1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/kstrtox.h>
18#include <linux/module.h>
19#include <linux/slab.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/blkdev.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sched/signal.h>
29#include <linux/sched/mm.h>
30#include <linux/string_helpers.h>
31#include <linux/swiotlb.h>
32#include <linux/sysfs.h>
33#include <linux/dma-map-ops.h> /* for dma_default_coherent */
34
35#include "base.h"
36#include "physical_location.h"
37#include "power/power.h"
38
39/* Device links support. */
40static LIST_HEAD(deferred_sync);
41static unsigned int defer_sync_state_count = 1;
42static DEFINE_MUTEX(fwnode_link_lock);
43static bool fw_devlink_is_permissive(void);
44static void __fw_devlink_link_to_consumers(struct device *dev);
45static bool fw_devlink_drv_reg_done;
46static bool fw_devlink_best_effort;
47static struct workqueue_struct *device_link_wq;
48
49/**
50 * __fwnode_link_add - Create a link between two fwnode_handles.
51 * @con: Consumer end of the link.
52 * @sup: Supplier end of the link.
53 * @flags: Link flags.
54 *
55 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
56 * represents the detail that the firmware lists @sup fwnode as supplying a
57 * resource to @con.
58 *
59 * The driver core will use the fwnode link to create a device link between the
60 * two device objects corresponding to @con and @sup when they are created. The
61 * driver core will automatically delete the fwnode link between @con and @sup
62 * after doing that.
63 *
64 * Attempts to create duplicate links between the same pair of fwnode handles
65 * are ignored and there is no reference counting.
66 */
67static int __fwnode_link_add(struct fwnode_handle *con,
68			     struct fwnode_handle *sup, u8 flags)
69{
70	struct fwnode_link *link;
71
72	list_for_each_entry(link, &sup->consumers, s_hook)
73		if (link->consumer == con) {
74			link->flags |= flags;
75			return 0;
76		}
77
78	link = kzalloc(sizeof(*link), GFP_KERNEL);
79	if (!link)
80		return -ENOMEM;
81
82	link->supplier = sup;
83	INIT_LIST_HEAD(&link->s_hook);
84	link->consumer = con;
85	INIT_LIST_HEAD(&link->c_hook);
86	link->flags = flags;
87
88	list_add(&link->s_hook, &sup->consumers);
89	list_add(&link->c_hook, &con->suppliers);
90	pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n",
91		 con, sup);
92
93	return 0;
94}
95
96int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup,
97		    u8 flags)
98{
99	int ret;
100
101	mutex_lock(&fwnode_link_lock);
102	ret = __fwnode_link_add(con, sup, flags);
103	mutex_unlock(&fwnode_link_lock);
104	return ret;
105}
106
107/**
108 * __fwnode_link_del - Delete a link between two fwnode_handles.
109 * @link: the fwnode_link to be deleted
110 *
111 * The fwnode_link_lock needs to be held when this function is called.
112 */
113static void __fwnode_link_del(struct fwnode_link *link)
114{
115	pr_debug("%pfwf Dropping the fwnode link to %pfwf\n",
116		 link->consumer, link->supplier);
117	list_del(&link->s_hook);
118	list_del(&link->c_hook);
119	kfree(link);
120}
121
122/**
123 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle.
124 * @link: the fwnode_link to be marked
125 *
126 * The fwnode_link_lock needs to be held when this function is called.
127 */
128static void __fwnode_link_cycle(struct fwnode_link *link)
129{
130	pr_debug("%pfwf: cycle: depends on %pfwf\n",
131		 link->consumer, link->supplier);
132	link->flags |= FWLINK_FLAG_CYCLE;
133}
134
135/**
136 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
137 * @fwnode: fwnode whose supplier links need to be deleted
138 *
139 * Deletes all supplier links connecting directly to @fwnode.
140 */
141static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
142{
143	struct fwnode_link *link, *tmp;
144
145	mutex_lock(&fwnode_link_lock);
146	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
147		__fwnode_link_del(link);
148	mutex_unlock(&fwnode_link_lock);
149}
150
151/**
152 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
153 * @fwnode: fwnode whose consumer links need to be deleted
154 *
155 * Deletes all consumer links connecting directly to @fwnode.
156 */
157static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
158{
159	struct fwnode_link *link, *tmp;
160
161	mutex_lock(&fwnode_link_lock);
162	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
163		__fwnode_link_del(link);
164	mutex_unlock(&fwnode_link_lock);
165}
166
167/**
168 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
169 * @fwnode: fwnode whose links needs to be deleted
170 *
171 * Deletes all links connecting directly to a fwnode.
172 */
173void fwnode_links_purge(struct fwnode_handle *fwnode)
174{
175	fwnode_links_purge_suppliers(fwnode);
176	fwnode_links_purge_consumers(fwnode);
177}
178
179void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
180{
181	struct fwnode_handle *child;
182
183	/* Don't purge consumer links of an added child */
184	if (fwnode->dev)
185		return;
186
187	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
188	fwnode_links_purge_consumers(fwnode);
189
190	fwnode_for_each_available_child_node(fwnode, child)
191		fw_devlink_purge_absent_suppliers(child);
192}
193EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
194
195/**
196 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle
197 * @from: move consumers away from this fwnode
198 * @to: move consumers to this fwnode
199 *
200 * Move all consumer links from @from fwnode to @to fwnode.
201 */
202static void __fwnode_links_move_consumers(struct fwnode_handle *from,
203					  struct fwnode_handle *to)
204{
205	struct fwnode_link *link, *tmp;
206
207	list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) {
208		__fwnode_link_add(link->consumer, to, link->flags);
209		__fwnode_link_del(link);
210	}
211}
212
213/**
214 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers
215 * @fwnode: fwnode from which to pick up dangling consumers
216 * @new_sup: fwnode of new supplier
217 *
218 * If the @fwnode has a corresponding struct device and the device supports
219 * probing (that is, added to a bus), then we want to let fw_devlink create
220 * MANAGED device links to this device, so leave @fwnode and its descendant's
221 * fwnode links alone.
222 *
223 * Otherwise, move its consumers to the new supplier @new_sup.
224 */
225static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode,
226						   struct fwnode_handle *new_sup)
227{
228	struct fwnode_handle *child;
229
230	if (fwnode->dev && fwnode->dev->bus)
231		return;
232
233	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
234	__fwnode_links_move_consumers(fwnode, new_sup);
235
236	fwnode_for_each_available_child_node(fwnode, child)
237		__fw_devlink_pickup_dangling_consumers(child, new_sup);
238}
239
240static DEFINE_MUTEX(device_links_lock);
241DEFINE_STATIC_SRCU(device_links_srcu);
242
243static inline void device_links_write_lock(void)
244{
245	mutex_lock(&device_links_lock);
246}
247
248static inline void device_links_write_unlock(void)
249{
250	mutex_unlock(&device_links_lock);
251}
252
253int device_links_read_lock(void) __acquires(&device_links_srcu)
254{
255	return srcu_read_lock(&device_links_srcu);
256}
257
258void device_links_read_unlock(int idx) __releases(&device_links_srcu)
259{
260	srcu_read_unlock(&device_links_srcu, idx);
261}
262
263int device_links_read_lock_held(void)
264{
265	return srcu_read_lock_held(&device_links_srcu);
266}
267
268static void device_link_synchronize_removal(void)
269{
270	synchronize_srcu(&device_links_srcu);
271}
272
273static void device_link_remove_from_lists(struct device_link *link)
274{
275	list_del_rcu(&link->s_node);
276	list_del_rcu(&link->c_node);
277}
278
279static bool device_is_ancestor(struct device *dev, struct device *target)
280{
281	while (target->parent) {
282		target = target->parent;
283		if (dev == target)
284			return true;
285	}
286	return false;
287}
288
289#define DL_MARKER_FLAGS		(DL_FLAG_INFERRED | \
290				 DL_FLAG_CYCLE | \
291				 DL_FLAG_MANAGED)
292static inline bool device_link_flag_is_sync_state_only(u32 flags)
293{
294	return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY;
295}
296
297/**
298 * device_is_dependent - Check if one device depends on another one
299 * @dev: Device to check dependencies for.
300 * @target: Device to check against.
301 *
302 * Check if @target depends on @dev or any device dependent on it (its child or
303 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
304 */
305static int device_is_dependent(struct device *dev, void *target)
306{
307	struct device_link *link;
308	int ret;
309
310	/*
311	 * The "ancestors" check is needed to catch the case when the target
312	 * device has not been completely initialized yet and it is still
313	 * missing from the list of children of its parent device.
314	 */
315	if (dev == target || device_is_ancestor(dev, target))
316		return 1;
317
318	ret = device_for_each_child(dev, target, device_is_dependent);
319	if (ret)
320		return ret;
321
322	list_for_each_entry(link, &dev->links.consumers, s_node) {
323		if (device_link_flag_is_sync_state_only(link->flags))
324			continue;
325
326		if (link->consumer == target)
327			return 1;
328
329		ret = device_is_dependent(link->consumer, target);
330		if (ret)
331			break;
332	}
333	return ret;
334}
335
336static void device_link_init_status(struct device_link *link,
337				    struct device *consumer,
338				    struct device *supplier)
339{
340	switch (supplier->links.status) {
341	case DL_DEV_PROBING:
342		switch (consumer->links.status) {
343		case DL_DEV_PROBING:
344			/*
345			 * A consumer driver can create a link to a supplier
346			 * that has not completed its probing yet as long as it
347			 * knows that the supplier is already functional (for
348			 * example, it has just acquired some resources from the
349			 * supplier).
350			 */
351			link->status = DL_STATE_CONSUMER_PROBE;
352			break;
353		default:
354			link->status = DL_STATE_DORMANT;
355			break;
356		}
357		break;
358	case DL_DEV_DRIVER_BOUND:
359		switch (consumer->links.status) {
360		case DL_DEV_PROBING:
361			link->status = DL_STATE_CONSUMER_PROBE;
362			break;
363		case DL_DEV_DRIVER_BOUND:
364			link->status = DL_STATE_ACTIVE;
365			break;
366		default:
367			link->status = DL_STATE_AVAILABLE;
368			break;
369		}
370		break;
371	case DL_DEV_UNBINDING:
372		link->status = DL_STATE_SUPPLIER_UNBIND;
373		break;
374	default:
375		link->status = DL_STATE_DORMANT;
376		break;
377	}
378}
379
380static int device_reorder_to_tail(struct device *dev, void *not_used)
381{
382	struct device_link *link;
383
384	/*
385	 * Devices that have not been registered yet will be put to the ends
386	 * of the lists during the registration, so skip them here.
387	 */
388	if (device_is_registered(dev))
389		devices_kset_move_last(dev);
390
391	if (device_pm_initialized(dev))
392		device_pm_move_last(dev);
393
394	device_for_each_child(dev, NULL, device_reorder_to_tail);
395	list_for_each_entry(link, &dev->links.consumers, s_node) {
396		if (device_link_flag_is_sync_state_only(link->flags))
397			continue;
398		device_reorder_to_tail(link->consumer, NULL);
399	}
400
401	return 0;
402}
403
404/**
405 * device_pm_move_to_tail - Move set of devices to the end of device lists
406 * @dev: Device to move
407 *
408 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
409 *
410 * It moves the @dev along with all of its children and all of its consumers
411 * to the ends of the device_kset and dpm_list, recursively.
412 */
413void device_pm_move_to_tail(struct device *dev)
414{
415	int idx;
416
417	idx = device_links_read_lock();
418	device_pm_lock();
419	device_reorder_to_tail(dev, NULL);
420	device_pm_unlock();
421	device_links_read_unlock(idx);
422}
423
424#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
425
426static ssize_t status_show(struct device *dev,
427			   struct device_attribute *attr, char *buf)
428{
429	const char *output;
430
431	switch (to_devlink(dev)->status) {
432	case DL_STATE_NONE:
433		output = "not tracked";
434		break;
435	case DL_STATE_DORMANT:
436		output = "dormant";
437		break;
438	case DL_STATE_AVAILABLE:
439		output = "available";
440		break;
441	case DL_STATE_CONSUMER_PROBE:
442		output = "consumer probing";
443		break;
444	case DL_STATE_ACTIVE:
445		output = "active";
446		break;
447	case DL_STATE_SUPPLIER_UNBIND:
448		output = "supplier unbinding";
449		break;
450	default:
451		output = "unknown";
452		break;
453	}
454
455	return sysfs_emit(buf, "%s\n", output);
456}
457static DEVICE_ATTR_RO(status);
458
459static ssize_t auto_remove_on_show(struct device *dev,
460				   struct device_attribute *attr, char *buf)
461{
462	struct device_link *link = to_devlink(dev);
463	const char *output;
464
465	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
466		output = "supplier unbind";
467	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
468		output = "consumer unbind";
469	else
470		output = "never";
471
472	return sysfs_emit(buf, "%s\n", output);
473}
474static DEVICE_ATTR_RO(auto_remove_on);
475
476static ssize_t runtime_pm_show(struct device *dev,
477			       struct device_attribute *attr, char *buf)
478{
479	struct device_link *link = to_devlink(dev);
480
481	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
482}
483static DEVICE_ATTR_RO(runtime_pm);
484
485static ssize_t sync_state_only_show(struct device *dev,
486				    struct device_attribute *attr, char *buf)
487{
488	struct device_link *link = to_devlink(dev);
489
490	return sysfs_emit(buf, "%d\n",
491			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
492}
493static DEVICE_ATTR_RO(sync_state_only);
494
495static struct attribute *devlink_attrs[] = {
496	&dev_attr_status.attr,
497	&dev_attr_auto_remove_on.attr,
498	&dev_attr_runtime_pm.attr,
499	&dev_attr_sync_state_only.attr,
500	NULL,
501};
502ATTRIBUTE_GROUPS(devlink);
503
504static void device_link_release_fn(struct work_struct *work)
505{
506	struct device_link *link = container_of(work, struct device_link, rm_work);
507
508	/* Ensure that all references to the link object have been dropped. */
509	device_link_synchronize_removal();
510
511	pm_runtime_release_supplier(link);
512	/*
513	 * If supplier_preactivated is set, the link has been dropped between
514	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
515	 * in __driver_probe_device().  In that case, drop the supplier's
516	 * PM-runtime usage counter to remove the reference taken by
517	 * pm_runtime_get_suppliers().
518	 */
519	if (link->supplier_preactivated)
520		pm_runtime_put_noidle(link->supplier);
521
522	pm_request_idle(link->supplier);
523
524	put_device(link->consumer);
525	put_device(link->supplier);
526	kfree(link);
527}
528
529static void devlink_dev_release(struct device *dev)
530{
531	struct device_link *link = to_devlink(dev);
532
533	INIT_WORK(&link->rm_work, device_link_release_fn);
534	/*
535	 * It may take a while to complete this work because of the SRCU
536	 * synchronization in device_link_release_fn() and if the consumer or
537	 * supplier devices get deleted when it runs, so put it into the
538	 * dedicated workqueue.
539	 */
540	queue_work(device_link_wq, &link->rm_work);
541}
542
543/**
544 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate
545 */
546void device_link_wait_removal(void)
547{
548	/*
549	 * devlink removal jobs are queued in the dedicated work queue.
550	 * To be sure that all removal jobs are terminated, ensure that any
551	 * scheduled work has run to completion.
552	 */
553	flush_workqueue(device_link_wq);
554}
555EXPORT_SYMBOL_GPL(device_link_wait_removal);
556
557static struct class devlink_class = {
558	.name = "devlink",
559	.dev_groups = devlink_groups,
560	.dev_release = devlink_dev_release,
561};
562
563static int devlink_add_symlinks(struct device *dev)
564{
565	int ret;
566	size_t len;
567	struct device_link *link = to_devlink(dev);
568	struct device *sup = link->supplier;
569	struct device *con = link->consumer;
570	char *buf;
571
572	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
573		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
574	len += strlen(":");
575	len += strlen("supplier:") + 1;
576	buf = kzalloc(len, GFP_KERNEL);
577	if (!buf)
578		return -ENOMEM;
579
580	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
581	if (ret)
582		goto out;
583
584	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
585	if (ret)
586		goto err_con;
587
588	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
589	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
590	if (ret)
591		goto err_con_dev;
592
593	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
594	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
595	if (ret)
596		goto err_sup_dev;
597
598	goto out;
599
600err_sup_dev:
601	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
602	sysfs_remove_link(&sup->kobj, buf);
603err_con_dev:
604	sysfs_remove_link(&link->link_dev.kobj, "consumer");
605err_con:
606	sysfs_remove_link(&link->link_dev.kobj, "supplier");
607out:
608	kfree(buf);
609	return ret;
610}
611
612static void devlink_remove_symlinks(struct device *dev)
613{
614	struct device_link *link = to_devlink(dev);
615	size_t len;
616	struct device *sup = link->supplier;
617	struct device *con = link->consumer;
618	char *buf;
619
620	sysfs_remove_link(&link->link_dev.kobj, "consumer");
621	sysfs_remove_link(&link->link_dev.kobj, "supplier");
622
623	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
624		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
625	len += strlen(":");
626	len += strlen("supplier:") + 1;
627	buf = kzalloc(len, GFP_KERNEL);
628	if (!buf) {
629		WARN(1, "Unable to properly free device link symlinks!\n");
630		return;
631	}
632
633	if (device_is_registered(con)) {
634		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
635		sysfs_remove_link(&con->kobj, buf);
636	}
637	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
638	sysfs_remove_link(&sup->kobj, buf);
639	kfree(buf);
640}
641
642static struct class_interface devlink_class_intf = {
643	.class = &devlink_class,
644	.add_dev = devlink_add_symlinks,
645	.remove_dev = devlink_remove_symlinks,
646};
647
648static int __init devlink_class_init(void)
649{
650	int ret;
651
652	ret = class_register(&devlink_class);
653	if (ret)
654		return ret;
655
656	ret = class_interface_register(&devlink_class_intf);
657	if (ret)
658		class_unregister(&devlink_class);
659
660	return ret;
661}
662postcore_initcall(devlink_class_init);
663
664#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
665			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
666			       DL_FLAG_AUTOPROBE_CONSUMER  | \
667			       DL_FLAG_SYNC_STATE_ONLY | \
668			       DL_FLAG_INFERRED | \
669			       DL_FLAG_CYCLE)
670
671#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
672			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
673
674/**
675 * device_link_add - Create a link between two devices.
