page_array_size = 0;
253	fw_priv->nr_pages = 0;
254	fw_priv->data = NULL;
255	fw_priv->size = 0;
256}
257
258int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
259{
260	/* If the array of pages is too small, grow it */
261	if (fw_priv->page_array_size < pages_needed) {
262		int new_array_size = max(pages_needed,
263					 fw_priv->page_array_size * 2);
264		struct page **new_pages;
265
266		new_pages = kvmalloc_array(new_array_size, sizeof(void *),
267					   GFP_KERNEL);
268		if (!new_pages)
269			return -ENOMEM;
270		memcpy(new_pages, fw_priv->pages,
271		       fw_priv->page_array_size * sizeof(void *));
272		memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
273		       (new_array_size - fw_priv->page_array_size));
274		kvfree(fw_priv->pages);
275		fw_priv->pages = new_pages;
276		fw_priv->page_array_size = new_array_size;
277	}
278
279	while (fw_priv->nr_pages < pages_needed) {
280		fw_priv->pages[fw_priv->nr_pages] =
281			alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
282
283		if (!fw_priv->pages[fw_priv->nr_pages])
284			return -ENOMEM;
285		fw_priv->nr_pages++;
286	}
287
288	return 0;
289}
290
291int fw_map_paged_buf(struct fw_priv *fw_priv)
292{
293	/* one pages buffer should be mapped/unmapped only once */
294	if (!fw_priv->pages)
295		return 0;
296
297	vunmap(fw_priv->data);
298	fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
299			     PAGE_KERNEL_RO);
300	if (!fw_priv->data)
301		return -ENOMEM;
302
303	return 0;
304}
305#endif
306
307/*
308 * ZSTD-compressed firmware support
309 */
310#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
311static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
312			      size_t in_size, const void *in_buffer)
313{
314	size_t len, out_size, workspace_size;
315	void *workspace, *out_buf;
316	zstd_dctx *ctx;
317	int err;
318
319	if (fw_priv->allocated_size) {
320		out_size = fw_priv->allocated_size;
321		out_buf = fw_priv->data;
322	} else {
323		zstd_frame_header params;
324
325		if (zstd_get_frame_header(&params, in_buffer, in_size) ||
326		    params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
327			dev_dbg(dev, "%s: invalid zstd header\n", __func__);
328			return -EINVAL;
329		}
330		out_size = params.frameContentSize;
331		out_buf = vzalloc(out_size);
332		if (!out_buf)
333			return -ENOMEM;
334	}
335
336	workspace_size = zstd_dctx_workspace_bound();
337	workspace = kvzalloc(workspace_size, GFP_KERNEL);
338	if (!workspace) {
339		err = -ENOMEM;
340		goto error;
341	}
342
343	ctx = zstd_init_dctx(workspace, workspace_size);
344	if (!ctx) {
345		dev_dbg(dev, "%s: failed to initialize context\n", __func__);
346		err = -EINVAL;
347		goto error;
348	}
349
350	len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
351	if (zstd_is_error(len)) {
352		dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
353			zstd_get_error_code(len));
354		err = -EINVAL;
355		goto error;
356	}
357
358	if (!fw_priv->allocated_size)
359		fw_priv->data = out_buf;
360	fw_priv->size = len;
361	err = 0;
362
363 error:
364	kvfree(workspace);
365	if (err && !fw_priv->allocated_size)
366		vfree(out_buf);
367	return err;
368}
369#endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
370
371/*
372 * XZ-compressed firmware support
373 */
374#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
375/* show an error and return the standard error code */
376static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
377{
378	if (xz_ret != XZ_STREAM_END) {
379		dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
380		return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
381	}
382	return 0;
383}
384
385/* single-shot decompression onto the pre-allocated buffer */
386static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
387				   size_t in_size, const void *in_buffer)
388{
389	struct xz_dec *xz_dec;
390	struct xz_buf xz_buf;
391	enum xz_ret xz_ret;
392
393	xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
394	if (!xz_dec)
395		return -ENOMEM;
396
397	xz_buf.in_size = in_size;
398	xz_buf.in = in_buffer;
399	xz_buf.in_pos = 0;
400	xz_buf.out_size = fw_priv->allocated_size;
401	xz_buf.out = fw_priv->data;
402	xz_buf.out_pos = 0;
403
404	xz_ret = xz_dec_run(xz_dec, &xz_buf);
405	xz_dec_end(xz_dec);
406
407	fw_priv->size = xz_buf.out_pos;
408	return fw_decompress_xz_error(dev, xz_ret);
409}
410
411/* decompression on paged buffer and map it */
412static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
413				  size_t in_size, const void *in_buffer)
414{
415	struct xz_dec *xz_dec;
416	struct xz_buf xz_buf;
417	enum xz_ret xz_ret;
418	struct page *page;
419	int err = 0;
420
421	xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
422	if (!xz_dec)
423		return -ENOMEM;
424
425	xz_buf.in_size = in_size;
426	xz_buf.in = in_buffer;
427	xz_buf.in_pos = 0;
428
429	fw_priv->is_paged_buf = true;
430	fw_priv->size = 0;
431	do {
432		if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
433			err = -ENOMEM;
434			goto out;
435		}
436
437		/* decompress onto the new allocated page */
438		page = fw_priv->pages[fw_priv->nr_pages - 1];
439		xz_buf.out = kmap_local_page(page);
440		xz_buf.out_pos = 0;
441		xz_buf.out_size = PAGE_SIZE;
442		xz_ret = xz_dec_run(xz_dec, &xz_buf);
443		kunmap_local(xz_buf.out);
444		fw_priv->size += xz_buf.out_pos;
445		/* partial decompression means either end or error */
446		if (xz_buf.out_pos != PAGE_SIZE)
447			break;
448	} while (xz_ret == XZ_OK);
449
450	err = fw_decompress_xz_error(dev, xz_ret);
451	if (!err)
452		err = fw_map_paged_buf(fw_priv);
453
454 out:
455	xz_dec_end(xz_dec);
456	return err;
457}
458
459static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
460			    size_t in_size, const void *in_buffer)
461{
462	/* if the buffer is pre-allocated, we can perform in single-shot mode */
463	if (fw_priv->data)
464		return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
465	else
466		return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
467}
468#endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
469
470/* direct firmware loading support */
471static char fw_path_para[256];
472static const char * const fw_path[] = {
473	fw_path_para,
474	"/lib/firmware/updates/" UTS_RELEASE,
475	"/lib/firmware/updates",
476	"/lib/firmware/" UTS_RELEASE,
477	"/lib/firmware"
478};
479
480/*
481 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
482 * from kernel command line because firmware_class is generally built in
483 * kernel instead of module.