676 * @consumer: Consumer end of the link.
677 * @supplier: Supplier end of the link.
678 * @flags: Link flags.
679 *
680 * The caller is responsible for the proper synchronization of the link creation
681 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
682 * runtime PM framework to take the link into account.  Second, if the
683 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
684 * be forced into the active meta state and reference-counted upon the creation
685 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
686 * ignored.
687 *
688 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
689 * expected to release the link returned by it directly with the help of either
690 * device_link_del() or device_link_remove().
691 *
692 * If that flag is not set, however, the caller of this function is handing the
693 * management of the link over to the driver core entirely and its return value
694 * can only be used to check whether or not the link is present.  In that case,
695 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
696 * flags can be used to indicate to the driver core when the link can be safely
697 * deleted.  Namely, setting one of them in @flags indicates to the driver core
698 * that the link is not going to be used (by the given caller of this function)
699 * after unbinding the consumer or supplier driver, respectively, from its
700 * device, so the link can be deleted at that point.  If none of them is set,
701 * the link will be maintained until one of the devices pointed to by it (either
702 * the consumer or the supplier) is unregistered.
703 *
704 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
705 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
706 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
707 * be used to request the driver core to automatically probe for a consumer
708 * driver after successfully binding a driver to the supplier device.
709 *
710 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
711 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
712 * the same time is invalid and will cause NULL to be returned upfront.
713 * However, if a device link between the given @consumer and @supplier pair
714 * exists already when this function is called for them, the existing link will
715 * be returned regardless of its current type and status (the link's flags may
716 * be modified then).  The caller of this function is then expected to treat
717 * the link as though it has just been created, so (in particular) if
718 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
719 * explicitly when not needed any more (as stated above).
720 *
721 * A side effect of the link creation is re-ordering of dpm_list and the
722 * devices_kset list by moving the consumer device and all devices depending
723 * on it to the ends of these lists (that does not happen to devices that have
724 * not been registered when this function is called).
725 *
726 * The supplier device is required to be registered when this function is called
727 * and NULL will be returned if that is not the case.  The consumer device need
728 * not be registered, however.
729 */
730struct device_link *device_link_add(struct device *consumer,
731				    struct device *supplier, u32 flags)
732{
733	struct device_link *link;
734
735	if (!consumer || !supplier || consumer == supplier ||
736	    flags & ~DL_ADD_VALID_FLAGS ||
737	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
738	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
739	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
740		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
741		return NULL;
742
743	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
744		if (pm_runtime_get_sync(supplier) < 0) {
745			pm_runtime_put_noidle(supplier);
746			return NULL;
747		}
748	}
749
750	if (!(flags & DL_FLAG_STATELESS))
751		flags |= DL_FLAG_MANAGED;
752
753	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
754	    !device_link_flag_is_sync_state_only(flags))
755		return NULL;
756
757	device_links_write_lock();
758	device_pm_lock();
759
760	/*
761	 * If the supplier has not been fully registered yet or there is a
762	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
763	 * the supplier already in the graph, return NULL. If the link is a
764	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
765	 * because it only affects sync_state() callbacks.
766	 */
767	if (!device_pm_initialized(supplier)
768	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
769		  device_is_dependent(consumer, supplier))) {
770		link = NULL;
771		goto out;
772	}
773
774	/*
775	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
776	 * So, only create it if the consumer hasn't probed yet.
777	 */
778	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
779	    consumer->links.status != DL_DEV_NO_DRIVER &&
780	    consumer->links.status != DL_DEV_PROBING) {
781		link = NULL;
782		goto out;
783	}
784
785	/*
786	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
787	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
788	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
789	 */
790	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
791		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
792
793	list_for_each_entry(link, &supplier->links.consumers, s_node) {
794		if (link->consumer != consumer)
795			continue;
796
797		if (link->flags & DL_FLAG_INFERRED &&
798		    !(flags & DL_FLAG_INFERRED))
799			link->flags &= ~DL_FLAG_INFERRED;
800
801		if (flags & DL_FLAG_PM_RUNTIME) {
802			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
803				pm_runtime_new_link(consumer);
804				link->flags |= DL_FLAG_PM_RUNTIME;
805			}
806			if (flags & DL_FLAG_RPM_ACTIVE)
807				refcount_inc(&link->rpm_active);
808		}
809
810		if (flags & DL_FLAG_STATELESS) {
811			kref_get(&link->kref);
812			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
813			    !(link->flags & DL_FLAG_STATELESS)) {
814				link->flags |= DL_FLAG_STATELESS;
815				goto reorder;
816			} else {
817				link->flags |= DL_FLAG_STATELESS;
818				goto out;
819			}
820		}
821
822		/*
823		 * If the life time of the link following from the new flags is
824		 * longer than indicated by the flags of the existing link,
825		 * update the existing link to stay around longer.
826		 */
827		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
828			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
829				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
830				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
831			}
832		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
833			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
834					 DL_FLAG_AUTOREMOVE_SUPPLIER);
835		}
836		if (!(link->flags & DL_FLAG_MANAGED)) {
837			kref_get(&link->kref);
838			link->flags |= DL_FLAG_MANAGED;
839			device_link_init_status(link, consumer, supplier);
840		}
841		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
842		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
843			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
844			goto reorder;
845		}
846
847		goto out;
848	}
849
850	link = kzalloc(sizeof(*link), GFP_KERNEL);
851	if (!link)
852		goto out;
853
854	refcount_set(&link->rpm_active, 1);
855
856	get_device(supplier);
857	link->supplier = supplier;
858	INIT_LIST_HEAD(&link->s_node);
859	get_device(consumer);
860	link->consumer = consumer;
861	INIT_LIST_HEAD(&link->c_node);
862	link->flags = flags;
863	kref_init(&link->kref);
864
865	link->link_dev.class = &devlink_class;
866	device_set_pm_not_required(&link->link_dev);
867	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
868		     dev_bus_name(supplier), dev_name(supplier),
869		     dev_bus_name(consumer), dev_name(consumer));
870	if (device_register(&link->link_dev)) {
871		put_device(&link->link_dev);
872		link = NULL;
873		goto out;
874	}
875
876	if (flags & DL_FLAG_PM_RUNTIME) {
877		if (flags & DL_FLAG_RPM_ACTIVE)
878			refcount_inc(&link->rpm_active);
879
880		pm_runtime_new_link(consumer);
881	}
882
883	/* Determine the initial link state. */
884	if (flags & DL_FLAG_STATELESS)
885		link->status = DL_STATE_NONE;
886	else
887		device_link_init_status(link, consumer, supplier);
888
889	/*
890	 * Some callers expect the link creation during consumer driver probe to
891	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
892	 */
893	if (link->status == DL_STATE_CONSUMER_PROBE &&
894	    flags & DL_FLAG_PM_RUNTIME)
895		pm_runtime_resume(supplier);
896
897	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
898	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
899
900	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
901		dev_dbg(consumer,
902			"Linked as a sync state only consumer to %s\n",
903			dev_name(supplier));
904		goto out;
905	}
906
907reorder:
908	/*
909	 * Move the consumer and all of the devices depending on it to the end
910	 * of dpm_list and the devices_kset list.
911	 *
912	 * It is necessary to hold dpm_list locked throughout all that or else
913	 * we may end up suspending with a wrong ordering of it.
914	 */
915	device_reorder_to_tail(consumer, NULL);
916
917	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
918
919out:
920	device_pm_unlock();
921	device_links_write_unlock();
922
923	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
924		pm_runtime_put(supplier);
925
926	return link;
927}
928EXPORT_SYMBOL_GPL(device_link_add);
929
930static void __device_link_del(struct kref *kref)
931{
932	struct device_link *link = container_of(kref, struct device_link, kref);
933
934	dev_dbg(link->consumer, "Dropping the link to %s\n",
935		dev_name(link->supplier));
936
937	pm_runtime_drop_link(link);
938
939	device_link_remove_from_lists(link);
940	device_unregister(&link->link_dev);
941}
942
943static void device_link_put_kref(struct device_link *link)
944{
945	if (link->flags & DL_FLAG_STATELESS)
946		kref_put(&link->kref, __device_link_del);
947	else if (!device_is_registered(link->consumer))
948		__device_link_del(&link->kref);
949	else
950		WARN(1, "Unable to drop a managed device link reference\n");
951}
952
953/**
954 * device_link_del - Delete a stateless link between two devices.
955 * @link: Device link to delete.
956 *
957 * The caller must ensure proper synchronization of this function with runtime
958 * PM.  If the link was added multiple times, it needs to be deleted as often.
959 * Care is required for hotplugged devices:  Their links are purged on removal
960 * and calling device_link_del() is then no longer allowed.
961 */
962void device_link_del(struct device_link *link)
963{
964	device_links_write_lock();
965	device_link_put_kref(link);
966	device_links_write_unlock();
967}
968EXPORT_SYMBOL_GPL(device_link_del);
969
970/**
971 * device_link_remove - Delete a stateless link between two devices.
972 * @consumer: Consumer end of the link.
973 * @supplier: Supplier end of the link.
974 *
975 * The caller must ensure proper synchronization of this function with runtime
976 * PM.
977 */
978void device_link_remove(void *consumer, struct device *supplier)
979{
980	struct device_link *link;
981
982	if (WARN_ON(consumer == supplier))
983		return;
984
985	device_links_write_lock();
986
987	list_for_each_entry(link, &supplier->links.consumers, s_node) {
988		if (link->consumer == consumer) {
989			device_link_put_kref(link);
990			break;
991		}
992	}
993
994	device_links_write_unlock();
995}
996EXPORT_SYMBOL_GPL(device_link_remove);
997
998static void device_links_missing_supplier(struct device *dev)
999{
1000	struct device_link *link;
1001
1002	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1003		if (link->status != DL_STATE_CONSUMER_PROBE)
1004			continue;
1005
1006		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1007			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1008		} else {
1009			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1010			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1011		}
1012	}
1013}
1014
1015static bool dev_is_best_effort(struct device *dev)
1016{
1017	return (fw_devlink_best_effort && dev->can_match) ||
1018		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
1019}
1020
1021static struct fwnode_handle *fwnode_links_check_suppliers(
1022						struct fwnode_handle *fwnode)
1023{
1024	struct fwnode_link *link;
1025
1026	if (!fwnode || fw_devlink_is_permissive())
1027		return NULL;
1028
1029	list_for_each_entry(link, &fwnode->suppliers, c_hook)
1030		if (!(link->flags &
1031		      (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE)))
1032			return link->supplier;
1033
1034	return NULL;
1035}
1036
1037/**
1038 * device_links_check_suppliers - Check presence of supplier drivers.
1039 * @dev: Consumer device.
1040 *
1041 * Check links from this device to any suppliers.  Walk the list of the device's
1042 * links to suppliers and see if all of them are available.  If not, simply
1043 * return -EPROBE_DEFER.
1044 *
1045 * We need to guarantee that the supplier will not go away after the check has
1046 * been positive here.  It only can go away in __device_release_driver() and
1047 * that function  checks the device's links to consumers.  This means we need to
1048 * mark the link as "consumer probe in progress" to make the supplier removal
1049 * wait for us to complete (or bad things may happen).
1050 *
1051 * Links without the DL_FLAG_MANAGED flag set are ignored.
1052 */
1053int device_links_check_suppliers(struct device *dev)
1054{
1055	struct device_link *link;
1056	int ret = 0, fwnode_ret = 0;
1057	struct fwnode_handle *sup_fw;
1058
1059	/*
1060	 * Device waiting for supplier to become available is not allowed to
1061	 * probe.
1062	 */
1063	mutex_lock(&fwnode_link_lock);
1064	sup_fw = fwnode_links_check_suppliers(dev->fwnode);
1065	if (sup_fw) {
1066		if (!dev_is_best_effort(dev)) {
1067			fwnode_ret = -EPROBE_DEFER;
1068			dev_err_probe(dev, -EPROBE_DEFER,
1069				    "wait for supplier %pfwf\n", sup_fw);
1070		} else {
1071			fwnode_ret = -EAGAIN;
1072		}
1073	}
1074	mutex_unlock(&fwnode_link_lock);
1075	if (fwnode_ret == -EPROBE_DEFER)
1076		return fwnode_ret;
1077
1078	device_links_write_lock();
1079
1080	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1081		if (!(link->flags & DL_FLAG_MANAGED))
1082			continue;
1083
1084		if (link->status != DL_STATE_AVAILABLE &&
1085		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1086
1087			if (dev_is_best_effort(dev) &&
1088			    link->flags & DL_FLAG_INFERRED &&
1089			    !link->supplier->can_match) {
1090				ret = -EAGAIN;
1091				continue;
1092			}
1093
1094			device_links_missing_supplier(dev);
1095			dev_err_probe(dev, -EPROBE_DEFER,
1096				      "supplier %s not ready\n",
1097				      dev_name(link->supplier));
1098			ret = -EPROBE_DEFER;
1099			break;
1100		}
1101		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1102	}
1103	dev->links.status = DL_DEV_PROBING;
1104
1105	device_links_write_unlock();
1106
1107	return ret ? ret : fwnode_ret;
1108}
1109
1110/**
1111 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1112 * @dev: Device to call sync_state() on
1113 * @list: List head to queue the @dev on
1114 *
1115 * Queues a device for a sync_state() callback when the device links write lock
1116 * isn't held. This allows the sync_state() execution flow to use device links
1117 * APIs.  The caller must ensure this function is called with
1118 * device_links_write_lock() held.
1119 *
1120 * This function does a get_device() to make sure the device is not freed while
1121 * on this list.
1122 *
1123 * So the caller must also ensure that device_links_flush_sync_list() is called
1124 * as soon as the caller releases device_links_write_lock().  This is necessary
1125 * to make sure the sync_state() is called in a timely fashion and the
1126 * put_device() is called on this device.
1127 */
1128static void __device_links_queue_sync_state(struct device *dev,
1129					    struct list_head *list)
1130{
1131	struct device_link *link;
1132
1133	if (!dev_has_sync_state(dev))
1134		return;
1135	if (dev->state_synced)
1136		return;
1137
1138	list_for_each_entry(link, &dev->links.consumers, s_node) {
1139		if (!(link->flags & DL_FLAG_MANAGED))
1140			continue;
1141		if (link->status != DL_STATE_ACTIVE)
1142			return;
1143	}
1144
1145	/*
1146	 * Set the flag here to avoid adding the same device to a list more
1147	 * than once. This can happen if new consumers get added to the device
1148	 * and probed before the list is flushed.
1149	 */
1150	dev->state_synced = true;
1151
1152	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1153		return;
1154
1155	get_device(dev);
1156	list_add_tail(&dev->links.defer_sync, list);
1157}
1158
1159/**
1160 * device_links_flush_sync_list - Call sync_state() on a list of devices
1161 * @list: List of devices to call sync_state() on
1162 * @dont_lock_dev: Device for which lock is already held by the caller
1163 *
1164 * Calls sync_state() on all the devices that have been queued for it. This
1165 * function is used in conjunction with __device_links_queue_sync_state(). The
1166 * @dont_lock_dev parameter is useful when this function is called from a
1167 * context where a device lock is already held.
1168 */
1169static void device_links_flush_sync_list(struct list_head *list,
1170					 struct device *dont_lock_dev)
1171{
1172	struct device *dev, *tmp;
1173
1174	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1175		list_del_init(&dev->links.defer_sync);
1176
1177		if (dev != dont_lock_dev)
1178			device_lock(dev);
1179
1180		dev_sync_state(dev);
1181
1182		if (dev != dont_lock_dev)
1183			device_unlock(dev);
1184
1185		put_device(dev);
1186	}
1187}
1188
1189void device_links_supplier_sync_state_pause(void)
1190{
1191	device_links_write_lock();
1192	defer_sync_state_count++;
1193	device_links_write_unlock();
1194}
1195
1196void device_links_supplier_sync_state_resume(void)
1197{
1198	struct device *dev, *tmp;
1199	LIST_HEAD(sync_list);
1200
1201	device_links_write_lock();
1202	if (!defer_sync_state_count) {
1203		WARN(true, "Unmatched sync_state pause/resume!");
1204		goto out;
1205	}
1206	defer_sync_state_count--;
1207	if (defer_sync_state_count)
1208		goto out;
1209
1210	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1211		/*
1212		 * Delete from deferred_sync list before queuing it to
1213		 * sync_list because defer_sync is used for both lists.