484 */
485module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
486MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
487
488static int
489fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
490			   const char *suffix,
491			   int (*decompress)(struct device *dev,
492					     struct fw_priv *fw_priv,
493					     size_t in_size,
494					     const void *in_buffer))
495{
496	size_t size;
497	int i, len, maxlen = 0;
498	int rc = -ENOENT;
499	char *path, *nt = NULL;
500	size_t msize = INT_MAX;
501	void *buffer = NULL;
502
503	/* Already populated data member means we're loading into a buffer */
504	if (!decompress && fw_priv->data) {
505		buffer = fw_priv->data;
506		msize = fw_priv->allocated_size;
507	}
508
509	path = __getname();
510	if (!path)
511		return -ENOMEM;
512
513	wait_for_initramfs();
514	for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
515		size_t file_size = 0;
516		size_t *file_size_ptr = NULL;
517
518		/* skip the unset customized path */
519		if (!fw_path[i][0])
520			continue;
521
522		/* strip off \n from customized path */
523		maxlen = strlen(fw_path[i]);
524		if (i == 0) {
525			nt = strchr(fw_path[i], '\n');
526			if (nt)
527				maxlen = nt - fw_path[i];
528		}
529
530		len = snprintf(path, PATH_MAX, "%.*s/%s%s",
531			       maxlen, fw_path[i],
532			       fw_priv->fw_name, suffix);
533		if (len >= PATH_MAX) {
534			rc = -ENAMETOOLONG;
535			break;
536		}
537
538		fw_priv->size = 0;
539
540		/*
541		 * The total file size is only examined when doing a partial
542		 * read; the "full read" case needs to fail if the whole
543		 * firmware was not completely loaded.
544		 */
545		if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
546			file_size_ptr = &file_size;
547
548		/* load firmware files from the mount namespace of init */
549		rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
550						       &buffer, msize,
551						       file_size_ptr,
552						       READING_FIRMWARE);
553		if (rc < 0) {
554			if (!(fw_priv->opt_flags & FW_OPT_NO_WARN)) {
555				if (rc != -ENOENT)
556					dev_warn(device,
557						 "loading %s failed with error %d\n",
558						 path, rc);
559				else
560					dev_dbg(device,
561						"loading %s failed for no such file or directory.\n",
562						path);
563			}
564			continue;
565		}
566		size = rc;
567		rc = 0;
568
569		dev_dbg(device, "Loading firmware from %s\n", path);
570		if (decompress) {
571			dev_dbg(device, "f/w decompressing %s\n",
572				fw_priv->fw_name);
573			rc = decompress(device, fw_priv, size, buffer);
574			/* discard the superfluous original content */
575			vfree(buffer);
576			buffer = NULL;
577			if (rc) {
578				fw_free_paged_buf(fw_priv);
579				continue;
580			}
581		} else {
582			dev_dbg(device, "direct-loading %s\n",
583				fw_priv->fw_name);
584			if (!fw_priv->data)
585				fw_priv->data = buffer;
586			fw_priv->size = size;
587		}
588		fw_state_done(fw_priv);
589		break;
590	}
591	__putname(path);
592
593	return rc;
594}
595
596/* firmware holds the ownership of pages */
597static void firmware_free_data(const struct firmware *fw)
598{
599	/* Loaded directly? */
600	if (!fw->priv) {
601		vfree(fw->data);
602		return;
603	}
604	free_fw_priv(fw->priv);
605}
606
607/* store the pages buffer info firmware from buf */
608static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
609{
610	fw->priv = fw_priv;
611	fw->size = fw_priv->size;
612	fw->data = fw_priv->data;
613
614	pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
615		 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
616		 (unsigned int)fw_priv->size);
617}
618
619#ifdef CONFIG_FW_CACHE
620static void fw_name_devm_release(struct device *dev, void *res)
621{
622	struct fw_name_devm *fwn = res;
623
624	if (fwn->magic == (unsigned long)&fw_cache)
625		pr_debug("%s: fw_name-%s devm-%p released\n",
626				__func__, fwn->name, res);
627	kfree_const(fwn->name);
628}
629
630static int fw_devm_match(struct device *dev, void *res,
631		void *match_data)
632{
633	struct fw_name_devm *fwn = res;
634
635	return (fwn->magic == (unsigned long)&fw_cache) &&
636		!strcmp(fwn->name, match_data);
637}
638
639static struct fw_name_devm *fw_find_devm_name(struct device *dev,
640		const char *name)
641{
642	struct fw_name_devm *fwn;
643
644	fwn = devres_find(dev, fw_name_devm_release,
645			  fw_devm_match, (void *)name);
646	return fwn;
647}
648
649static bool fw_cache_is_setup(struct device *dev, const char *name)
650{
651	struct fw_name_devm *fwn;
652
653	fwn = fw_find_devm_name(dev, name);
654	if (fwn)
655		return true;
656
657	return false;
658}
659
660/* add firmware name into devres list */
661static int fw_add_devm_name(struct device *dev, const char *name)
662{
663	struct fw_name_devm *fwn;
664
665	if (fw_cache_is_setup(dev, name))
666		return 0;
667
668	fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
669			   GFP_KERNEL);
670	if (!fwn)
671		return -ENOMEM;
672	fwn->name = kstrdup_const(name, GFP_KERNEL);
673	if (!fwn->name) {
674		devres_free(fwn);
675		return -ENOMEM;
676	}
677
678	fwn->magic = (unsigned long)&fw_cache;
679	devres_add(dev, fwn);
680
681	return 0;
682}
683#else
684static bool fw_cache_is_setup(struct device *dev, const char *name)
685{
686	return false;
687}
688
689static int fw_add_devm_name(struct device *dev, const char *name)
690{
691	return 0;
692}
693#endif
694
695int assign_fw(struct firmware *fw, struct device *device)
696{
697	struct fw_priv *fw_priv = fw->priv;
698	int ret;
699
700	mutex_lock(&fw_lock);
701	if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
702		mutex_unlock(&fw_lock);
703		return -ENOENT;
704	}
705
706	/*
707	 * add firmware name into devres list so that we can auto cache
708	 * and uncache firmware for device.
709	 *
710	 * device may has been deleted already, but the problem
711	 * should be fixed in devres or driver core.
712	 */
713	/* don't cache firmware handled without uevent */
714	if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
715	    !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
716		ret = fw_add_devm_name(device, fw_priv->fw_name);
717		if (ret) {
718			mutex_unlock(&fw_lock);
719			return ret;
720		}
721	}
722
723	/*
724	 * After caching firmware image is started, let it piggyback
725	 * on request firmware.
726	 */
727	if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
728	    fw_priv->fwc->state == FW_LOADER_START_CACHE)
729		fw_cache_piggyback_on_request(fw_priv);
730
731	/* pass the pages buffer to driver at the last minute */
732	fw_set_page_data(fw_priv, fw);
733	mutex_unlock(&fw_lock);
734	return 0;
735}
736
737/* prepare firmware and firmware_buf structs;
738 * return 0 if a firmware is already assigned, 1 if need to load one,
739 * or a negative error code
740 */
741static int
742_request_firmware_prepare(struct firmware **firmware_p, const char *name,
743			  struct device *device, void *dbuf, size_t size,
744			  size_t offset, u32 opt_flags)
745{
746	struct firmware *firmware;
747	struct fw_priv *fw_priv;
748	int ret;
749
750	*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
751	if (!firmware) {
752		dev_err(device, "%s: kmalloc(struct firmware) failed\n",
753			__func__);
754		return -ENOMEM;
755	}
756
757	if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
758		dev_dbg(device, "using built-in %s\n", name);
759		return 0; /* assigned */
760	}
761
762	ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
763				   offset, opt_flags);
764
765	/*
766	 * bind with 'priv' now to avoid warning in failure path
767	 * of requesting firmware.
768	 */
769	firmware->priv = fw_priv;
770
771	if (ret > 0) {
772		ret = fw_state_wait(fw_priv);
773		if (!ret) {
774			fw_set_page_data(fw_priv, firmware);
775			return 0; /* assigned */
776		}
777	}
778
779	if (ret < 0)
780		return ret;
781	return 1; /* need to load */
782}
783
784/*
785 * Batched requests need only one wake, we need to do this step last due to the
786 * fallback mechanism. The buf is protected with kref_get(), and it won't be
787 * released until the last user calls release_firmware().
788 *
789 * Failed batched requests are possible as well, in such cases we just share
790 * the struct fw_priv and won't release it until all requests are woken
791 * and have gone through this same path.