1214		 */
1215		list_del_init(&dev->links.defer_sync);
1216		__device_links_queue_sync_state(dev, &sync_list);
1217	}
1218out:
1219	device_links_write_unlock();
1220
1221	device_links_flush_sync_list(&sync_list, NULL);
1222}
1223
1224static int sync_state_resume_initcall(void)
1225{
1226	device_links_supplier_sync_state_resume();
1227	return 0;
1228}
1229late_initcall(sync_state_resume_initcall);
1230
1231static void __device_links_supplier_defer_sync(struct device *sup)
1232{
1233	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1234		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1235}
1236
1237static void device_link_drop_managed(struct device_link *link)
1238{
1239	link->flags &= ~DL_FLAG_MANAGED;
1240	WRITE_ONCE(link->status, DL_STATE_NONE);
1241	kref_put(&link->kref, __device_link_del);
1242}
1243
1244static ssize_t waiting_for_supplier_show(struct device *dev,
1245					 struct device_attribute *attr,
1246					 char *buf)
1247{
1248	bool val;
1249
1250	device_lock(dev);
1251	mutex_lock(&fwnode_link_lock);
1252	val = !!fwnode_links_check_suppliers(dev->fwnode);
1253	mutex_unlock(&fwnode_link_lock);
1254	device_unlock(dev);
1255	return sysfs_emit(buf, "%u\n", val);
1256}
1257static DEVICE_ATTR_RO(waiting_for_supplier);
1258
1259/**
1260 * device_links_force_bind - Prepares device to be force bound
1261 * @dev: Consumer device.
1262 *
1263 * device_bind_driver() force binds a device to a driver without calling any
1264 * driver probe functions. So the consumer really isn't going to wait for any
1265 * supplier before it's bound to the driver. We still want the device link
1266 * states to be sensible when this happens.
1267 *
1268 * In preparation for device_bind_driver(), this function goes through each
1269 * supplier device links and checks if the supplier is bound. If it is, then
1270 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1271 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1272 */
1273void device_links_force_bind(struct device *dev)
1274{
1275	struct device_link *link, *ln;
1276
1277	device_links_write_lock();
1278
1279	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1280		if (!(link->flags & DL_FLAG_MANAGED))
1281			continue;
1282
1283		if (link->status != DL_STATE_AVAILABLE) {
1284			device_link_drop_managed(link);
1285			continue;
1286		}
1287		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1288	}
1289	dev->links.status = DL_DEV_PROBING;
1290
1291	device_links_write_unlock();
1292}
1293
1294/**
1295 * device_links_driver_bound - Update device links after probing its driver.
1296 * @dev: Device to update the links for.
1297 *
1298 * The probe has been successful, so update links from this device to any
1299 * consumers by changing their status to "available".
1300 *
1301 * Also change the status of @dev's links to suppliers to "active".
1302 *
1303 * Links without the DL_FLAG_MANAGED flag set are ignored.
1304 */
1305void device_links_driver_bound(struct device *dev)
1306{
1307	struct device_link *link, *ln;
1308	LIST_HEAD(sync_list);
1309
1310	/*
1311	 * If a device binds successfully, it's expected to have created all
1312	 * the device links it needs to or make new device links as it needs
1313	 * them. So, fw_devlink no longer needs to create device links to any
1314	 * of the device's suppliers.
1315	 *
1316	 * Also, if a child firmware node of this bound device is not added as a
1317	 * device by now, assume it is never going to be added. Make this bound
1318	 * device the fallback supplier to the dangling consumers of the child
1319	 * firmware node because this bound device is probably implementing the
1320	 * child firmware node functionality and we don't want the dangling
1321	 * consumers to defer probe indefinitely waiting for a device for the
1322	 * child firmware node.
1323	 */
1324	if (dev->fwnode && dev->fwnode->dev == dev) {
1325		struct fwnode_handle *child;
1326		fwnode_links_purge_suppliers(dev->fwnode);
1327		mutex_lock(&fwnode_link_lock);
1328		fwnode_for_each_available_child_node(dev->fwnode, child)
1329			__fw_devlink_pickup_dangling_consumers(child,
1330							       dev->fwnode);
1331		__fw_devlink_link_to_consumers(dev);
1332		mutex_unlock(&fwnode_link_lock);
1333	}
1334	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1335
1336	device_links_write_lock();
1337
1338	list_for_each_entry(link, &dev->links.consumers, s_node) {
1339		if (!(link->flags & DL_FLAG_MANAGED))
1340			continue;
1341
1342		/*
1343		 * Links created during consumer probe may be in the "consumer
1344		 * probe" state to start with if the supplier is still probing
1345		 * when they are created and they may become "active" if the
1346		 * consumer probe returns first.  Skip them here.
1347		 */
1348		if (link->status == DL_STATE_CONSUMER_PROBE ||
1349		    link->status == DL_STATE_ACTIVE)
1350			continue;
1351
1352		WARN_ON(link->status != DL_STATE_DORMANT);
1353		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1354
1355		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1356			driver_deferred_probe_add(link->consumer);
1357	}
1358
1359	if (defer_sync_state_count)
1360		__device_links_supplier_defer_sync(dev);
1361	else
1362		__device_links_queue_sync_state(dev, &sync_list);
1363
1364	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1365		struct device *supplier;
1366
1367		if (!(link->flags & DL_FLAG_MANAGED))
1368			continue;
1369
1370		supplier = link->supplier;
1371		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1372			/*
1373			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1374			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1375			 * save to drop the managed link completely.
1376			 */
1377			device_link_drop_managed(link);
1378		} else if (dev_is_best_effort(dev) &&
1379			   link->flags & DL_FLAG_INFERRED &&
1380			   link->status != DL_STATE_CONSUMER_PROBE &&
1381			   !link->supplier->can_match) {
1382			/*
1383			 * When dev_is_best_effort() is true, we ignore device
1384			 * links to suppliers that don't have a driver.  If the
1385			 * consumer device still managed to probe, there's no
1386			 * point in maintaining a device link in a weird state
1387			 * (consumer probed before supplier). So delete it.
1388			 */
1389			device_link_drop_managed(link);
1390		} else {
1391			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1392			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1393		}
1394
1395		/*
1396		 * This needs to be done even for the deleted
1397		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1398		 * device link that was preventing the supplier from getting a
1399		 * sync_state() call.
1400		 */
1401		if (defer_sync_state_count)
1402			__device_links_supplier_defer_sync(supplier);
1403		else
1404			__device_links_queue_sync_state(supplier, &sync_list);
1405	}
1406
1407	dev->links.status = DL_DEV_DRIVER_BOUND;
1408
1409	device_links_write_unlock();
1410
1411	device_links_flush_sync_list(&sync_list, dev);
1412}
1413
1414/**
1415 * __device_links_no_driver - Update links of a device without a driver.
1416 * @dev: Device without a drvier.
1417 *
1418 * Delete all non-persistent links from this device to any suppliers.
1419 *
1420 * Persistent links stay around, but their status is changed to "available",
1421 * unless they already are in the "supplier unbind in progress" state in which
1422 * case they need not be updated.
1423 *
1424 * Links without the DL_FLAG_MANAGED flag set are ignored.
1425 */
1426static void __device_links_no_driver(struct device *dev)
1427{
1428	struct device_link *link, *ln;
1429
1430	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1431		if (!(link->flags & DL_FLAG_MANAGED))
1432			continue;
1433
1434		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1435			device_link_drop_managed(link);
1436			continue;
1437		}
1438
1439		if (link->status != DL_STATE_CONSUMER_PROBE &&
1440		    link->status != DL_STATE_ACTIVE)
1441			continue;
1442
1443		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1444			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1445		} else {
1446			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1447			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1448		}
1449	}
1450
1451	dev->links.status = DL_DEV_NO_DRIVER;
1452}
1453
1454/**
1455 * device_links_no_driver - Update links after failing driver probe.
1456 * @dev: Device whose driver has just failed to probe.
1457 *
1458 * Clean up leftover links to consumers for @dev and invoke
1459 * %__device_links_no_driver() to update links to suppliers for it as
1460 * appropriate.
1461 *
1462 * Links without the DL_FLAG_MANAGED flag set are ignored.
1463 */
1464void device_links_no_driver(struct device *dev)
1465{
1466	struct device_link *link;
1467
1468	device_links_write_lock();
1469
1470	list_for_each_entry(link, &dev->links.consumers, s_node) {
1471		if (!(link->flags & DL_FLAG_MANAGED))
1472			continue;
1473
1474		/*
1475		 * The probe has failed, so if the status of the link is
1476		 * "consumer probe" or "active", it must have been added by
1477		 * a probing consumer while this device was still probing.
1478		 * Change its state to "dormant", as it represents a valid
1479		 * relationship, but it is not functionally meaningful.
1480		 */
1481		if (link->status == DL_STATE_CONSUMER_PROBE ||
1482		    link->status == DL_STATE_ACTIVE)
1483			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1484	}
1485
1486	__device_links_no_driver(dev);
1487
1488	device_links_write_unlock();
1489}
1490
1491/**
1492 * device_links_driver_cleanup - Update links after driver removal.
1493 * @dev: Device whose driver has just gone away.
1494 *
1495 * Update links to consumers for @dev by changing their status to "dormant" and
1496 * invoke %__device_links_no_driver() to update links to suppliers for it as
1497 * appropriate.
1498 *
1499 * Links without the DL_FLAG_MANAGED flag set are ignored.
1500 */
1501void device_links_driver_cleanup(struct device *dev)
1502{
1503	struct device_link *link, *ln;
1504
1505	device_links_write_lock();
1506
1507	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1508		if (!(link->flags & DL_FLAG_MANAGED))
1509			continue;
1510
1511		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1512		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1513
1514		/*
1515		 * autoremove the links between this @dev and its consumer
1516		 * devices that are not active, i.e. where the link state
1517		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1518		 */
1519		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1520		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1521			device_link_drop_managed(link);
1522
1523		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1524	}
1525
1526	list_del_init(&dev->links.defer_sync);
1527	__device_links_no_driver(dev);
1528
1529	device_links_write_unlock();
1530}
1531
1532/**
1533 * device_links_busy - Check if there are any busy links to consumers.
1534 * @dev: Device to check.
1535 *
1536 * Check each consumer of the device and return 'true' if its link's status
1537 * is one of "consumer probe" or "active" (meaning that the given consumer is
1538 * probing right now or its driver is present).  Otherwise, change the link
1539 * state to "supplier unbind" to prevent the consumer from being probed
1540 * successfully going forward.
1541 *
1542 * Return 'false' if there are no probing or active consumers.
1543 *
1544 * Links without the DL_FLAG_MANAGED flag set are ignored.
1545 */
1546bool device_links_busy(struct device *dev)
1547{
1548	struct device_link *link;
1549	bool ret = false;
1550
1551	device_links_write_lock();
1552
1553	list_for_each_entry(link, &dev->links.consumers, s_node) {
1554		if (!(link->flags & DL_FLAG_MANAGED))
1555			continue;
1556
1557		if (link->status == DL_STATE_CONSUMER_PROBE
1558		    || link->status == DL_STATE_ACTIVE) {
1559			ret = true;
1560			break;
1561		}
1562		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1563	}
1564
1565	dev->links.status = DL_DEV_UNBINDING;
1566
1567	device_links_write_unlock();
1568	return ret;
1569}
1570
1571/**
1572 * device_links_unbind_consumers - Force unbind consumers of the given device.
1573 * @dev: Device to unbind the consumers of.
1574 *
1575 * Walk the list of links to consumers for @dev and if any of them is in the
1576 * "consumer probe" state, wait for all device probes in progress to complete
1577 * and start over.
1578 *
1579 * If that's not the case, change the status of the link to "supplier unbind"
1580 * and check if the link was in the "active" state.  If so, force the consumer
1581 * driver to unbind and start over (the consumer will not re-probe as we have
1582 * changed the state of the link already).
1583 *
1584 * Links without the DL_FLAG_MANAGED flag set are ignored.
1585 */
1586void device_links_unbind_consumers(struct device *dev)
1587{
1588	struct device_link *link;
1589
1590 start:
1591	device_links_write_lock();
1592
1593	list_for_each_entry(link, &dev->links.consumers, s_node) {
1594		enum device_link_state status;
1595
1596		if (!(link->flags & DL_FLAG_MANAGED) ||
1597		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1598			continue;
1599
1600		status = link->status;
1601		if (status == DL_STATE_CONSUMER_PROBE) {
1602			device_links_write_unlock();
1603
1604			wait_for_device_probe();
1605			goto start;
1606		}
1607		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1608		if (status == DL_STATE_ACTIVE) {
1609			struct device *consumer = link->consumer;
1610
1611			get_device(consumer);
1612
1613			device_links_write_unlock();
1614
1615			device_release_driver_internal(consumer, NULL,
1616						       consumer->parent);
1617			put_device(consumer);
1618			goto start;
1619		}
1620	}
1621
1622	device_links_write_unlock();
1623}
1624
1625/**
1626 * device_links_purge - Delete existing links to other devices.
1627 * @dev: Target device.
1628 */
1629static void device_links_purge(struct device *dev)
1630{
1631	struct device_link *link, *ln;
1632
1633	if (dev->class == &devlink_class)
1634		return;
1635
1636	/*
1637	 * Delete all of the remaining links from this device to any other
1638	 * devices (either consumers or suppliers).
1639	 */
1640	device_links_write_lock();
1641
1642	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1643		WARN_ON(link->status == DL_STATE_ACTIVE);
1644		__device_link_del(&link->kref);
1645	}
1646
1647	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1648		WARN_ON(link->status != DL_STATE_DORMANT &&
1649			link->status != DL_STATE_NONE);
1650		__device_link_del(&link->kref);
1651	}
1652
1653	device_links_write_unlock();
1654}
1655
1656#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1657					 DL_FLAG_SYNC_STATE_ONLY)
1658#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1659					 DL_FLAG_AUTOPROBE_CONSUMER)
1660#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1661					 DL_FLAG_PM_RUNTIME)
1662
1663static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1664static int __init fw_devlink_setup(char *arg)
1665{
1666	if (!arg)
1667		return -EINVAL;
1668
1669	if (strcmp(arg, "off") == 0) {
1670		fw_devlink_flags = 0;
1671	} else if (strcmp(arg, "permissive") == 0) {
1672		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1673	} else if (strcmp(arg, "on") == 0) {
1674		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1675	} else if (strcmp(arg, "rpm") == 0) {
1676		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1677	}
1678	return 0;
1679}
1680early_param("fw_devlink", fw_devlink_setup);
1681
1682static bool fw_devlink_strict;
1683static int __init fw_devlink_strict_setup(char *arg)
1684{
1685	return kstrtobool(arg, &fw_devlink_strict);
1686}
1687early_param("fw_devlink.strict", fw_devlink_strict_setup);
1688
1689#define FW_DEVLINK_SYNC_STATE_STRICT	0
1690#define FW_DEVLINK_SYNC_STATE_TIMEOUT	1
1691
1692#ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT
1693static int fw_devlink_sync_state;
1694#else
1695static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1696#endif
1697
1698static int __init fw_devlink_sync_state_setup(char *arg)
1699{
1700	if (!arg)
1701		return -EINVAL;
1702
1703	if (strcmp(arg, "strict") == 0) {
1704		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT;
1705		return 0;
1706	} else if (strcmp(arg, "timeout") == 0) {
1707		fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT;
1708		return 0;
1709	}
1710	return -EINVAL;
1711}
1712early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup);
1713
1714static inline u32 fw_devlink_get_flags(u8 fwlink_flags)
1715{
1716	if (fwlink_flags & FWLINK_FLAG_CYCLE)
1717		return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE;
1718
1719	return fw_devlink_flags;
1720}
1721
1722static bool fw_devlink_is_permissive(void)
1723{
1724	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1725}
1726
1727bool fw_devlink_is_strict(void)
1728{
1729	return fw_devlink_strict && !fw_devlink_is_permissive();
1730}
1731
1732static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1733{
1734	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1735		return;
1736
1737	fwnode_call_int_op(fwnode, add_links);
1738	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1739}
1740
1741static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1742{
1743	struct fwnode_handle *child = NULL;
1744
1745	fw_devlink_parse_fwnode(fwnode);
1746
1747	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1748		fw_devlink_parse_fwtree(child);
1749}
1750
1751static void fw_devlink_relax_link(struct device_link *link)
1752{
1753	if (!(link->flags & DL_FLAG_INFERRED))
1754		return;
1755
1756	if (device_link_flag_is_sync_state_only(link->flags))
1757		return;
1758
1759	pm_runtime_drop_link(link);
1760	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1761	dev_dbg(link->consumer, "Relaxing link with %s\n",
1762		dev_name(link->supplier));
1763}
1764
1765static int fw_devlink_no_driver(struct device *dev, void *data)
1766{
1767	struct device_link *link = to_devlink(dev);
1768
1769	if (!link->supplier->can_match)
1770		fw_devlink_relax_link(link);
1771
1772	return 0;
1773}
1774
1775void fw_devlink_drivers_done(void)
1776{
1777	fw_devlink_drv_reg_done = true;
1778	device_links_write_lock();
1779	class_for_each_device(&devlink_class, NULL, NULL,
1780			      fw_devlink_no_driver);
1781	device_links_write_unlock();
1782}
1783
1784static int fw_devlink_dev_sync_state(struct device *dev, void *data)
1785{
1786	struct device_link *link = to_devlink(dev);
1787	struct device *sup = link->supplier;
1788
1789	if (!(link->flags & DL_FLAG_MANAGED) ||
1790	    link->status == DL_STATE_ACTIVE || sup->state_synced ||
1791	    !dev_has_sync_state(sup))
1792		return 0;
1793
1794	if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) {
1795		dev_warn(sup, "sync_state() pending due to %s\n",
1796			 dev_name(link->consumer));
1797		return 0;
1798	}
1799
1800	if (!list_empty(&sup->links.defer_sync))
1801		return 0;
1802
1803	dev_warn(sup, "Timed out. Forcing sync_state()\n");
1804	sup->state_synced = true;
1805	get_device(sup);
1806	list_add_tail(&sup->links.defer_sync, data);
1807
1808	return 0;
1809}
1810
1811void fw_devlink_probing_done(void)
1812{
1813	LIST_HEAD(sync_list);
1814
1815	device_links_write_lock();
1816	class_for_each_device(&devlink_class, NULL, &sync_list,
1817			      fw_devlink_dev_sync_state);
1818	device_links_write_unlock();
1819	device_links_flush_sync_list(&sync_list, NULL);
1820}
1821
1822/**
1823 * wait_for_init_devices_probe - Try to probe any device needed for init
1824 *
1825 * Some devices might need to be probed and bound successfully before the kernel
1826 * boot sequence can finish and move on to init/userspace. For example, a
1827 * network interface might need to be bound to be able to mount a NFS rootfs.