792 */
793static void fw_abort_batch_reqs(struct firmware *fw)
794{
795	struct fw_priv *fw_priv;
796
797	/* Loaded directly? */
798	if (!fw || !fw->priv)
799		return;
800
801	fw_priv = fw->priv;
802	mutex_lock(&fw_lock);
803	if (!fw_state_is_aborted(fw_priv))
804		fw_state_aborted(fw_priv);
805	mutex_unlock(&fw_lock);
806}
807
808#if defined(CONFIG_FW_LOADER_DEBUG)
809#include <crypto/hash.h>
810#include <crypto/sha2.h>
811
812static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
813{
814	struct shash_desc *shash;
815	struct crypto_shash *alg;
816	u8 *sha256buf;
817	char *outbuf;
818
819	alg = crypto_alloc_shash("sha256", 0, 0);
820	if (IS_ERR(alg))
821		return;
822
823	sha256buf = kmalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
824	outbuf = kmalloc(SHA256_BLOCK_SIZE + 1, GFP_KERNEL);
825	shash = kmalloc(sizeof(*shash) + crypto_shash_descsize(alg), GFP_KERNEL);
826	if (!sha256buf || !outbuf || !shash)
827		goto out_free;
828
829	shash->tfm = alg;
830
831	if (crypto_shash_digest(shash, fw->data, fw->size, sha256buf) < 0)
832		goto out_shash;
833
834	for (int i = 0; i < SHA256_DIGEST_SIZE; i++)
835		sprintf(&outbuf[i * 2], "%02x", sha256buf[i]);
836	outbuf[SHA256_BLOCK_SIZE] = 0;
837	dev_dbg(device, "Loaded FW: %s, sha256: %s\n", name, outbuf);
838
839out_shash:
840	crypto_free_shash(alg);
841out_free:
842	kfree(shash);
843	kfree(outbuf);
844	kfree(sha256buf);
845}
846#else
847static void fw_log_firmware_info(const struct firmware *fw, const char *name,
848				 struct device *device)
849{}
850#endif
851
852/* called from request_firmware() and request_firmware_work_func() */
853static int
854_request_firmware(const struct firmware **firmware_p, const char *name,
855		  struct device *device, void *buf, size_t size,
856		  size_t offset, u32 opt_flags)
857{
858	struct firmware *fw = NULL;
859	struct cred *kern_cred = NULL;
860	const struct cred *old_cred;
861	bool nondirect = false;
862	int ret;
863
864	if (!firmware_p)
865		return -EINVAL;
866
867	if (!name || name[0] == '\0') {
868		ret = -EINVAL;
869		goto out;
870	}
871
872	ret = _request_firmware_prepare(&fw, name, device, buf, size,
873					offset, opt_flags);
874	if (ret <= 0) /* error or already assigned */
875		goto out;
876
877	/*
878	 * We are about to try to access the firmware file. Because we may have been
879	 * called by a driver when serving an unrelated request from userland, we use
880	 * the kernel credentials to read the file.
881	 */
882	kern_cred = prepare_kernel_cred(&init_task);
883	if (!kern_cred) {
884		ret = -ENOMEM;
885		goto out;
886	}
887	old_cred = override_creds(kern_cred);
888
889	ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
890
891	/* Only full reads can support decompression, platform, and sysfs. */
892	if (!(opt_flags & FW_OPT_PARTIAL))
893		nondirect = true;
894
895#ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
896	if (ret == -ENOENT && nondirect)
897		ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
898						 fw_decompress_zstd);
899#endif
900#ifdef CONFIG_FW_LOADER_COMPRESS_XZ
901	if (ret == -ENOENT && nondirect)
902		ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
903						 fw_decompress_xz);
904#endif
905	if (ret == -ENOENT && nondirect)
906		ret = firmware_fallback_platform(fw->priv);
907
908	if (ret) {
909		if (!(opt_flags & FW_OPT_NO_WARN))
910			dev_warn(device,
911				 "Direct firmware load for %s failed with error %d\n",
912				 name, ret);
913		if (nondirect)
914			ret = firmware_fallback_sysfs(fw, name, device,
915						      opt_flags, ret);
916	} else
917		ret = assign_fw(fw, device);
918
919	revert_creds(old_cred);
920	put_cred(kern_cred);
921
922out:
923	if (ret < 0) {
924		fw_abort_batch_reqs(fw);
925		release_firmware(fw);
926		fw = NULL;
927	} else {
928		fw_log_firmware_info(fw, name, device);
929	}
930
931	*firmware_p = fw;
932	return ret;
933}
934
935/**
936 * request_firmware() - send firmware request and wait for it
937 * @firmware_p: pointer to firmware image
938 * @name: name of firmware file
939 * @device: device for which firmware is being loaded
940 *
941 *      @firmware_p will be used to return a firmware image by the name
942 *      of @name for device @device.
943 *
944 *      Should be called from user context where sleeping is allowed.
945 *
946 *      @name will be used as $FIRMWARE in the uevent environment and
947 *      should be distinctive enough not to be confused with any other
948 *      firmware image for this or any other device.
949 *
950 *	Caller must hold the reference count of @device.
951 *
952 *	The function can be called safely inside device's suspend and
953 *	resume callback.
954 **/
955int
956request_firmware(const struct firmware **firmware_p, const char *name,
957		 struct device *device)
958{
959	int ret;
960
961	/* Need to pin this module until return */
962	__module_get(THIS_MODULE);
963	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
964				FW_OPT_UEVENT);
965	module_put(THIS_MODULE);
966	return ret;
967}
968EXPORT_SYMBOL(request_firmware);
969
970/**
971 * firmware_request_nowarn() - request for an optional fw module
972 * @firmware: pointer to firmware image
973 * @name: name of firmware file
974 * @device: device for which firmware is being loaded
975 *
976 * This function is similar in behaviour to request_firmware(), except it
977 * doesn't produce warning messages when the file is not found. The sysfs
978 * fallback mechanism is enabled if direct filesystem lookup fails. However,
979 * failures to find the firmware file with it are still suppressed. It is
980 * therefore up to the driver to check for the return value of this call and to
981 * decide when to inform the users of errors.