1828 *
1829 * With fw_devlink=on by default, some of these devices might be blocked from
1830 * probing because they are waiting on a optional supplier that doesn't have a
1831 * driver. While fw_devlink will eventually identify such devices and unblock
1832 * the probing automatically, it might be too late by the time it unblocks the
1833 * probing of devices. For example, the IP4 autoconfig might timeout before
1834 * fw_devlink unblocks probing of the network interface.
1835 *
1836 * This function is available to temporarily try and probe all devices that have
1837 * a driver even if some of their suppliers haven't been added or don't have
1838 * drivers.
1839 *
1840 * The drivers can then decide which of the suppliers are optional vs mandatory
1841 * and probe the device if possible. By the time this function returns, all such
1842 * "best effort" probes are guaranteed to be completed. If a device successfully
1843 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1844 * device where the supplier hasn't yet probed successfully because they have to
1845 * be optional dependencies.
1846 *
1847 * Any devices that didn't successfully probe go back to being treated as if
1848 * this function was never called.
1849 *
1850 * This also means that some devices that aren't needed for init and could have
1851 * waited for their optional supplier to probe (when the supplier's module is
1852 * loaded later on) would end up probing prematurely with limited functionality.
1853 * So call this function only when boot would fail without it.
1854 */
1855void __init wait_for_init_devices_probe(void)
1856{
1857	if (!fw_devlink_flags || fw_devlink_is_permissive())
1858		return;
1859
1860	/*
1861	 * Wait for all ongoing probes to finish so that the "best effort" is
1862	 * only applied to devices that can't probe otherwise.
1863	 */
1864	wait_for_device_probe();
1865
1866	pr_info("Trying to probe devices needed for running init ...\n");
1867	fw_devlink_best_effort = true;
1868	driver_deferred_probe_trigger();
1869
1870	/*
1871	 * Wait for all "best effort" probes to finish before going back to
1872	 * normal enforcement.
1873	 */
1874	wait_for_device_probe();
1875	fw_devlink_best_effort = false;
1876}
1877
1878static void fw_devlink_unblock_consumers(struct device *dev)
1879{
1880	struct device_link *link;
1881
1882	if (!fw_devlink_flags || fw_devlink_is_permissive())
1883		return;
1884
1885	device_links_write_lock();
1886	list_for_each_entry(link, &dev->links.consumers, s_node)
1887		fw_devlink_relax_link(link);
1888	device_links_write_unlock();
1889}
1890
1891#define get_dev_from_fwnode(fwnode)	get_device((fwnode)->dev)
1892
1893static bool fwnode_init_without_drv(struct fwnode_handle *fwnode)
1894{
1895	struct device *dev;
1896	bool ret;
1897
1898	if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED))
1899		return false;
1900
1901	dev = get_dev_from_fwnode(fwnode);
1902	ret = !dev || dev->links.status == DL_DEV_NO_DRIVER;
1903	put_device(dev);
1904
1905	return ret;
1906}
1907
1908static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode)
1909{
1910	struct fwnode_handle *parent;
1911
1912	fwnode_for_each_parent_node(fwnode, parent) {
1913		if (fwnode_init_without_drv(parent)) {
1914			fwnode_handle_put(parent);
1915			return true;
1916		}
1917	}
1918
1919	return false;
1920}
1921
1922/**
1923 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
1924 * @ancestor: Firmware which is tested for being an ancestor
1925 * @child: Firmware which is tested for being the child
1926 *
1927 * A node is considered an ancestor of itself too.
1928 *
1929 * Return: true if @ancestor is an ancestor of @child. Otherwise, returns false.
1930 */
1931static bool fwnode_is_ancestor_of(const struct fwnode_handle *ancestor,
1932				  const struct fwnode_handle *child)
1933{
1934	struct fwnode_handle *parent;
1935
1936	if (IS_ERR_OR_NULL(ancestor))
1937		return false;
1938
1939	if (child == ancestor)
1940		return true;
1941
1942	fwnode_for_each_parent_node(child, parent) {
1943		if (parent == ancestor) {
1944			fwnode_handle_put(parent);
1945			return true;
1946		}
1947	}
1948	return false;
1949}
1950
1951/**
1952 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
1953 * @fwnode: firmware node
1954 *
1955 * Given a firmware node (@fwnode), this function finds its closest ancestor
1956 * firmware node that has a corresponding struct device and returns that struct
1957 * device.
1958 *
1959 * The caller is responsible for calling put_device() on the returned device
1960 * pointer.
1961 *
1962 * Return: a pointer to the device of the @fwnode's closest ancestor.
1963 */
1964static struct device *fwnode_get_next_parent_dev(const struct fwnode_handle *fwnode)
1965{
1966	struct fwnode_handle *parent;
1967	struct device *dev;
1968
1969	fwnode_for_each_parent_node(fwnode, parent) {
1970		dev = get_dev_from_fwnode(parent);
1971		if (dev) {
1972			fwnode_handle_put(parent);
1973			return dev;
1974		}
1975	}
1976	return NULL;
1977}
1978
1979/**
1980 * __fw_devlink_relax_cycles - Relax and mark dependency cycles.
1981 * @con: Potential consumer device.
1982 * @sup_handle: Potential supplier's fwnode.
1983 *
1984 * Needs to be called with fwnode_lock and device link lock held.
1985 *
1986 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly
1987 * depend on @con. This function can detect multiple cyles between @sup_handle
1988 * and @con. When such dependency cycles are found, convert all device links
1989 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark
1990 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are
1991 * converted into a device link in the future, they are created as
1992 * SYNC_STATE_ONLY device links. This is the equivalent of doing
1993 * fw_devlink=permissive just between the devices in the cycle. We need to do
1994 * this because, at this point, fw_devlink can't tell which of these
1995 * dependencies is not a real dependency.
1996 *
1997 * Return true if one or more cycles were found. Otherwise, return false.
1998 */
1999static bool __fw_devlink_relax_cycles(struct device *con,
2000				 struct fwnode_handle *sup_handle)
2001{
2002	struct device *sup_dev = NULL, *par_dev = NULL;
2003	struct fwnode_link *link;
2004	struct device_link *dev_link;
2005	bool ret = false;
2006
2007	if (!sup_handle)
2008		return false;
2009
2010	/*
2011	 * We aren't trying to find all cycles. Just a cycle between con and
2012	 * sup_handle.
2013	 */
2014	if (sup_handle->flags & FWNODE_FLAG_VISITED)
2015		return false;
2016
2017	sup_handle->flags |= FWNODE_FLAG_VISITED;
2018
2019	sup_dev = get_dev_from_fwnode(sup_handle);
2020
2021	/* Termination condition. */
2022	if (sup_dev == con) {
2023		pr_debug("----- cycle: start -----\n");
2024		ret = true;
2025		goto out;
2026	}
2027
2028	/*
2029	 * If sup_dev is bound to a driver and @con hasn't started binding to a
2030	 * driver, sup_dev can't be a consumer of @con. So, no need to check
2031	 * further.
2032	 */
2033	if (sup_dev && sup_dev->links.status ==  DL_DEV_DRIVER_BOUND &&
2034	    con->links.status == DL_DEV_NO_DRIVER) {
2035		ret = false;
2036		goto out;
2037	}
2038
2039	list_for_each_entry(link, &sup_handle->suppliers, c_hook) {
2040		if (link->flags & FWLINK_FLAG_IGNORE)
2041			continue;
2042
2043		if (__fw_devlink_relax_cycles(con, link->supplier)) {
2044			__fwnode_link_cycle(link);
2045			ret = true;
2046		}
2047	}
2048
2049	/*
2050	 * Give priority to device parent over fwnode parent to account for any
2051	 * quirks in how fwnodes are converted to devices.
2052	 */
2053	if (sup_dev)
2054		par_dev = get_device(sup_dev->parent);
2055	else
2056		par_dev = fwnode_get_next_parent_dev(sup_handle);
2057
2058	if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) {
2059		pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle,
2060			 par_dev->fwnode);
2061		ret = true;
2062	}
2063
2064	if (!sup_dev)
2065		goto out;
2066
2067	list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) {
2068		/*
2069		 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as
2070		 * such due to a cycle.
2071		 */
2072		if (device_link_flag_is_sync_state_only(dev_link->flags) &&
2073		    !(dev_link->flags & DL_FLAG_CYCLE))
2074			continue;
2075
2076		if (__fw_devlink_relax_cycles(con,
2077					      dev_link->supplier->fwnode)) {
2078			pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle,
2079				 dev_link->supplier->fwnode);
2080			fw_devlink_relax_link(dev_link);
2081			dev_link->flags |= DL_FLAG_CYCLE;
2082			ret = true;
2083		}
2084	}
2085
2086out:
2087	sup_handle->flags &= ~FWNODE_FLAG_VISITED;
2088	put_device(sup_dev);
2089	put_device(par_dev);
2090	return ret;
2091}
2092
2093/**
2094 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
2095 * @con: consumer device for the device link
2096 * @sup_handle: fwnode handle of supplier
2097 * @link: fwnode link that's being converted to a device link
2098 *
2099 * This function will try to create a device link between the consumer device
2100 * @con and the supplier device represented by @sup_handle.
2101 *
2102 * The supplier has to be provided as a fwnode because incorrect cycles in
2103 * fwnode links can sometimes cause the supplier device to never be created.
2104 * This function detects such cases and returns an error if it cannot create a
2105 * device link from the consumer to a missing supplier.
2106 *
2107 * Returns,
2108 * 0 on successfully creating a device link
2109 * -EINVAL if the device link cannot be created as expected
2110 * -EAGAIN if the device link cannot be created right now, but it may be
2111 *  possible to do that in the future
2112 */
2113static int fw_devlink_create_devlink(struct device *con,
2114				     struct fwnode_handle *sup_handle,
2115				     struct fwnode_link *link)
2116{
2117	struct device *sup_dev;
2118	int ret = 0;
2119	u32 flags;
2120
2121	if (link->flags & FWLINK_FLAG_IGNORE)
2122		return 0;
2123
2124	if (con->fwnode == link->consumer)
2125		flags = fw_devlink_get_flags(link->flags);
2126	else
2127		flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2128
2129	/*
2130	 * In some cases, a device P might also be a supplier to its child node
2131	 * C. However, this would defer the probe of C until the probe of P
2132	 * completes successfully. This is perfectly fine in the device driver
2133	 * model. device_add() doesn't guarantee probe completion of the device
2134	 * by the time it returns.
2135	 *
2136	 * However, there are a few drivers that assume C will finish probing
2137	 * as soon as it's added and before P finishes probing. So, we provide
2138	 * a flag to let fw_devlink know not to delay the probe of C until the
2139	 * probe of P completes successfully.
2140	 *
2141	 * When such a flag is set, we can't create device links where P is the
2142	 * supplier of C as that would delay the probe of C.
2143	 */
2144	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
2145	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
2146		return -EINVAL;
2147
2148	/*
2149	 * SYNC_STATE_ONLY device links don't block probing and supports cycles.
2150	 * So, one might expect that cycle detection isn't necessary for them.
2151	 * However, if the device link was marked as SYNC_STATE_ONLY because
2152	 * it's part of a cycle, then we still need to do cycle detection. This
2153	 * is because the consumer and supplier might be part of multiple cycles
2154	 * and we need to detect all those cycles.
2155	 */
2156	if (!device_link_flag_is_sync_state_only(flags) ||
2157	    flags & DL_FLAG_CYCLE) {
2158		device_links_write_lock();
2159		if (__fw_devlink_relax_cycles(con, sup_handle)) {
2160			__fwnode_link_cycle(link);
2161			flags = fw_devlink_get_flags(link->flags);
2162			pr_debug("----- cycle: end -----\n");
2163			dev_info(con, "Fixed dependency cycle(s) with %pfwf\n",
2164				 sup_handle);
2165		}
2166		device_links_write_unlock();
2167	}
2168
2169	if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE)
2170		sup_dev = fwnode_get_next_parent_dev(sup_handle);
2171	else
2172		sup_dev = get_dev_from_fwnode(sup_handle);
2173
2174	if (sup_dev) {
2175		/*
2176		 * If it's one of those drivers that don't actually bind to
2177		 * their device using driver core, then don't wait on this
2178		 * supplier device indefinitely.
2179		 */
2180		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
2181		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
2182			dev_dbg(con,
2183				"Not linking %pfwf - dev might never probe\n",
2184				sup_handle);
2185			ret = -EINVAL;
2186			goto out;
2187		}
2188
2189		if (con != sup_dev && !device_link_add(con, sup_dev, flags)) {
2190			dev_err(con, "Failed to create device link (0x%x) with %s\n",
2191				flags, dev_name(sup_dev));
2192			ret = -EINVAL;
2193		}
2194
2195		goto out;
2196	}
2197
2198	/*
2199	 * Supplier or supplier's ancestor already initialized without a struct
2200	 * device or being probed by a driver.
2201	 */
2202	if (fwnode_init_without_drv(sup_handle) ||
2203	    fwnode_ancestor_init_without_drv(sup_handle)) {
2204		dev_dbg(con, "Not linking %pfwf - might never become dev\n",
2205			sup_handle);
2206		return -EINVAL;
2207	}
2208
2209	ret = -EAGAIN;
2210out:
2211	put_device(sup_dev);
2212	return ret;
2213}
2214
2215/**
2216 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
2217 * @dev: Device that needs to be linked to its consumers
2218 *
2219 * This function looks at all the consumer fwnodes of @dev and creates device
2220 * links between the consumer device and @dev (supplier).
2221 *
2222 * If the consumer device has not been added yet, then this function creates a
2223 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
2224 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
2225 * sync_state() callback before the real consumer device gets to be added and
2226 * then probed.
2227 *
2228 * Once device links are created from the real consumer to @dev (supplier), the
2229 * fwnode links are deleted.
2230 */
2231static void __fw_devlink_link_to_consumers(struct device *dev)
2232{
2233	struct fwnode_handle *fwnode = dev->fwnode;
2234	struct fwnode_link *link, *tmp;
2235
2236	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
2237		struct device *con_dev;
2238		bool own_link = true;
2239		int ret;
2240
2241		con_dev = get_dev_from_fwnode(link->consumer);
2242		/*
2243		 * If consumer device is not available yet, make a "proxy"
2244		 * SYNC_STATE_ONLY link from the consumer's parent device to
2245		 * the supplier device. This is necessary to make sure the
2246		 * supplier doesn't get a sync_state() callback before the real
2247		 * consumer can create a device link to the supplier.
2248		 *
2249		 * This proxy link step is needed to handle the case where the
2250		 * consumer's parent device is added before the supplier.
2251		 */
2252		if (!con_dev) {
2253			con_dev = fwnode_get_next_parent_dev(link->consumer);
2254			/*
2255			 * However, if the consumer's parent device is also the
2256			 * parent of the supplier, don't create a
2257			 * consumer-supplier link from the parent to its child
2258			 * device. Such a dependency is impossible.
2259			 */
2260			if (con_dev &&
2261			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
2262				put_device(con_dev);
2263				con_dev = NULL;
2264			} else {
2265				own_link = false;
2266			}
2267		}
2268
2269		if (!con_dev)
2270			continue;
2271
2272		ret = fw_devlink_create_devlink(con_dev, fwnode, link);
2273		put_device(con_dev);
2274		if (!own_link || ret == -EAGAIN)
2275			continue;
2276
2277		__fwnode_link_del(link);
2278	}
2279}
2280
2281/**
2282 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2283 * @dev: The consumer device that needs to be linked to its suppliers
2284 * @fwnode: Root of the fwnode tree that is used to create device links
2285 *
2286 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2287 * @fwnode and creates device links between @dev (consumer) and all the
2288 * supplier devices of the entire fwnode tree at @fwnode.
2289 *
2290 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2291 * and the real suppliers of @dev. Once these device links are created, the
2292 * fwnode links are deleted.
2293 *
2294 * In addition, it also looks at all the suppliers of the entire fwnode tree
2295 * because some of the child devices of @dev that have not been added yet
2296 * (because @dev hasn't probed) might already have their suppliers added to
2297 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2298 * @dev (consumer) and these suppliers to make sure they don't execute their
2299 * sync_state() callbacks before these child devices have a chance to create
2300 * their device links. The fwnode links that correspond to the child devices
2301 * aren't delete because they are needed later to create the device links
2302 * between the real consumer and supplier devices.