982 **/
983int firmware_request_nowarn(const struct firmware **firmware, const char *name,
984			    struct device *device)
985{
986	int ret;
987
988	/* Need to pin this module until return */
989	__module_get(THIS_MODULE);
990	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
991				FW_OPT_UEVENT | FW_OPT_NO_WARN);
992	module_put(THIS_MODULE);
993	return ret;
994}
995EXPORT_SYMBOL_GPL(firmware_request_nowarn);
996
997/**
998 * request_firmware_direct() - load firmware directly without usermode helper
999 * @firmware_p: pointer to firmware image
1000 * @name: name of firmware file
1001 * @device: device for which firmware is being loaded
1002 *
1003 * This function works pretty much like request_firmware(), but this doesn't
1004 * fall back to usermode helper even if the firmware couldn't be loaded
1005 * directly from fs.  Hence it's useful for loading optional firmwares, which
1006 * aren't always present, without extra long timeouts of udev.
1007 **/
1008int request_firmware_direct(const struct firmware **firmware_p,
1009			    const char *name, struct device *device)
1010{
1011	int ret;
1012
1013	__module_get(THIS_MODULE);
1014	ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1015				FW_OPT_UEVENT | FW_OPT_NO_WARN |
1016				FW_OPT_NOFALLBACK_SYSFS);
1017	module_put(THIS_MODULE);
1018	return ret;
1019}
1020EXPORT_SYMBOL_GPL(request_firmware_direct);
1021
1022/**
1023 * firmware_request_platform() - request firmware with platform-fw fallback
1024 * @firmware: pointer to firmware image
1025 * @name: name of firmware file
1026 * @device: device for which firmware is being loaded
1027 *
1028 * This function is similar in behaviour to request_firmware, except that if
1029 * direct filesystem lookup fails, it will fallback to looking for a copy of the
1030 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1031 **/
1032int firmware_request_platform(const struct firmware **firmware,
1033			      const char *name, struct device *device)
1034{
1035	int ret;
1036
1037	/* Need to pin this module until return */
1038	__module_get(THIS_MODULE);
1039	ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1040				FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1041	module_put(THIS_MODULE);
1042	return ret;
1043}
1044EXPORT_SYMBOL_GPL(firmware_request_platform);
1045
1046/**
1047 * firmware_request_cache() - cache firmware for suspend so resume can use it
1048 * @name: name of firmware file
1049 * @device: device for which firmware should be cached for
1050 *
1051 * There are some devices with an optimization that enables the device to not
1052 * require loading firmware on system reboot. This optimization may still
1053 * require the firmware present on resume from suspend. This routine can be
1054 * used to ensure the firmware is present on resume from suspend in these
1055 * situations. This helper is not compatible with drivers which use
1056 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1057 **/
1058int firmware_request_cache(struct device *device, const char *name)
1059{
1060	int ret;
1061
1062	mutex_lock(&fw_lock);
1063	ret = fw_add_devm_name(device, name);
1064	mutex_unlock(&fw_lock);
1065
1066	return ret;
1067}
1068EXPORT_SYMBOL_GPL(firmware_request_cache);
1069
1070/**
1071 * request_firmware_into_buf() - load firmware into a previously allocated buffer
1072 * @firmware_p: pointer to firmware image
1073 * @name: name of firmware file
1074 * @device: device for which firmware is being loaded and DMA region allocated
1075 * @buf: address of buffer to load firmware into
1076 * @size: size of buffer
1077 *
1078 * This function works pretty much like request_firmware(), but it doesn't
1079 * allocate a buffer to hold the firmware data. Instead, the firmware
1080 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1081 * data member is pointed at @buf.
1082 *
1083 * This function doesn't cache firmware either.
1084 */
1085int
1086request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1087			  struct device *device, void *buf, size_t size)
1088{
1089	int ret;
1090
1091	if (fw_cache_is_setup(device, name))
1092		return -EOPNOTSUPP;
1093
1094	__module_get(THIS_MODULE);
1095	ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1096				FW_OPT_UEVENT | FW_OPT_NOCACHE);
1097	module_put(THIS_MODULE);
1098	return ret;
1099}
1100EXPORT_SYMBOL(request_firmware_into_buf);
1101
1102/**
1103 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1104 * @firmware_p: pointer to firmware image
1105 * @name: name of firmware file
1106 * @device: device for which firmware is being loaded and DMA region allocated
1107 * @buf: address of buffer to load firmware into
1108 * @size: size of buffer
1109 * @offset: offset into file to read
1110 *
1111 * This function works pretty much like request_firmware_into_buf except
1112 * it allows a partial read of the file.
1113 */
1114int
1115request_partial_firmware_into_buf(const struct firmware **firmware_p,
1116				  const char *name, struct device *device,
1117				  void *buf, size_t size, size_t offset)
1118{
1119	int ret;
1120
1121	if (fw_cache_is_setup(device, name))
1122		return -EOPNOTSUPP;
1123
1124	__module_get(THIS_MODULE);
1125	ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1126				FW_OPT_UEVENT | FW_OPT_NOCACHE |
1127				FW_OPT_PARTIAL);
1128	module_put(THIS_MODULE);
1129	return ret;
1130}
1131EXPORT_SYMBOL(request_partial_firmware_into_buf);
1132
1133/**
1134 * release_firmware() - release the resource associated with a firmware image
1135 * @fw: firmware resource to release
1136 **/
1137void release_firmware(const struct firmware *fw)
1138{
1139	if (fw) {
1140		if (!firmware_is_builtin(fw))
1141			firmware_free_data(fw);
1142		kfree(fw);
1143	}
1144}
1145EXPORT_SYMBOL(release_firmware);
1146
1147/* Async support */
1148struct firmware_work {
1149	struct work_struct work;
1150	struct module *module;
1151	const char *name;
1152	struct device *device;
1153	void *context;
1154	void (*cont)(const struct firmware *fw, void *context);
1155	u32 opt_flags;
1156};
1157
1158static void request_firmware_work_func(struct work_struct *work)
1159{
1160	struct firmware_work *fw_work;
1161	const struct firmware *fw;
1162
1163	fw_work = container_of(work, struct firmware_work, work);
1164
1165	_request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1166			  fw_work->opt_flags);
1167	fw_work->cont(fw, fw_work->context);
1168	put_device(fw_work->device); /* taken in request_firmware_nowait() */
1169
1170	module_put(fw_work->module);
1171	kfree_const(fw_work->name);
1172	kfree(fw_work);
1173}
1174
1175/**
1176 * request_firmware_nowait() - asynchronous version of request_firmware
1177 * @module: module requesting the firmware
1178 * @uevent: sends uevent to copy the firmware image if this flag
1179 *	is non-zero else the firmware copy must be done manually.
1180 * @name: name of firmware file
1181 * @device: device for which firmware is being loaded
1182 * @gfp: allocation flags
1183 * @context: will be passed over to @cont, and
1184 *	@fw may be %NULL if firmware request fails.
1185 * @cont: function will be called asynchronously when the firmware
1186 *	request is over.
1187 *
1188 *	Caller must hold the reference count of @device.
1189 *
1190 *	Asynchronous variant of request_firmware() for user contexts:
1191 *		- sleep for as small periods as possible since it may
1192 *		  increase kernel boot time of built-in device drivers
1193 *		  requesting firmware in their ->probe() methods, if
1194 *		  @gfp is GFP_KERNEL.
1195 *
1196 *		- can't sleep at all if @gfp is GFP_ATOMIC.
1197 **/
1198int
1199request_firmware_nowait(
1200	struct module *module, bool uevent,
1201	const char *name, struct device *device, gfp_t gfp, void *context,
1202	void (*cont)(const struct firmware *fw, void *context))
1203{
1204	struct firmware_work *fw_work;
1205
1206	fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1207	if (!fw_work)
1208		return -ENOMEM;
1209
1210	fw_work->module = module;
1211	fw_work->name = kstrdup_const(name, gfp);
1212	if (!fw_work->name) {
1213		kfree(fw_work);
1214		return -ENOMEM;
1215	}
1216	fw_work->device = device;
1217	fw_work->context = context;
1218	fw_work->cont = cont;
1219	fw_work->opt_flags = FW_OPT_NOWAIT |
1220		(uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1221
1222	if (!uevent && fw_cache_is_setup(device, name)) {
1223		kfree_const(fw_work->name);
1224		kfree(fw_work);
1225		return -EOPNOTSUPP;
1226	}
1227
1228	if (!try_module_get(module)) {
1229		kfree_const(fw_work->name);
1230		kfree(fw_work);
1231		return -EFAULT;
1232	}
1233
1234	get_device(fw_work->device);
1235	INIT_WORK(&fw_work->work, request_firmware_work_func);
1236	schedule_work(&fw_work->work);
1237	return 0;
1238}
1239EXPORT_SYMBOL(request_firmware_nowait);
1240
1241#ifdef CONFIG_FW_CACHE
1242static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1243
1244/**
1245 * cache_firmware() - cache one firmware image in kernel memory space
1246 * @fw_name: the firmware image name
1247 *
1248 * Cache firmware in kernel memory so that drivers can use it when
1249 * system isn't ready for them to request firmware image from userspace.
1250 * Once it returns successfully, driver can use request_firmware or its
1251 * nowait version to get the cached firmware without any interacting
1252 * with userspace
1253 *
1254 * Return 0 if the firmware image has been cached successfully
1255 * Return !0 otherwise
1256 *
1257 */
1258static int cache_firmware(const char *fw_name)
1259{
1260	int ret;
1261	const struct firmware *fw;
1262
1263	pr_debug("%s: %s\n", __func__, fw_name);
1264
1265	ret = request_firmware(&fw, fw_name, NULL);
1266	if (!ret)
1267		kfree(fw);
1268
1269	pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1270
1271	return ret;
1272}
1273
1274static struct fw_priv *lookup_fw_priv(const char *fw_name)
1275{
1276	struct fw_priv *tmp;
1277	struct firmware_cache *fwc = &fw_cache;
1278
1279	spin_lock(&fwc->lock);
1280	tmp = __lookup_fw_priv(fw_name);
1281	spin_unlock(&fwc->lock);
1282
1283	return tmp;
1284}
1285
1286/**
1287 * uncache_firmware() - remove one cached firmware image
1288 * @fw_name: the firmware image name
1289 *
1290 * Uncache one firmware image which has been cached successfully
1291 * before.