2303 */
2304static void __fw_devlink_link_to_suppliers(struct device *dev,
2305					   struct fwnode_handle *fwnode)
2306{
2307	bool own_link = (dev->fwnode == fwnode);
2308	struct fwnode_link *link, *tmp;
2309	struct fwnode_handle *child = NULL;
2310
2311	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2312		int ret;
2313		struct fwnode_handle *sup = link->supplier;
2314
2315		ret = fw_devlink_create_devlink(dev, sup, link);
2316		if (!own_link || ret == -EAGAIN)
2317			continue;
2318
2319		__fwnode_link_del(link);
2320	}
2321
2322	/*
2323	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2324	 * all the descendants. This proxy link step is needed to handle the
2325	 * case where the supplier is added before the consumer's parent device
2326	 * (@dev).
2327	 */
2328	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2329		__fw_devlink_link_to_suppliers(dev, child);
2330}
2331
2332static void fw_devlink_link_device(struct device *dev)
2333{
2334	struct fwnode_handle *fwnode = dev->fwnode;
2335
2336	if (!fw_devlink_flags)
2337		return;
2338
2339	fw_devlink_parse_fwtree(fwnode);
2340
2341	mutex_lock(&fwnode_link_lock);
2342	__fw_devlink_link_to_consumers(dev);
2343	__fw_devlink_link_to_suppliers(dev, fwnode);
2344	mutex_unlock(&fwnode_link_lock);
2345}
2346
2347/* Device links support end. */
2348
2349int (*platform_notify)(struct device *dev) = NULL;
2350int (*platform_notify_remove)(struct device *dev) = NULL;
2351static struct kobject *dev_kobj;
2352
2353/* /sys/dev/char */
2354static struct kobject *sysfs_dev_char_kobj;
2355
2356/* /sys/dev/block */
2357static struct kobject *sysfs_dev_block_kobj;
2358
2359static DEFINE_MUTEX(device_hotplug_lock);
2360
2361void lock_device_hotplug(void)
2362{
2363	mutex_lock(&device_hotplug_lock);
2364}
2365
2366void unlock_device_hotplug(void)
2367{
2368	mutex_unlock(&device_hotplug_lock);
2369}
2370
2371int lock_device_hotplug_sysfs(void)
2372{
2373	if (mutex_trylock(&device_hotplug_lock))
2374		return 0;
2375
2376	/* Avoid busy looping (5 ms of sleep should do). */
2377	msleep(5);
2378	return restart_syscall();
2379}
2380
2381#ifdef CONFIG_BLOCK
2382static inline int device_is_not_partition(struct device *dev)
2383{
2384	return !(dev->type == &part_type);
2385}
2386#else
2387static inline int device_is_not_partition(struct device *dev)
2388{
2389	return 1;
2390}
2391#endif
2392
2393static void device_platform_notify(struct device *dev)
2394{
2395	acpi_device_notify(dev);
2396
2397	software_node_notify(dev);
2398
2399	if (platform_notify)
2400		platform_notify(dev);
2401}
2402
2403static void device_platform_notify_remove(struct device *dev)
2404{
2405	if (platform_notify_remove)
2406		platform_notify_remove(dev);
2407
2408	software_node_notify_remove(dev);
2409
2410	acpi_device_notify_remove(dev);
2411}
2412
2413/**
2414 * dev_driver_string - Return a device's driver name, if at all possible
2415 * @dev: struct device to get the name of
2416 *
2417 * Will return the device's driver's name if it is bound to a device.  If
2418 * the device is not bound to a driver, it will return the name of the bus
2419 * it is attached to.  If it is not attached to a bus either, an empty
2420 * string will be returned.
2421 */
2422const char *dev_driver_string(const struct device *dev)
2423{
2424	struct device_driver *drv;
2425
2426	/* dev->driver can change to NULL underneath us because of unbinding,
2427	 * so be careful about accessing it.  dev->bus and dev->class should
2428	 * never change once they are set, so they don't need special care.
2429	 */
2430	drv = READ_ONCE(dev->driver);
2431	return drv ? drv->name : dev_bus_name(dev);
2432}
2433EXPORT_SYMBOL(dev_driver_string);
2434
2435#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2436
2437static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2438			     char *buf)
2439{
2440	struct device_attribute *dev_attr = to_dev_attr(attr);
2441	struct device *dev = kobj_to_dev(kobj);
2442	ssize_t ret = -EIO;
2443
2444	if (dev_attr->show)
2445		ret = dev_attr->show(dev, dev_attr, buf);
2446	if (ret >= (ssize_t)PAGE_SIZE) {
2447		printk("dev_attr_show: %pS returned bad count\n",
2448				dev_attr->show);
2449	}
2450	return ret;
2451}
2452
2453static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2454			      const char *buf, size_t count)
2455{
2456	struct device_attribute *dev_attr = to_dev_attr(attr);
2457	struct device *dev = kobj_to_dev(kobj);
2458	ssize_t ret = -EIO;
2459
2460	if (dev_attr->store)
2461		ret = dev_attr->store(dev, dev_attr, buf, count);
2462	return ret;
2463}
2464
2465static const struct sysfs_ops dev_sysfs_ops = {
2466	.show	= dev_attr_show,
2467	.store	= dev_attr_store,
2468};
2469
2470#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2471
2472ssize_t device_store_ulong(struct device *dev,
2473			   struct device_attribute *attr,
2474			   const char *buf, size_t size)
2475{
2476	struct dev_ext_attribute *ea = to_ext_attr(attr);
2477	int ret;
2478	unsigned long new;
2479
2480	ret = kstrtoul(buf, 0, &new);
2481	if (ret)
2482		return ret;
2483	*(unsigned long *)(ea->var) = new;
2484	/* Always return full write size even if we didn't consume all */
2485	return size;
2486}
2487EXPORT_SYMBOL_GPL(device_store_ulong);
2488
2489ssize_t device_show_ulong(struct device *dev,
2490			  struct device_attribute *attr,
2491			  char *buf)
2492{
2493	struct dev_ext_attribute *ea = to_ext_attr(attr);
2494	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2495}
2496EXPORT_SYMBOL_GPL(device_show_ulong);
2497
2498ssize_t device_store_int(struct device *dev,
2499			 struct device_attribute *attr,
2500			 const char *buf, size_t size)
2501{
2502	struct dev_ext_attribute *ea = to_ext_attr(attr);
2503	int ret;
2504	long new;
2505
2506	ret = kstrtol(buf, 0, &new);
2507	if (ret)
2508		return ret;
2509
2510	if (new > INT_MAX || new < INT_MIN)
2511		return -EINVAL;
2512	*(int *)(ea->var) = new;
2513	/* Always return full write size even if we didn't consume all */
2514	return size;
2515}
2516EXPORT_SYMBOL_GPL(device_store_int);
2517
2518ssize_t device_show_int(struct device *dev,
2519			struct device_attribute *attr,
2520			char *buf)
2521{
2522	struct dev_ext_attribute *ea = to_ext_attr(attr);
2523
2524	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2525}
2526EXPORT_SYMBOL_GPL(device_show_int);
2527
2528ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2529			  const char *buf, size_t size)
2530{
2531	struct dev_ext_attribute *ea = to_ext_attr(attr);
2532
2533	if (kstrtobool(buf, ea->var) < 0)
2534		return -EINVAL;
2535
2536	return size;
2537}
2538EXPORT_SYMBOL_GPL(device_store_bool);
2539
2540ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2541			 char *buf)
2542{
2543	struct dev_ext_attribute *ea = to_ext_attr(attr);
2544
2545	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2546}
2547EXPORT_SYMBOL_GPL(device_show_bool);
2548
2549/**
2550 * device_release - free device structure.
2551 * @kobj: device's kobject.
2552 *
2553 * This is called once the reference count for the object
2554 * reaches 0. We forward the call to the device's release
2555 * method, which should handle actually freeing the structure.
2556 */
2557static void device_release(struct kobject *kobj)
2558{
2559	struct device *dev = kobj_to_dev(kobj);
2560	struct device_private *p = dev->p;
2561
2562	/*
2563	 * Some platform devices are driven without driver attached
2564	 * and managed resources may have been acquired.  Make sure
2565	 * all resources are released.
2566	 *
2567	 * Drivers still can add resources into device after device
2568	 * is deleted but alive, so release devres here to avoid
2569	 * possible memory leak.
2570	 */
2571	devres_release_all(dev);
2572
2573	kfree(dev->dma_range_map);
2574
2575	if (dev->release)
2576		dev->release(dev);
2577	else if (dev->type && dev->type->release)
2578		dev->type->release(dev);
2579	else if (dev->class && dev->class->dev_release)
2580		dev->class->dev_release(dev);
2581	else
2582		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2583			dev_name(dev));
2584	kfree(p);
2585}
2586
2587static const void *device_namespace(const struct kobject *kobj)
2588{
2589	const struct device *dev = kobj_to_dev(kobj);
2590	const void *ns = NULL;
2591
2592	if (dev->class && dev->class->ns_type)
2593		ns = dev->class->namespace(dev);
2594
2595	return ns;
2596}
2597
2598static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2599{
2600	const struct device *dev = kobj_to_dev(kobj);
2601
2602	if (dev->class && dev->class->get_ownership)
2603		dev->class->get_ownership(dev, uid, gid);
2604}
2605
2606static const struct kobj_type device_ktype = {
2607	.release	= device_release,
2608	.sysfs_ops	= &dev_sysfs_ops,
2609	.namespace	= device_namespace,
2610	.get_ownership	= device_get_ownership,
2611};
2612
2613
2614static int dev_uevent_filter(const struct kobject *kobj)
2615{
2616	const struct kobj_type *ktype = get_ktype(kobj);
2617
2618	if (ktype == &device_ktype) {
2619		const struct device *dev = kobj_to_dev(kobj);
2620		if (dev->bus)
2621			return 1;
2622		if (dev->class)
2623			return 1;
2624	}
2625	return 0;
2626}
2627
2628static const char *dev_uevent_name(const struct kobject *kobj)
2629{
2630	const struct device *dev = kobj_to_dev(kobj);
2631
2632	if (dev->bus)
2633		return dev->bus->name;
2634	if (dev->class)
2635		return dev->class->name;
2636	return NULL;
2637}
2638
2639static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
2640{
2641	const struct device *dev = kobj_to_dev(kobj);
2642	int retval = 0;
2643
2644	/* add device node properties if present */
2645	if (MAJOR(dev->devt)) {
2646		const char *tmp;
2647		const char *name;
2648		umode_t mode = 0;
2649		kuid_t uid = GLOBAL_ROOT_UID;
2650		kgid_t gid = GLOBAL_ROOT_GID;
2651
2652		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2653		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2654		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2655		if (name) {
2656			add_uevent_var(env, "DEVNAME=%s", name);
2657			if (mode)
2658				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2659			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2660				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2661			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2662				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2663			kfree(tmp);
2664		}
2665	}
2666
2667	if (dev->type && dev->type->name)
2668		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2669
2670	if (dev->driver)
2671		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2672
2673	/* Add common DT information about the device */
2674	of_device_uevent(dev, env);
2675
2676	/* have the bus specific function add its stuff */
2677	if (dev->bus && dev->bus->uevent) {
2678		retval = dev->bus->uevent(dev, env);
2679		if (retval)
2680			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2681				 dev_name(dev), __func__, retval);
2682	}
2683
2684	/* have the class specific function add its stuff */
2685	if (dev->class && dev->class->dev_uevent) {
2686		retval = dev->class->dev_uevent(dev, env);
2687		if (retval)
2688			pr_debug("device: '%s': %s: class uevent() "
2689				 "returned %d\n", dev_name(dev),
2690				 __func__, retval);
2691	}
2692
2693	/* have the device type specific function add its stuff */
2694	if (dev->type && dev->type->uevent) {
2695		retval = dev->type->uevent(dev, env);
2696		if (retval)
2697			pr_debug("device: '%s': %s: dev_type uevent() "
2698				 "returned %d\n", dev_name(dev),
2699				 __func__, retval);
2700	}
2701
2702	return retval;
2703}
2704
2705static const struct kset_uevent_ops device_uevent_ops = {
2706	.filter =	dev_uevent_filter,
2707	.name =		dev_uevent_name,
2708	.uevent =	dev_uevent,
2709};
2710
2711static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2712			   char *buf)
2713{
2714	struct kobject *top_kobj;
2715	struct kset *kset;
2716	struct kobj_uevent_env *env = NULL;
2717	int i;
2718	int len = 0;
2719	int retval;
2720
2721	/* search the kset, the device belongs to */
2722	top_kobj = &dev->kobj;
2723	while (!top_kobj->kset && top_kobj->parent)
2724		top_kobj = top_kobj->parent;
2725	if (!top_kobj->kset)
2726		goto out;
2727
2728	kset = top_kobj->kset;
2729	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2730		goto out;
2731
2732	/* respect filter */
2733	if (kset->uevent_ops && kset->uevent_ops->filter)
2734		if (!kset->uevent_ops->filter(&dev->kobj))
2735			goto out;
2736
2737	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2738	if (!env)
2739		return -ENOMEM;
2740
2741	/* let the kset specific function add its keys */
2742	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2743	if (retval)
2744		goto out;
2745
2746	/* copy keys to file */
2747	for (i = 0; i < env->envp_idx; i++)
2748		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2749out:
2750	kfree(env);
2751	return len;
2752}
2753
2754static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2755			    const char *buf, size_t count)
2756{
2757	int rc;
2758
2759	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2760
2761	if (rc) {
2762		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2763		return rc;
2764	}
2765
2766	return count;
2767}
2768static DEVICE_ATTR_RW(uevent);
2769
2770static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2771			   char *buf)
2772{
2773	bool val;
2774
2775	device_lock(dev);
2776	val = !dev->offline;
2777	device_unlock(dev);
2778	return sysfs_emit(buf, "%u\n", val);
2779}
2780
2781static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2782			    const char *buf, size_t count)
2783{
2784	bool val;
2785	int ret;
2786
2787	ret = kstrtobool(buf, &val);
2788	if (ret < 0)
2789		return ret;
2790
2791	ret = lock_device_hotplug_sysfs();
2792	if (ret)
2793		return ret;
2794
2795	ret = val ? device_online(dev) : device_offline(dev);
2796	unlock_device_hotplug();
2797	return ret < 0 ? ret : count;
2798}
2799static DEVICE_ATTR_RW(online);
2800
2801static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2802			      char *buf)
2803{
2804	const char *loc;
2805
2806	switch (dev->removable) {
2807	case DEVICE_REMOVABLE:
2808		loc = "removable";
2809		break;
2810	case DEVICE_FIXED:
2811		loc = "fixed";
2812		break;
2813	default:
2814		loc = "unknown";
2815	}
2816	return sysfs_emit(buf, "%s\n", loc);
2817}
2818static DEVICE_ATTR_RO(removable);
2819
2820int device_add_groups(struct device *dev, const struct attribute_group **groups)
2821{
2822	return sysfs_create_groups(&dev->kobj, groups);
2823}
2824EXPORT_SYMBOL_GPL(device_add_groups);
2825
2826void device_remove_groups(struct device *dev,
2827			  const struct attribute_group **groups)
2828{
2829	sysfs_remove_groups(&dev->kobj, groups);
2830}
2831EXPORT_SYMBOL_GPL(device_remove_groups);
2832
2833union device_attr_group_devres {
2834	const struct attribute_group *group;
2835	const struct attribute_group **groups;
2836};
2837
2838static void devm_attr_group_remove(struct device *dev, void *res)
2839{
2840	union device_attr_group_devres *devres = res;
2841	const struct attribute_group *group = devres->group;
2842
2843	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2844	sysfs_remove_group(&dev->kobj, group);
2845}
2846
2847static void devm_attr_groups_remove(struct device *dev, void *res)
2848{
2849	union device_attr_group_devres *devres = res;
2850	const struct attribute_group **groups = devres->groups;
2851
2852	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2853	sysfs_remove_groups(&dev->kobj, groups);
2854}
2855
2856/**
2857 * devm_device_add_group - given a device, create a managed attribute group
2858 * @dev:	The device to create the group for
2859 * @grp:	The attribute group to create
2860 *
2861 * This function creates a group for the first time.  It will explicitly
2862 * warn and error if any of the attribute files being created already exist.
2863 *
2864 * Returns 0 on success or error code on failure.
2865 */
2866int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2867{
2868	union device_attr_group_devres *devres;
2869	int error;
2870
2871	devres = devres_alloc(devm_attr_group_remove,
2872			      sizeof(*devres), GFP_KERNEL);
2873	if (!devres)
2874		return -ENOMEM;
2875
2876	error = sysfs_create_group(&dev->kobj, grp);
2877	if (error) {
2878		devres_free(devres);
2879		return error;
2880	}
2881
2882	devres->group = grp;
2883	devres_add(dev, devres);
2884	return 0;
2885}
2886EXPORT_SYMBOL_GPL(devm_device_add_group);
2887
2888/**
2889 * devm_device_add_groups - create a bunch of managed attribute groups
2890 * @dev:	The device to create the group for
2891 * @groups:	The attribute groups to create, NULL terminated
2892 *
2893 * This function creates a bunch of managed attribute groups.  If an error
2894 * occurs when creating a group, all previously created groups will be
2895 * removed, unwinding everything back to the original state when this
2896 * function was called.  It will explicitly warn and error if any of the
2897 * attribute files being created already exist.
2898 *
2899 * Returns 0 on success or error code from sysfs_create_group on failure.