1292 *
1293 * Return 0 if the firmware cache has been removed successfully
1294 * Return !0 otherwise
1295 *
1296 */
1297static int uncache_firmware(const char *fw_name)
1298{
1299	struct fw_priv *fw_priv;
1300	struct firmware fw;
1301
1302	pr_debug("%s: %s\n", __func__, fw_name);
1303
1304	if (firmware_request_builtin(&fw, fw_name))
1305		return 0;
1306
1307	fw_priv = lookup_fw_priv(fw_name);
1308	if (fw_priv) {
1309		free_fw_priv(fw_priv);
1310		return 0;
1311	}
1312
1313	return -EINVAL;
1314}
1315
1316static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1317{
1318	struct fw_cache_entry *fce;
1319
1320	fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1321	if (!fce)
1322		goto exit;
1323
1324	fce->name = kstrdup_const(name, GFP_ATOMIC);
1325	if (!fce->name) {
1326		kfree(fce);
1327		fce = NULL;
1328		goto exit;
1329	}
1330exit:
1331	return fce;
1332}
1333
1334static int __fw_entry_found(const char *name)
1335{
1336	struct firmware_cache *fwc = &fw_cache;
1337	struct fw_cache_entry *fce;
1338
1339	list_for_each_entry(fce, &fwc->fw_names, list) {
1340		if (!strcmp(fce->name, name))
1341			return 1;
1342	}
1343	return 0;
1344}
1345
1346static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1347{
1348	const char *name = fw_priv->fw_name;
1349	struct firmware_cache *fwc = fw_priv->fwc;
1350	struct fw_cache_entry *fce;
1351
1352	spin_lock(&fwc->name_lock);
1353	if (__fw_entry_found(name))
1354		goto found;
1355
1356	fce = alloc_fw_cache_entry(name);
1357	if (fce) {
1358		list_add(&fce->list, &fwc->fw_names);
1359		kref_get(&fw_priv->ref);
1360		pr_debug("%s: fw: %s\n", __func__, name);
1361	}
1362found:
1363	spin_unlock(&fwc->name_lock);
1364}
1365
1366static void free_fw_cache_entry(struct fw_cache_entry *fce)
1367{
1368	kfree_const(fce->name);
1369	kfree(fce);
1370}
1371
1372static void __async_dev_cache_fw_image(void *fw_entry,
1373				       async_cookie_t cookie)
1374{
1375	struct fw_cache_entry *fce = fw_entry;
1376	struct firmware_cache *fwc = &fw_cache;
1377	int ret;
1378
1379	ret = cache_firmware(fce->name);
1380	if (ret) {
1381		spin_lock(&fwc->name_lock);
1382		list_del(&fce->list);
1383		spin_unlock(&fwc->name_lock);
1384
1385		free_fw_cache_entry(fce);
1386	}
1387}
1388
1389/* called with dev->devres_lock held */
1390static void dev_create_fw_entry(struct device *dev, void *res,
1391				void *data)
1392{
1393	struct fw_name_devm *fwn = res;
1394	const char *fw_name = fwn->name;
1395	struct list_head *head = data;
1396	struct fw_cache_entry *fce;
1397
1398	fce = alloc_fw_cache_entry(fw_name);
1399	if (fce)
1400		list_add(&fce->list, head);
1401}
1402
1403static int devm_name_match(struct device *dev, void *res,
1404			   void *match_data)
1405{
1406	struct fw_name_devm *fwn = res;
1407	return (fwn->magic == (unsigned long)match_data);
1408}
1409
1410static void dev_cache_fw_image(struct device *dev, void *data)
1411{
1412	LIST_HEAD(todo);
1413	struct fw_cache_entry *fce;
1414	struct fw_cache_entry *fce_next;
1415	struct firmware_cache *fwc = &fw_cache;
1416
1417	devres_for_each_res(dev, fw_name_devm_release,
1418			    devm_name_match, &fw_cache,
1419			    dev_create_fw_entry, &todo);
1420
1421	list_for_each_entry_safe(fce, fce_next, &todo, list) {
1422		list_del(&fce->list);
1423
1424		spin_lock(&fwc->name_lock);
1425		/* only one cache entry for one firmware */
1426		if (!__fw_entry_found(fce->name)) {
1427			list_add(&fce->list, &fwc->fw_names);
1428		} else {
1429			free_fw_cache_entry(fce);
1430			fce = NULL;
1431		}
1432		spin_unlock(&fwc->name_lock);
1433
1434		if (fce)
1435			async_schedule_domain(__async_dev_cache_fw_image,
1436					      (void *)fce,
1437					      &fw_cache_domain);
1438	}
1439}
1440
1441static void __device_uncache_fw_images(void)
1442{
1443	struct firmware_cache *fwc = &fw_cache;
1444	struct fw_cache_entry *fce;
1445
1446	spin_lock(&fwc->name_lock);
1447	while (!list_empty(&fwc->fw_names)) {
1448		fce = list_entry(fwc->fw_names.next,
1449				struct fw_cache_entry, list);
1450		list_del(&fce->list);
1451		spin_unlock(&fwc->name_lock);
1452
1453		uncache_firmware(fce->name);
1454		free_fw_cache_entry(fce);
1455
1456		spin_lock(&fwc->name_lock);
1457	}
1458	spin_unlock(&fwc->name_lock);
1459}
1460
1461/**
1462 * device_cache_fw_images() - cache devices' firmware
1463 *
1464 * If one device called request_firmware or its nowait version
1465 * successfully before, the firmware names are recored into the
1466 * device's devres link list, so device_cache_fw_images can call
1467 * cache_firmware() to cache these firmwares for the device,
1468 * then the device driver can load its firmwares easily at
1469 * time when system is not ready to complete loading firmware.