2900 */
2901int devm_device_add_groups(struct device *dev,
2902			   const struct attribute_group **groups)
2903{
2904	union device_attr_group_devres *devres;
2905	int error;
2906
2907	devres = devres_alloc(devm_attr_groups_remove,
2908			      sizeof(*devres), GFP_KERNEL);
2909	if (!devres)
2910		return -ENOMEM;
2911
2912	error = sysfs_create_groups(&dev->kobj, groups);
2913	if (error) {
2914		devres_free(devres);
2915		return error;
2916	}
2917
2918	devres->groups = groups;
2919	devres_add(dev, devres);
2920	return 0;
2921}
2922EXPORT_SYMBOL_GPL(devm_device_add_groups);
2923
2924static int device_add_attrs(struct device *dev)
2925{
2926	const struct class *class = dev->class;
2927	const struct device_type *type = dev->type;
2928	int error;
2929
2930	if (class) {
2931		error = device_add_groups(dev, class->dev_groups);
2932		if (error)
2933			return error;
2934	}
2935
2936	if (type) {
2937		error = device_add_groups(dev, type->groups);
2938		if (error)
2939			goto err_remove_class_groups;
2940	}
2941
2942	error = device_add_groups(dev, dev->groups);
2943	if (error)
2944		goto err_remove_type_groups;
2945
2946	if (device_supports_offline(dev) && !dev->offline_disabled) {
2947		error = device_create_file(dev, &dev_attr_online);
2948		if (error)
2949			goto err_remove_dev_groups;
2950	}
2951
2952	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2953		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2954		if (error)
2955			goto err_remove_dev_online;
2956	}
2957
2958	if (dev_removable_is_valid(dev)) {
2959		error = device_create_file(dev, &dev_attr_removable);
2960		if (error)
2961			goto err_remove_dev_waiting_for_supplier;
2962	}
2963
2964	if (dev_add_physical_location(dev)) {
2965		error = device_add_group(dev,
2966			&dev_attr_physical_location_group);
2967		if (error)
2968			goto err_remove_dev_removable;
2969	}
2970
2971	return 0;
2972
2973 err_remove_dev_removable:
2974	device_remove_file(dev, &dev_attr_removable);
2975 err_remove_dev_waiting_for_supplier:
2976	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2977 err_remove_dev_online:
2978	device_remove_file(dev, &dev_attr_online);
2979 err_remove_dev_groups:
2980	device_remove_groups(dev, dev->groups);
2981 err_remove_type_groups:
2982	if (type)
2983		device_remove_groups(dev, type->groups);
2984 err_remove_class_groups:
2985	if (class)
2986		device_remove_groups(dev, class->dev_groups);
2987
2988	return error;
2989}
2990
2991static void device_remove_attrs(struct device *dev)
2992{
2993	const struct class *class = dev->class;
2994	const struct device_type *type = dev->type;
2995
2996	if (dev->physical_location) {
2997		device_remove_group(dev, &dev_attr_physical_location_group);
2998		kfree(dev->physical_location);
2999	}
3000
3001	device_remove_file(dev, &dev_attr_removable);
3002	device_remove_file(dev, &dev_attr_waiting_for_supplier);
3003	device_remove_file(dev, &dev_attr_online);
3004	device_remove_groups(dev, dev->groups);
3005
3006	if (type)
3007		device_remove_groups(dev, type->groups);
3008
3009	if (class)
3010		device_remove_groups(dev, class->dev_groups);
3011}
3012
3013static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
3014			char *buf)
3015{
3016	return print_dev_t(buf, dev->devt);
3017}
3018static DEVICE_ATTR_RO(dev);
3019
3020/* /sys/devices/ */
3021struct kset *devices_kset;
3022
3023/**
3024 * devices_kset_move_before - Move device in the devices_kset's list.
3025 * @deva: Device to move.
3026 * @devb: Device @deva should come before.
3027 */
3028static void devices_kset_move_before(struct device *deva, struct device *devb)
3029{
3030	if (!devices_kset)
3031		return;
3032	pr_debug("devices_kset: Moving %s before %s\n",
3033		 dev_name(deva), dev_name(devb));
3034	spin_lock(&devices_kset->list_lock);
3035	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
3036	spin_unlock(&devices_kset->list_lock);
3037}
3038
3039/**
3040 * devices_kset_move_after - Move device in the devices_kset's list.
3041 * @deva: Device to move
3042 * @devb: Device @deva should come after.
3043 */
3044static void devices_kset_move_after(struct device *deva, struct device *devb)
3045{
3046	if (!devices_kset)
3047		return;
3048	pr_debug("devices_kset: Moving %s after %s\n",
3049		 dev_name(deva), dev_name(devb));
3050	spin_lock(&devices_kset->list_lock);
3051	list_move(&deva->kobj.entry, &devb->kobj.entry);
3052	spin_unlock(&devices_kset->list_lock);
3053}
3054
3055/**
3056 * devices_kset_move_last - move the device to the end of devices_kset's list.
3057 * @dev: device to move
3058 */
3059void devices_kset_move_last(struct device *dev)
3060{
3061	if (!devices_kset)
3062		return;
3063	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
3064	spin_lock(&devices_kset->list_lock);
3065	list_move_tail(&dev->kobj.entry, &devices_kset->list);
3066	spin_unlock(&devices_kset->list_lock);
3067}
3068
3069/**
3070 * device_create_file - create sysfs attribute file for device.
3071 * @dev: device.
3072 * @attr: device attribute descriptor.
3073 */
3074int device_create_file(struct device *dev,
3075		       const struct device_attribute *attr)
3076{
3077	int error = 0;
3078
3079	if (dev) {
3080		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
3081			"Attribute %s: write permission without 'store'\n",
3082			attr->attr.name);
3083		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
3084			"Attribute %s: read permission without 'show'\n",
3085			attr->attr.name);
3086		error = sysfs_create_file(&dev->kobj, &attr->attr);
3087	}
3088
3089	return error;
3090}
3091EXPORT_SYMBOL_GPL(device_create_file);
3092
3093/**
3094 * device_remove_file - remove sysfs attribute file.
3095 * @dev: device.
3096 * @attr: device attribute descriptor.
3097 */
3098void device_remove_file(struct device *dev,
3099			const struct device_attribute *attr)
3100{
3101	if (dev)
3102		sysfs_remove_file(&dev->kobj, &attr->attr);
3103}
3104EXPORT_SYMBOL_GPL(device_remove_file);
3105
3106/**
3107 * device_remove_file_self - remove sysfs attribute file from its own method.
3108 * @dev: device.
3109 * @attr: device attribute descriptor.
3110 *
3111 * See kernfs_remove_self() for details.
3112 */
3113bool device_remove_file_self(struct device *dev,
3114			     const struct device_attribute *attr)
3115{
3116	if (dev)
3117		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
3118	else
3119		return false;
3120}
3121EXPORT_SYMBOL_GPL(device_remove_file_self);
3122
3123/**
3124 * device_create_bin_file - create sysfs binary attribute file for device.
3125 * @dev: device.
3126 * @attr: device binary attribute descriptor.
3127 */
3128int device_create_bin_file(struct device *dev,
3129			   const struct bin_attribute *attr)
3130{
3131	int error = -EINVAL;
3132	if (dev)
3133		error = sysfs_create_bin_file(&dev->kobj, attr);
3134	return error;
3135}
3136EXPORT_SYMBOL_GPL(device_create_bin_file);
3137
3138/**
3139 * device_remove_bin_file - remove sysfs binary attribute file
3140 * @dev: device.
3141 * @attr: device binary attribute descriptor.
3142 */
3143void device_remove_bin_file(struct device *dev,
3144			    const struct bin_attribute *attr)
3145{
3146	if (dev)
3147		sysfs_remove_bin_file(&dev->kobj, attr);
3148}
3149EXPORT_SYMBOL_GPL(device_remove_bin_file);
3150
3151static void klist_children_get(struct klist_node *n)
3152{
3153	struct device_private *p = to_device_private_parent(n);
3154	struct device *dev = p->device;
3155
3156	get_device(dev);
3157}
3158
3159static void klist_children_put(struct klist_node *n)
3160{
3161	struct device_private *p = to_device_private_parent(n);
3162	struct device *dev = p->device;
3163
3164	put_device(dev);
3165}
3166
3167/**
3168 * device_initialize - init device structure.
3169 * @dev: device.
3170 *
3171 * This prepares the device for use by other layers by initializing
3172 * its fields.
3173 * It is the first half of device_register(), if called by
3174 * that function, though it can also be called separately, so one
3175 * may use @dev's fields. In particular, get_device()/put_device()
3176 * may be used for reference counting of @dev after calling this
3177 * function.
3178 *
3179 * All fields in @dev must be initialized by the caller to 0, except
3180 * for those explicitly set to some other value.  The simplest
3181 * approach is to use kzalloc() to allocate the structure containing
3182 * @dev.
3183 *
3184 * NOTE: Use put_device() to give up your reference instead of freeing
3185 * @dev directly once you have called this function.
3186 */
3187void device_initialize(struct device *dev)
3188{
3189	dev->kobj.kset = devices_kset;
3190	kobject_init(&dev->kobj, &device_ktype);
3191	INIT_LIST_HEAD(&dev->dma_pools);
3192	mutex_init(&dev->mutex);
3193	lockdep_set_novalidate_class(&dev->mutex);
3194	spin_lock_init(&dev->devres_lock);
3195	INIT_LIST_HEAD(&dev->devres_head);
3196	device_pm_init(dev);
3197	set_dev_node(dev, NUMA_NO_NODE);
3198	INIT_LIST_HEAD(&dev->links.consumers);
3199	INIT_LIST_HEAD(&dev->links.suppliers);
3200	INIT_LIST_HEAD(&dev->links.defer_sync);
3201	dev->links.status = DL_DEV_NO_DRIVER;
3202#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
3203    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
3204    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
3205	dev->dma_coherent = dma_default_coherent;
3206#endif
3207	swiotlb_dev_init(dev);
3208}
3209EXPORT_SYMBOL_GPL(device_initialize);
3210
3211struct kobject *virtual_device_parent(struct device *dev)
3212{
3213	static struct kobject *virtual_dir = NULL;
3214
3215	if (!virtual_dir)
3216		virtual_dir = kobject_create_and_add("virtual",
3217						     &devices_kset->kobj);
3218
3219	return virtual_dir;
3220}
3221
3222struct class_dir {
3223	struct kobject kobj;
3224	const struct class *class;
3225};
3226
3227#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3228
3229static void class_dir_release(struct kobject *kobj)
3230{
3231	struct class_dir *dir = to_class_dir(kobj);
3232	kfree(dir);
3233}
3234
3235static const
3236struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
3237{
3238	const struct class_dir *dir = to_class_dir(kobj);
3239	return dir->class->ns_type;
3240}
3241
3242static const struct kobj_type class_dir_ktype = {
3243	.release	= class_dir_release,
3244	.sysfs_ops	= &kobj_sysfs_ops,
3245	.child_ns_type	= class_dir_child_ns_type
3246};
3247
3248static struct kobject *class_dir_create_and_add(struct subsys_private *sp,
3249						struct kobject *parent_kobj)
3250{
3251	struct class_dir *dir;
3252	int retval;
3253
3254	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3255	if (!dir)
3256		return ERR_PTR(-ENOMEM);
3257
3258	dir->class = sp->class;
3259	kobject_init(&dir->kobj, &class_dir_ktype);
3260
3261	dir->kobj.kset = &sp->glue_dirs;
3262
3263	retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name);
3264	if (retval < 0) {
3265		kobject_put(&dir->kobj);
3266		return ERR_PTR(retval);
3267	}
3268	return &dir->kobj;
3269}
3270
3271static DEFINE_MUTEX(gdp_mutex);
3272
3273static struct kobject *get_device_parent(struct device *dev,
3274					 struct device *parent)
3275{
3276	struct subsys_private *sp = class_to_subsys(dev->class);
3277	struct kobject *kobj = NULL;
3278
3279	if (sp) {
3280		struct kobject *parent_kobj;
3281		struct kobject *k;
3282
3283		/*
3284		 * If we have no parent, we live in "virtual".
3285		 * Class-devices with a non class-device as parent, live
3286		 * in a "glue" directory to prevent namespace collisions.
3287		 */
3288		if (parent == NULL)
3289			parent_kobj = virtual_device_parent(dev);
3290		else if (parent->class && !dev->class->ns_type) {
3291			subsys_put(sp);
3292			return &parent->kobj;
3293		} else {
3294			parent_kobj = &parent->kobj;
3295		}
3296
3297		mutex_lock(&gdp_mutex);
3298
3299		/* find our class-directory at the parent and reference it */
3300		spin_lock(&sp->glue_dirs.list_lock);
3301		list_for_each_entry(k, &sp->glue_dirs.list, entry)
3302			if (k->parent == parent_kobj) {
3303				kobj = kobject_get(k);
3304				break;
3305			}
3306		spin_unlock(&sp->glue_dirs.list_lock);
3307		if (kobj) {
3308			mutex_unlock(&gdp_mutex);
3309			subsys_put(sp);
3310			return kobj;
3311		}
3312
3313		/* or create a new class-directory at the parent device */
3314		k = class_dir_create_and_add(sp, parent_kobj);
3315		/* do not emit an uevent for this simple "glue" directory */
3316		mutex_unlock(&gdp_mutex);
3317		subsys_put(sp);
3318		return k;
3319	}
3320
3321	/* subsystems can specify a default root directory for their devices */
3322	if (!parent && dev->bus) {
3323		struct device *dev_root = bus_get_dev_root(dev->bus);
3324
3325		if (dev_root) {
3326			kobj = &dev_root->kobj;
3327			put_device(dev_root);
3328			return kobj;
3329		}
3330	}
3331
3332	if (parent)
3333		return &parent->kobj;
3334	return NULL;
3335}
3336
3337static inline bool live_in_glue_dir(struct kobject *kobj,
3338				    struct device *dev)
3339{
3340	struct subsys_private *sp;
3341	bool retval;
3342
3343	if (!kobj || !dev->class)
3344		return false;
3345
3346	sp = class_to_subsys(dev->class);
3347	if (!sp)
3348		return false;
3349
3350	if (kobj->kset == &sp->glue_dirs)
3351		retval = true;
3352	else
3353		retval = false;
3354
3355	subsys_put(sp);
3356	return retval;
3357}
3358
3359static inline struct kobject *get_glue_dir(struct device *dev)
3360{
3361	return dev->kobj.parent;
3362}
3363
3364/**
3365 * kobject_has_children - Returns whether a kobject has children.
3366 * @kobj: the object to test
3367 *
3368 * This will return whether a kobject has other kobjects as children.
3369 *
3370 * It does NOT account for the presence of attribute files, only sub
3371 * directories. It also assumes there is no concurrent addition or
3372 * removal of such children, and thus relies on external locking.
3373 */
3374static inline bool kobject_has_children(struct kobject *kobj)
3375{
3376	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3377
3378	return kobj->sd && kobj->sd->dir.subdirs;
3379}
3380
3381/*
3382 * make sure cleaning up dir as the last step, we need to make
3383 * sure .release handler of kobject is run with holding the
3384 * global lock
3385 */
3386static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3387{
3388	unsigned int ref;
3389
3390	/* see if we live in a "glue" directory */
3391	if (!live_in_glue_dir(glue_dir, dev))
3392		return;
3393
3394	mutex_lock(&gdp_mutex);
3395	/**
3396	 * There is a race condition between removing glue directory
3397	 * and adding a new device under the glue directory.
3398	 *
3399	 * CPU1:                                         CPU2:
3400	 *
3401	 * device_add()
3402	 *   get_device_parent()
3403	 *     class_dir_create_and_add()
3404	 *       kobject_add_internal()
3405	 *         create_dir()    // create glue_dir
3406	 *
3407	 *                                               device_add()
3408	 *                                                 get_device_parent()
3409	 *                                                   kobject_get() // get glue_dir
3410	 *
3411	 * device_del()
3412	 *   cleanup_glue_dir()
3413	 *     kobject_del(glue_dir)
3414	 *
3415	 *                                               kobject_add()
3416	 *                                                 kobject_add_internal()
3417	 *                                                   create_dir() // in glue_dir
3418	 *                                                     sysfs_create_dir_ns()
3419	 *                                                       kernfs_create_dir_ns(sd)
3420	 *
3421	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3422	 *       sysfs_put()        // free glue_dir->sd
3423	 *
3424	 *                                                         // sd is freed
3425	 *                                                         kernfs_new_node(sd)
3426	 *                                                           kernfs_get(glue_dir)
3427	 *                                                           kernfs_add_one()
3428	 *                                                           kernfs_put()
3429	 *
3430	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3431	 * a new device under glue dir, the glue_dir kobject reference count
3432	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3433	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3434	 * and sysfs_put(). This result in glue_dir->sd is freed.
3435	 *
3436	 * Then the CPU2 will see a stale "empty" but still potentially used
3437	 * glue dir around in kernfs_new_node().
3438	 *
3439	 * In order to avoid this happening, we also should make sure that
3440	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3441	 * for glue_dir kobj is 1.
3442	 */
3443	ref = kref_read(&glue_dir->kref);
3444	if (!kobject_has_children(glue_dir) && !--ref)
3445		kobject_del(glue_dir);
3446	kobject_put(glue_dir);
3447	mutex_unlock(&gdp_mutex);
3448}
3449
3450static int device_add_class_symlinks(struct device *dev)
3451{
3452	struct device_node *of_node = dev_of_node(dev);
3453	struct subsys_private *sp;
3454	int error;
3455
3456	if (of_node) {
3457		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3458		if (error)
3459			dev_warn(dev, "Error %d creating of_node link\n",error);
3460		/* An error here doesn't warrant bringing down the device */
3461	}
3462
3463	sp = class_to_subsys(dev->class);
3464	if (!sp)
3465		return 0;
3466
3467	error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem");
3468	if (error)
3469		goto out_devnode;
3470
3471	if (dev->parent && device_is_not_partition(dev)) {
3472		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3473					  "device");
3474		if (error)
3475			goto out_subsys;
3476	}
3477
3478	/* link in the class directory pointing to the device */
3479	error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3480	if (error)
3481		goto out_device;
3482	goto exit;
3483
3484out_device:
3485	sysfs_remove_link(&dev->kobj, "device");
3486out_subsys:
3487	sysfs_remove_link(&dev->kobj, "subsystem");
3488out_devnode:
3489	sysfs_remove_link(&dev->kobj, "of_node");
3490exit:
3491	subsys_put(sp);
3492	return error;
3493}
3494
3495static void device_remove_class_symlinks(struct device *dev)
3496{
3497	struct subsys_private *sp = class_to_subsys(dev->class);
3498
3499	if (dev_of_node(dev))
3500		sysfs_remove_link(&dev->kobj, "of_node");
3501
3502	if (!sp)
3503		return;
3504
3505	if (dev->parent && device_is_not_partition(dev))
3506		sysfs_remove_link(&dev->kobj, "device");
3507	sysfs_remove_link(&dev->kobj, "subsystem");
3508	sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev));
3509	subsys_put(sp);
3510}
3511
3512/**
3513 * dev_set_name - set a device name
3514 * @dev: device
3515 * @fmt: format string for the device's name
3516 */
3517int dev_set_name(struct device *dev, const char *fmt, ...)
3518{
3519	va_list vargs;
3520	int err;
3521
3522	va_start(vargs, fmt);
3523	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3524	va_end(vargs);
3525	return err;
3526}
3527EXPORT_SYMBOL_GPL(dev_set_name);
3528
3529/* select a /sys/dev/ directory for the device */
3530static struct kobject *device_to_dev_kobj(struct device *dev)
3531{
3532	if (is_blockdev(dev))
3533		return sysfs_dev_block_kobj;
3534	else
3535		return sysfs_dev_char_kobj;
3536}
3537
3538static int device_create_sys_dev_entry(struct device *dev)
3539{
3540	struct kobject *kobj = device_to_dev_kobj(dev);
3541	int error = 0;
3542	char devt_str[15];
3543
3544	if (kobj) {
3545		format_dev_t(devt_str, dev->devt);
3546		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3547	}
3548
3549	return error;
3550}
3551
3552static void device_remove_sys_dev_entry(struct device *dev)
3553{
3554	struct kobject *kobj = device_to_dev_kobj(dev);
3555	char devt_str[15];
3556
3557	if (kobj) {
3558		format_dev_t(devt_str, dev->devt);
3559		sysfs_remove_link(kobj, devt_str);
3560	}
3561}
3562
3563static int device_private_init(struct device *dev)
3564{
3565	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3566	if (!dev->p)
3567		return -ENOMEM;
3568	dev->p->device = dev;
3569	klist_init(&dev->p->klist_children, klist_children_get,
3570		   klist_children_put);
3571	INIT_LIST_HEAD(&dev->p->deferred_probe);
3572	return 0;
3573}
3574
3575/**
3576 * device_add - add device to device hierarchy.
3577 * @dev: device.
3578 *
3579 * This is part 2 of device_register(), though may be called
3580 * separately _iff_ device_initialize() has been called separately.
3581 *
3582 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3583 * to the global and sibling lists for the device, then
3584 * adds it to the other relevant subsystems of the driver model.
3585 *
3586 * Do not call this routine or device_register() more than once for
3587 * any device structure.  The driver model core is not designed to work
3588 * with devices that get unregistered and then spring back to life.
3589 * (Among other things, it's very hard to guarantee that all references
3590 * to the previous incarnation of @dev have been dropped.)  Allocate
3591 * and register a fresh new struct device instead.
3592 *
3593 * NOTE: _Never_ directly free @dev after calling this function, even
3594 * if it returned an error! Always use put_device() to give up your
3595 * reference instead.
3596 *
3597 * Rule of thumb is: if device_add() succeeds, you should call
3598 * device_del() when you want to get rid of it. If device_add() has
3599 * *not* succeeded, use *only* put_device() to drop the reference
3600 * count.
3601 */
3602int device_add(struct device *dev)
3603{
3604	struct subsys_private *sp;
3605	struct device *parent;
3606	struct kobject *kobj;
3607	struct class_interface *class_intf;
3608	int error = -EINVAL;
3609	struct kobject *glue_dir = NULL;
3610
3611	dev = get_device(dev);
3612	if (!dev)
3613		goto done;
3614
3615	if (!dev->p) {
3616		error = device_private_init(dev);
3617		if (error)
3618			goto done;
3619	}
3620
3621	/*
3622	 * for statically allocated devices, which should all be converted
3623	 * some day, we need to initialize the name. We prevent reading back
3624	 * the name, and force the use of dev_name()
3625	 */
3626	if (dev->init_name) {
3627		error = dev_set_name(dev, "%s", dev->init_name);
3628		dev->init_name = NULL;
3629	}
3630
3631	if (dev_name(dev))
3632		error = 0;
3633	/* subsystems can specify simple device enumeration */
3634	else if (dev->bus && dev->bus->dev_name)
3635		error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3636	else
3637		error = -EINVAL;
3638	if (error)
3639		goto name_error;
3640
3641	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3642
3643	parent = get_device(dev->parent);
3644	kobj = get_device_parent(dev, parent);
3645	if (IS_ERR(kobj)) {
3646		error = PTR_ERR(kobj);
3647		goto parent_error;
3648	}
3649	if (kobj)
3650		dev->kobj.parent = kobj;
3651
3652	/* use parent numa_node */
3653	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3654		set_dev_node(dev, dev_to_node(parent));
3655
3656	/* first, register with generic layer. */
3657	/* we require the name to be set before, and pass NULL */
3658	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3659	if (error) {
3660		glue_dir = kobj;
3661		goto Error;
3662	}
3663
3664	/* notify platform of device entry */
3665	device_platform_notify(dev);
3666
3667	error = device_create_file(dev, &dev_attr_uevent);
3668	if (error)
3669		goto attrError;
3670
3671	error = device_add_class_symlinks(dev);
3672	if (error)
3673		goto SymlinkError;
3674	error = device_add_attrs(dev);
3675	if (error)
3676		goto AttrsError;
3677	error = bus_add_device(dev);
3678	if (error)
3679		goto BusError;
3680	error = dpm_sysfs_add(dev);
3681	if (error)
3682		goto DPMError;
3683	device_pm_add(dev);
3684
3685	if (MAJOR(dev->devt)) {
3686		error = device_create_file(dev, &dev_attr_dev);
3687		if (error)
3688			goto DevAttrError;
3689
3690		error = device_create_sys_dev_entry(dev);
3691		if (error)
3692			goto SysEntryError;
3693
3694		devtmpfs_create_node(dev);
3695	}
3696
3697	/* Notify clients of device addition.  This call must come
3698	 * after dpm_sysfs_add() and before kobject_uevent().
3699	 */
3700	bus_notify(dev, BUS_NOTIFY_ADD_DEVICE);
3701	kobject_uevent(&dev->kobj, KOBJ_ADD);
3702
3703	/*
3704	 * Check if any of the other devices (consumers) have been waiting for
3705	 * this device (supplier) to be added so that they can create a device
3706	 * link to it.
3707	 *
3708	 * This needs to happen after device_pm_add() because device_link_add()
3709	 * requires the supplier be registered before it's called.
3710	 *
3711	 * But this also needs to happen before bus_probe_device() to make sure
3712	 * waiting consumers can link to it before the driver is bound to the
3713	 * device and the driver sync_state callback is called for this device.
3714	 */
3715	if (dev->fwnode && !dev->fwnode->dev) {
3716		dev->fwnode->dev = dev;
3717		fw_devlink_link_device(dev);
3718	}
3719
3720	bus_probe_device(dev);
3721
3722	/*
3723	 * If all driver registration is done and a newly added device doesn't
3724	 * match with any driver, don't block its consumers from probing in
3725	 * case the consumer device is able to operate without this supplier.
3726	 */
3727	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3728		fw_devlink_unblock_consumers(dev);
3729
3730	if (parent)
3731		klist_add_tail(&dev->p->knode_parent,
3732			       &parent->p->klist_children);
3733
3734	sp = class_to_subsys(dev->class);
3735	if (sp) {
3736		mutex_lock(&sp->mutex);
3737		/* tie the class to the device */
3738		klist_add_tail(&dev->p->knode_class, &sp->klist_devices);
3739
3740		/* notify any interfaces that the device is here */
3741		list_for_each_entry(class_intf, &sp->interfaces, node)
3742			if (class_intf->add_dev)
3743				class_intf->add_dev(dev);
3744		mutex_unlock(&sp->mutex);
3745		subsys_put(sp);
3746	}
3747done:
3748	put_device(dev);
3749	return error;
3750 SysEntryError:
3751	if (MAJOR(dev->devt))
3752		device_remove_file(dev, &dev_attr_dev);
3753 DevAttrError:
3754	device_pm_remove(dev);
3755	dpm_sysfs_remove(dev);
3756 DPMError:
3757	dev->driver = NULL;
3758	bus_remove_device(dev);
3759 BusError:
3760	device_remove_attrs(dev);
3761 AttrsError:
3762	device_remove_class_symlinks(dev);
3763 SymlinkError:
3764	device_remove_file(dev, &dev_attr_uevent);
3765 attrError:
3766	device_platform_notify_remove(dev);
3767	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3768	glue_dir = get_glue_dir(dev);
3769	kobject_del(&dev->kobj);
3770 Error:
3771	cleanup_glue_dir(dev, glue_dir);
3772parent_error:
3773	put_device(parent);
3774name_error:
3775	kfree(dev->p);
3776	dev->p = NULL;
3777	goto done;
3778}
3779EXPORT_SYMBOL_GPL(device_add);
3780
3781/**
3782 * device_register - register a device with the system.
3783 * @dev: pointer to the device structure
3784 *
3785 * This happens in two clean steps - initialize the device
3786 * and add it to the system. The two steps can be called
3787 * separately, but this is the easiest and most common.
3788 * I.e. you should only call the two helpers separately if
3789 * have a clearly defined need to use and refcount the device
3790 * before it is added to the hierarchy.
3791 *
3792 * For more information, see the kerneldoc for device_initialize()
3793 * and device_add().
3794 *
3795 * NOTE: _Never_ directly free @dev after calling this function, even
3796 * if it returned an error! Always use put_device() to give up the
3797 * reference initialized in this function instead.
3798 */
3799int device_register(struct device *dev)
3800{
3801	device_initialize(dev);
3802	return device_add(dev);
3803}
3804EXPORT_SYMBOL_GPL(device_register);
3805
3806/**
3807 * get_device - increment reference count for device.
3808 * @dev: device.
3809 *
3810 * This simply forwards the call to kobject_get(), though
3811 * we do take care to provide for the case that we get a NULL
3812 * pointer passed in.
3813 */
3814struct device *get_device(struct device *dev)
3815{
3816	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3817}
3818EXPORT_SYMBOL_GPL(get_device);
3819
3820/**
3821 * put_device - decrement reference count.
3822 * @dev: device in question.
3823 */
3824void put_device(struct device *dev)
3825{
3826	/* might_sleep(); */
3827	if (dev)
3828		kobject_put(&dev->kobj);
3829}
3830EXPORT_SYMBOL_GPL(put_device);
3831
3832bool kill_device(struct device *dev)
3833{
3834	/*
3835	 * Require the device lock and set the "dead" flag to guarantee that
3836	 * the update behavior is consistent with the other bitfields near
3837	 * it and that we cannot have an asynchronous probe routine trying
3838	 * to run while we are tearing out the bus/class/sysfs from
3839	 * underneath the device.
3840	 */
3841	device_lock_assert(dev);
3842
3843	if (dev->p->dead)
3844		return false;
3845	dev->p->dead = true;
3846	return true;
3847}
3848EXPORT_SYMBOL_GPL(kill_device);
3849
3850/**
3851 * device_del - delete device from system.
3852 * @dev: device.
3853 *
3854 * This is the first part of the device unregistration
3855 * sequence. This removes the device from the lists we control
3856 * from here, has it removed from the other driver model
3857 * subsystems it was added to in device_add(), and removes it
3858 * from the kobject hierarchy.
3859 *
3860 * NOTE: this should be called manually _iff_ device_add() was
3861 * also called manually.
3862 */
3863void device_del(struct device *dev)
3864{
3865	struct subsys_private *sp;
3866	struct device *parent = dev->parent;
3867	struct kobject *glue_dir = NULL;
3868	struct class_interface *class_intf;
3869	unsigned int noio_flag;
3870
3871	device_lock(dev);
3872	kill_device(dev);
3873	device_unlock(dev);
3874
3875	if (dev->fwnode && dev->fwnode->dev == dev)
3876		dev->fwnode->dev = NULL;
3877
3878	/* Notify clients of device removal.  This call must come
3879	 * before dpm_sysfs_remove().
3880	 */
3881	noio_flag = memalloc_noio_save();
3882	bus_notify(dev, BUS_NOTIFY_DEL_DEVICE);
3883
3884	dpm_sysfs_remove(dev);
3885	if (parent)
3886		klist_del(&dev->p->knode_parent);
3887	if (MAJOR(dev->devt)) {
3888		devtmpfs_delete_node(dev);
3889		device_remove_sys_dev_entry(dev);
3890		device_remove_file(dev, &dev_attr_dev);
3891	}
3892
3893	sp = class_to_subsys(dev->class);
3894	if (sp) {
3895		device_remove_class_symlinks(dev);
3896
3897		mutex_lock(&sp->mutex);
3898		/* notify any interfaces that the device is now gone */
3899		list_for_each_entry(class_intf, &sp->interfaces, node)
3900			if (class_intf->remove_dev)
3901				class_intf->remove_dev(dev);
3902		/* remove the device from the class list */
3903		klist_del(&dev->p->knode_class);
3904		mutex_unlock(&sp->mutex);
3905		subsys_put(sp);
3906	}
3907	device_remove_file(dev, &dev_attr_uevent);
3908	device_remove_attrs(dev);
3909	bus_remove_device(dev);
3910	device_pm_remove(dev);
3911	driver_deferred_probe_del(dev);
3912	device_platform_notify_remove(dev);
3913	device_links_purge(dev);
3914
3915	/*
3916	 * If a device does not have a driver attached, we need to clean
3917	 * up any managed resources. We do this in device_release(), but
3918	 * it's never called (and we leak the device) if a managed
3919	 * resource holds a reference to the device. So release all
3920	 * managed resources here, like we do in driver_detach(). We
3921	 * still need to do so again in device_release() in case someone
3922	 * adds a new resource after this point, though.
3923	 */
3924	devres_release_all(dev);
3925
3926	bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE);
3927	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3928	glue_dir = get_glue_dir(dev);
3929	kobject_del(&dev->kobj);
3930	cleanup_glue_dir(dev, glue_dir);
3931	memalloc_noio_restore(noio_flag);
3932	put_device(parent);
3933}
3934EXPORT_SYMBOL_GPL(device_del);
3935
3936/**
3937 * device_unregister - unregister device from system.
3938 * @dev: device going away.
3939 *
3940 * We do this in two parts, like we do device_register(). First,
3941 * we remove it from all the subsystems with device_del(), then
3942 * we decrement the reference count via put_device(). If that
3943 * is the final reference count, the device will be cleaned up
3944 * via device_release() above. Otherwise, the structure will
3945 * stick around until the final reference to the device is dropped.
3946 */
3947void device_unregister(struct device *dev)
3948{
3949	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3950	device_del(dev);
3951	put_device(dev);
3952}
3953EXPORT_SYMBOL_GPL(device_unregister);
3954
3955static struct device *prev_device(struct klist_iter *i)
3956{
3957	struct klist_node *n = klist_prev(i);
3958	struct device *dev = NULL;
3959	struct device_private *p;
3960
3961	if (n) {
3962		p = to_device_private_parent(n);
3963		dev = p->device;
3964	}
3965	return dev;
3966}
3967
3968static struct device *next_device(struct klist_iter *i)
3969{
3970	struct klist_node *n = klist_next(i);
3971	struct device *dev = NULL;
3972	struct device_private *p;
3973
3974	if (n) {
3975		p = to_device_private_parent(n);
3976		dev = p->device;
3977	}
3978	return dev;
3979}
3980
3981/**
3982 * device_get_devnode - path of device node file
3983 * @dev: device
3984 * @mode: returned file access mode
3985 * @uid: returned file owner
3986 * @gid: returned file group
3987 * @tmp: possibly allocated string
3988 *
3989 * Return the relative path of a possible device node.
3990 * Non-default names may need to allocate a memory to compose
3991 * a name. This memory is returned in tmp and needs to be
3992 * freed by the caller.
3993 */
3994const char *device_get_devnode(const struct device *dev,
3995			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3996			       const char **tmp)
3997{
3998	char *s;
3999
4000	*tmp = NULL;
4001
4002	/* the device type may provide a specific name */
4003	if (dev->type && dev->type->devnode)
4004		*tmp = dev->type->devnode(dev, mode, uid, gid);
4005	if (*tmp)
4006		return *tmp;
4007
4008	/* the class may provide a specific name */
4009	if (dev->class && dev->class->devnode)
4010		*tmp = dev->class->devnode(dev, mode);
4011	if (*tmp)
4012		return *tmp;
4013
4014	/* return name without allocation, tmp == NULL */
4015	if (strchr(dev_name(dev), '!') == NULL)
4016		return dev_name(dev);
4017
4018	/* replace '!' in the name with '/' */
4019	s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL);
4020	if (!s)
4021		return NULL;
4022	return *tmp = s;
4023}
4024
4025/**
4026 * device_for_each_child - device child iterator.