1470 */
1471static void device_cache_fw_images(void)
1472{
1473	struct firmware_cache *fwc = &fw_cache;
1474	DEFINE_WAIT(wait);
1475
1476	pr_debug("%s\n", __func__);
1477
1478	/* cancel uncache work */
1479	cancel_delayed_work_sync(&fwc->work);
1480
1481	fw_fallback_set_cache_timeout();
1482
1483	mutex_lock(&fw_lock);
1484	fwc->state = FW_LOADER_START_CACHE;
1485	dpm_for_each_dev(NULL, dev_cache_fw_image);
1486	mutex_unlock(&fw_lock);
1487
1488	/* wait for completion of caching firmware for all devices */
1489	async_synchronize_full_domain(&fw_cache_domain);
1490
1491	fw_fallback_set_default_timeout();
1492}
1493
1494/**
1495 * device_uncache_fw_images() - uncache devices' firmware
1496 *
1497 * uncache all firmwares which have been cached successfully
1498 * by device_uncache_fw_images earlier
1499 */
1500static void device_uncache_fw_images(void)
1501{
1502	pr_debug("%s\n", __func__);
1503	__device_uncache_fw_images();
1504}
1505
1506static void device_uncache_fw_images_work(struct work_struct *work)
1507{
1508	device_uncache_fw_images();
1509}
1510
1511/**
1512 * device_uncache_fw_images_delay() - uncache devices firmwares
1513 * @delay: number of milliseconds to delay uncache device firmwares
1514 *
1515 * uncache all devices's firmwares which has been cached successfully
1516 * by device_cache_fw_images after @delay milliseconds.
1517 */
1518static void device_uncache_fw_images_delay(unsigned long delay)
1519{
1520	queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1521			   msecs_to_jiffies(delay));
1522}
1523
1524static int fw_pm_notify(struct notifier_block *notify_block,
1525			unsigned long mode, void *unused)
1526{
1527	switch (mode) {
1528	case PM_HIBERNATION_PREPARE:
1529	case PM_SUSPEND_PREPARE:
1530	case PM_RESTORE_PREPARE:
1531		/*
1532		 * Here, kill pending fallback requests will only kill
1533		 * non-uevent firmware request to avoid stalling suspend.
1534		 */
1535		kill_pending_fw_fallback_reqs(false);
1536		device_cache_fw_images();
1537		break;
1538
1539	case PM_POST_SUSPEND:
1540	case PM_POST_HIBERNATION:
1541	case PM_POST_RESTORE:
1542		/*
1543		 * In case that system sleep failed and syscore_suspend is
1544		 * not called.
1545		 */
1546		mutex_lock(&fw_lock);
1547		fw_cache.state = FW_LOADER_NO_CACHE;
1548		mutex_unlock(&fw_lock);
1549
1550		device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1551		break;
1552	}
1553
1554	return 0;
1555}
1556
1557/* stop caching firmware once syscore_suspend is reached */
1558static int fw_suspend(void)
1559{
1560	fw_cache.state = FW_LOADER_NO_CACHE;
1561	return 0;
1562}
1563
1564static struct syscore_ops fw_syscore_ops = {
1565	.suspend = fw_suspend,
1566};
1567
1568static int __init register_fw_pm_ops(void)
1569{
1570	int ret;
1571
1572	spin_lock_init(&fw_cache.name_lock);
1573	INIT_LIST_HEAD(&fw_cache.fw_names);
1574
1575	INIT_DELAYED_WORK(&fw_cache.work,
1576			  device_uncache_fw_images_work);
1577
1578	fw_cache.pm_notify.notifier_call = fw_pm_notify;
1579	ret = register_pm_notifier(&fw_cache.pm_notify);
1580	if (ret)
1581		return ret;
1582
1583	register_syscore_ops(&fw_syscore_ops);
1584
1585	return ret;
1586}
1587
1588static inline void unregister_fw_pm_ops(void)
1589{
1590	unregister_syscore_ops(&fw_syscore_ops);
1591	unregister_pm_notifier(&fw_cache.pm_notify);
1592}
1593#else
1594static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1595{
1596}
1597static inline int register_fw_pm_ops(void)
1598{
1599	return 0;
1600}
1601static inline void unregister_fw_pm_ops(void)
1602{
1603}
1604#endif
1605
1606static void __init fw_cache_init(void)
1607{
1608	spin_lock_init(&fw_cache.lock);
1609	INIT_LIST_HEAD(&fw_cache.head);
1610	fw_cache.state = FW_LOADER_NO_CACHE;
1611}
1612
1613static int fw_shutdown_notify(struct notifier_block *unused1,
1614			      unsigned long unused2, void *unused3)
1615{
1616	/*
1617	 * Kill all pending fallback requests to avoid both stalling shutdown,
1618	 * and avoid a deadlock with the usermode_lock.
1619	 */
1620	kill_pending_fw_fallback_reqs(true);
1621
1622	return NOTIFY_DONE;
1623}
1624
1625static struct notifier_block fw_shutdown_nb = {
1626	.notifier_call = fw_shutdown_notify,
1627};
1628
1629static int __init firmware_class_init(void)
1630{
1631	int ret;
1632
1633	/* No need to unfold these on exit */
1634	fw_cache_init();
1635
1636	ret = register_fw_pm_ops();
1637	if (ret)
1638		return ret;
1639
1640	ret = register_reboot_notifier(&fw_shutdown_nb);
1641	if (ret)
1642		goto out;
1643
1644	return register_sysfs_loader();
1645
1646out:
1647	unregister_fw_pm_ops();
1648	return ret;
1649}
1650
1651static void __exit firmware_class_exit(void)
1652{
1653	unregister_fw_pm_ops();
1654	unregister_reboot_notifier(&fw_shutdown_nb);
1655	unregister_sysfs_loader();
1656}
1657
1658fs_initcall(firmware_class_init);
1659module_exit(firmware_class_exit);
1660