4027 * @parent: parent struct device.
4028 * @fn: function to be called for each device.
4029 * @data: data for the callback.
4030 *
4031 * Iterate over @parent's child devices, and call @fn for each,
4032 * passing it @data.
4033 *
4034 * We check the return of @fn each time. If it returns anything
4035 * other than 0, we break out and return that value.
4036 */
4037int device_for_each_child(struct device *parent, void *data,
4038			  int (*fn)(struct device *dev, void *data))
4039{
4040	struct klist_iter i;
4041	struct device *child;
4042	int error = 0;
4043
4044	if (!parent->p)
4045		return 0;
4046
4047	klist_iter_init(&parent->p->klist_children, &i);
4048	while (!error && (child = next_device(&i)))
4049		error = fn(child, data);
4050	klist_iter_exit(&i);
4051	return error;
4052}
4053EXPORT_SYMBOL_GPL(device_for_each_child);
4054
4055/**
4056 * device_for_each_child_reverse - device child iterator in reversed order.
4057 * @parent: parent struct device.
4058 * @fn: function to be called for each device.
4059 * @data: data for the callback.
4060 *
4061 * Iterate over @parent's child devices, and call @fn for each,
4062 * passing it @data.
4063 *
4064 * We check the return of @fn each time. If it returns anything
4065 * other than 0, we break out and return that value.
4066 */
4067int device_for_each_child_reverse(struct device *parent, void *data,
4068				  int (*fn)(struct device *dev, void *data))
4069{
4070	struct klist_iter i;
4071	struct device *child;
4072	int error = 0;
4073
4074	if (!parent->p)
4075		return 0;
4076
4077	klist_iter_init(&parent->p->klist_children, &i);
4078	while ((child = prev_device(&i)) && !error)
4079		error = fn(child, data);
4080	klist_iter_exit(&i);
4081	return error;
4082}
4083EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
4084
4085/**
4086 * device_find_child - device iterator for locating a particular device.
4087 * @parent: parent struct device
4088 * @match: Callback function to check device
4089 * @data: Data to pass to match function
4090 *
4091 * This is similar to the device_for_each_child() function above, but it
4092 * returns a reference to a device that is 'found' for later use, as
4093 * determined by the @match callback.
4094 *
4095 * The callback should return 0 if the device doesn't match and non-zero
4096 * if it does.  If the callback returns non-zero and a reference to the
4097 * current device can be obtained, this function will return to the caller
4098 * and not iterate over any more devices.
4099 *
4100 * NOTE: you will need to drop the reference with put_device() after use.
4101 */
4102struct device *device_find_child(struct device *parent, void *data,
4103				 int (*match)(struct device *dev, void *data))
4104{
4105	struct klist_iter i;
4106	struct device *child;
4107
4108	if (!parent)
4109		return NULL;
4110
4111	klist_iter_init(&parent->p->klist_children, &i);
4112	while ((child = next_device(&i)))
4113		if (match(child, data) && get_device(child))
4114			break;
4115	klist_iter_exit(&i);
4116	return child;
4117}
4118EXPORT_SYMBOL_GPL(device_find_child);
4119
4120/**
4121 * device_find_child_by_name - device iterator for locating a child device.
4122 * @parent: parent struct device
4123 * @name: name of the child device
4124 *
4125 * This is similar to the device_find_child() function above, but it
4126 * returns a reference to a device that has the name @name.
4127 *
4128 * NOTE: you will need to drop the reference with put_device() after use.
4129 */
4130struct device *device_find_child_by_name(struct device *parent,
4131					 const char *name)
4132{
4133	struct klist_iter i;
4134	struct device *child;
4135
4136	if (!parent)
4137		return NULL;
4138
4139	klist_iter_init(&parent->p->klist_children, &i);
4140	while ((child = next_device(&i)))
4141		if (sysfs_streq(dev_name(child), name) && get_device(child))
4142			break;
4143	klist_iter_exit(&i);
4144	return child;
4145}
4146EXPORT_SYMBOL_GPL(device_find_child_by_name);
4147
4148static int match_any(struct device *dev, void *unused)
4149{
4150	return 1;
4151}
4152
4153/**
4154 * device_find_any_child - device iterator for locating a child device, if any.
4155 * @parent: parent struct device
4156 *
4157 * This is similar to the device_find_child() function above, but it
4158 * returns a reference to a child device, if any.
4159 *
4160 * NOTE: you will need to drop the reference with put_device() after use.
4161 */
4162struct device *device_find_any_child(struct device *parent)
4163{
4164	return device_find_child(parent, NULL, match_any);
4165}
4166EXPORT_SYMBOL_GPL(device_find_any_child);
4167
4168int __init devices_init(void)
4169{
4170	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
4171	if (!devices_kset)
4172		return -ENOMEM;
4173	dev_kobj = kobject_create_and_add("dev", NULL);
4174	if (!dev_kobj)
4175		goto dev_kobj_err;
4176	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
4177	if (!sysfs_dev_block_kobj)
4178		goto block_kobj_err;
4179	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
4180	if (!sysfs_dev_char_kobj)
4181		goto char_kobj_err;
4182	device_link_wq = alloc_workqueue("device_link_wq", 0, 0);
4183	if (!device_link_wq)
4184		goto wq_err;
4185
4186	return 0;
4187
4188 wq_err:
4189	kobject_put(sysfs_dev_char_kobj);
4190 char_kobj_err:
4191	kobject_put(sysfs_dev_block_kobj);
4192 block_kobj_err:
4193	kobject_put(dev_kobj);
4194 dev_kobj_err:
4195	kset_unregister(devices_kset);
4196	return -ENOMEM;
4197}
4198
4199static int device_check_offline(struct device *dev, void *not_used)
4200{
4201	int ret;
4202
4203	ret = device_for_each_child(dev, NULL, device_check_offline);
4204	if (ret)
4205		return ret;
4206
4207	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
4208}
4209
4210/**
4211 * device_offline - Prepare the device for hot-removal.
4212 * @dev: Device to be put offline.
4213 *
4214 * Execute the device bus type's .offline() callback, if present, to prepare
4215 * the device for a subsequent hot-removal.  If that succeeds, the device must
4216 * not be used until either it is removed or its bus type's .online() callback
4217 * is executed.
4218 *
4219 * Call under device_hotplug_lock.
4220 */
4221int device_offline(struct device *dev)
4222{
4223	int ret;
4224
4225	if (dev->offline_disabled)
4226		return -EPERM;
4227
4228	ret = device_for_each_child(dev, NULL, device_check_offline);
4229	if (ret)
4230		return ret;
4231
4232	device_lock(dev);
4233	if (device_supports_offline(dev)) {
4234		if (dev->offline) {
4235			ret = 1;
4236		} else {
4237			ret = dev->bus->offline(dev);
4238			if (!ret) {
4239				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4240				dev->offline = true;
4241			}
4242		}
4243	}
4244	device_unlock(dev);
4245
4246	return ret;
4247}
4248
4249/**
4250 * device_online - Put the device back online after successful device_offline().
4251 * @dev: Device to be put back online.
4252 *
4253 * If device_offline() has been successfully executed for @dev, but the device
4254 * has not been removed subsequently, execute its bus type's .online() callback
4255 * to indicate that the device can be used again.
4256 *
4257 * Call under device_hotplug_lock.
4258 */
4259int device_online(struct device *dev)
4260{
4261	int ret = 0;
4262
4263	device_lock(dev);
4264	if (device_supports_offline(dev)) {
4265		if (dev->offline) {
4266			ret = dev->bus->online(dev);
4267			if (!ret) {
4268				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4269				dev->offline = false;
4270			}
4271		} else {
4272			ret = 1;
4273		}
4274	}
4275	device_unlock(dev);
4276
4277	return ret;
4278}
4279
4280struct root_device {
4281	struct device dev;
4282	struct module *owner;
4283};
4284
4285static inline struct root_device *to_root_device(struct device *d)
4286{
4287	return container_of(d, struct root_device, dev);
4288}
4289
4290static void root_device_release(struct device *dev)
4291{
4292	kfree(to_root_device(dev));
4293}
4294
4295/**
4296 * __root_device_register - allocate and register a root device
4297 * @name: root device name
4298 * @owner: owner module of the root device, usually THIS_MODULE
4299 *
4300 * This function allocates a root device and registers it
4301 * using device_register(). In order to free the returned
4302 * device, use root_device_unregister().
4303 *
4304 * Root devices are dummy devices which allow other devices
4305 * to be grouped under /sys/devices. Use this function to
4306 * allocate a root device and then use it as the parent of
4307 * any device which should appear under /sys/devices/{name}
4308 *
4309 * The /sys/devices/{name} directory will also contain a
4310 * 'module' symlink which points to the @owner directory
4311 * in sysfs.
4312 *
4313 * Returns &struct device pointer on success, or ERR_PTR() on error.
4314 *
4315 * Note: You probably want to use root_device_register().
4316 */
4317struct device *__root_device_register(const char *name, struct module *owner)
4318{
4319	struct root_device *root;
4320	int err = -ENOMEM;
4321
4322	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4323	if (!root)
4324		return ERR_PTR(err);
4325
4326	err = dev_set_name(&root->dev, "%s", name);
4327	if (err) {
4328		kfree(root);
4329		return ERR_PTR(err);
4330	}
4331
4332	root->dev.release = root_device_release;
4333
4334	err = device_register(&root->dev);
4335	if (err) {
4336		put_device(&root->dev);
4337		return ERR_PTR(err);
4338	}
4339
4340#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4341	if (owner) {
4342		struct module_kobject *mk = &owner->mkobj;
4343
4344		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4345		if (err) {
4346			device_unregister(&root->dev);
4347			return ERR_PTR(err);
4348		}
4349		root->owner = owner;
4350	}
4351#endif
4352
4353	return &root->dev;
4354}
4355EXPORT_SYMBOL_GPL(__root_device_register);
4356
4357/**
4358 * root_device_unregister - unregister and free a root device
4359 * @dev: device going away
4360 *
4361 * This function unregisters and cleans up a device that was created by
4362 * root_device_register().
4363 */
4364void root_device_unregister(struct device *dev)
4365{
4366	struct root_device *root = to_root_device(dev);
4367
4368	if (root->owner)
4369		sysfs_remove_link(&root->dev.kobj, "module");
4370
4371	device_unregister(dev);
4372}
4373EXPORT_SYMBOL_GPL(root_device_unregister);
4374
4375
4376static void device_create_release(struct device *dev)
4377{
4378	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4379	kfree(dev);
4380}
4381
4382static __printf(6, 0) struct device *
4383device_create_groups_vargs(const struct class *class, struct device *parent,
4384			   dev_t devt, void *drvdata,
4385			   const struct attribute_group **groups,
4386			   const char *fmt, va_list args)
4387{
4388	struct device *dev = NULL;
4389	int retval = -ENODEV;
4390
4391	if (IS_ERR_OR_NULL(class))
4392		goto error;
4393
4394	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4395	if (!dev) {
4396		retval = -ENOMEM;
4397		goto error;
4398	}
4399
4400	device_initialize(dev);
4401	dev->devt = devt;
4402	dev->class = class;
4403	dev->parent = parent;
4404	dev->groups = groups;
4405	dev->release = device_create_release;
4406	dev_set_drvdata(dev, drvdata);
4407
4408	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4409	if (retval)
4410		goto error;
4411
4412	retval = device_add(dev);
4413	if (retval)
4414		goto error;
4415
4416	return dev;
4417
4418error:
4419	put_device(dev);
4420	return ERR_PTR(retval);
4421}
4422
4423/**
4424 * device_create - creates a device and registers it with sysfs
4425 * @class: pointer to the struct class that this device should be registered to
4426 * @parent: pointer to the parent struct device of this new device, if any
4427 * @devt: the dev_t for the char device to be added
4428 * @drvdata: the data to be added to the device for callbacks
4429 * @fmt: string for the device's name
4430 *
4431 * This function can be used by char device classes.  A struct device
4432 * will be created in sysfs, registered to the specified class.
4433 *
4434 * A "dev" file will be created, showing the dev_t for the device, if
4435 * the dev_t is not 0,0.
4436 * If a pointer to a parent struct device is passed in, the newly created
4437 * struct device will be a child of that device in sysfs.
4438 * The pointer to the struct device will be returned from the call.
4439 * Any further sysfs files that might be required can be created using this
4440 * pointer.
4441 *
4442 * Returns &struct device pointer on success, or ERR_PTR() on error.
4443 */
4444struct device *device_create(const struct class *class, struct device *parent,
4445			     dev_t devt, void *drvdata, const char *fmt, ...)
4446{
4447	va_list vargs;
4448	struct device *dev;
4449
4450	va_start(vargs, fmt);
4451	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4452					  fmt, vargs);
4453	va_end(vargs);
4454	return dev;
4455}
4456EXPORT_SYMBOL_GPL(device_create);
4457
4458/**
4459 * device_create_with_groups - creates a device and registers it with sysfs
4460 * @class: pointer to the struct class that this device should be registered to
4461 * @parent: pointer to the parent struct device of this new device, if any
4462 * @devt: the dev_t for the char device to be added
4463 * @drvdata: the data to be added to the device for callbacks
4464 * @groups: NULL-terminated list of attribute groups to be created
4465 * @fmt: string for the device's name
4466 *
4467 * This function can be used by char device classes.  A struct device
4468 * will be created in sysfs, registered to the specified class.
4469 * Additional attributes specified in the groups parameter will also
4470 * be created automatically.
4471 *
4472 * A "dev" file will be created, showing the dev_t for the device, if
4473 * the dev_t is not 0,0.
4474 * If a pointer to a parent struct device is passed in, the newly created
4475 * struct device will be a child of that device in sysfs.
4476 * The pointer to the struct device will be returned from the call.
4477 * Any further sysfs files that might be required can be created using this
4478 * pointer.
4479 *
4480 * Returns &struct device pointer on success, or ERR_PTR() on error.
4481 */
4482struct device *device_create_with_groups(const struct class *class,
4483					 struct device *parent, dev_t devt,
4484					 void *drvdata,
4485					 const struct attribute_group **groups,
4486					 const char *fmt, ...)
4487{
4488	va_list vargs;
4489	struct device *dev;
4490
4491	va_start(vargs, fmt);
4492	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4493					 fmt, vargs);
4494	va_end(vargs);
4495	return dev;
4496}
4497EXPORT_SYMBOL_GPL(device_create_with_groups);
4498
4499/**
4500 * device_destroy - removes a device that was created with device_create()
4501 * @class: pointer to the struct class that this device was registered with
4502 * @devt: the dev_t of the device that was previously registered
4503 *
4504 * This call unregisters and cleans up a device that was created with a
4505 * call to device_create().
4506 */
4507void device_destroy(const struct class *class, dev_t devt)
4508{
4509	struct device *dev;
4510
4511	dev = class_find_device_by_devt(class, devt);
4512	if (dev) {
4513		put_device(dev);
4514		device_unregister(dev);
4515	}
4516}
4517EXPORT_SYMBOL_GPL(device_destroy);
4518
4519/**
4520 * device_rename - renames a device
4521 * @dev: the pointer to the struct device to be renamed
4522 * @new_name: the new name of the device
4523 *
4524 * It is the responsibility of the caller to provide mutual
4525 * exclusion between two different calls of device_rename
4526 * on the same device to ensure that new_name is valid and
4527 * won't conflict with other devices.
4528 *
4529 * Note: given that some subsystems (networking and infiniband) use this
4530 * function, with no immediate plans for this to change, we cannot assume or
4531 * require that this function not be called at all.
4532 *
4533 * However, if you're writing new code, do not call this function. The following
4534 * text from Kay Sievers offers some insight:
4535 *
4536 * Renaming devices is racy at many levels, symlinks and other stuff are not
4537 * replaced atomically, and you get a "move" uevent, but it's not easy to
4538 * connect the event to the old and new device. Device nodes are not renamed at
4539 * all, there isn't even support for that in the kernel now.
4540 *
4541 * In the meantime, during renaming, your target name might be taken by another
4542 * driver, creating conflicts. Or the old name is taken directly after you
4543 * renamed it -- then you get events for the same DEVPATH, before you even see
4544 * the "move" event. It's just a mess, and nothing new should ever rely on
4545 * kernel device renaming. Besides that, it's not even implemented now for
4546 * other things than (driver-core wise very simple) network devices.
4547 *
4548 * Make up a "real" name in the driver before you register anything, or add
4549 * some other attributes for userspace to find the device, or use udev to add
4550 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4551 * don't even want to get into that and try to implement the missing pieces in
4552 * the core. We really have other pieces to fix in the driver core mess. :)
4553 */
4554int device_rename(struct device *dev, const char *new_name)
4555{
4556	struct kobject *kobj = &dev->kobj;
4557	char *old_device_name = NULL;
4558	int error;
4559
4560	dev = get_device(dev);
4561	if (!dev)
4562		return -EINVAL;
4563
4564	dev_dbg(dev, "renaming to %s\n", new_name);
4565
4566	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4567	if (!old_device_name) {
4568		error = -ENOMEM;
4569		goto out;
4570	}
4571
4572	if (dev->class) {
4573		struct subsys_private *sp = class_to_subsys(dev->class);
4574
4575		if (!sp) {
4576			error = -EINVAL;
4577			goto out;
4578		}
4579
4580		error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name,
4581					     new_name, kobject_namespace(kobj));
4582		subsys_put(sp);
4583		if (error)
4584			goto out;
4585	}
4586
4587	error = kobject_rename(kobj, new_name);
4588	if (error)
4589		goto out;
4590
4591out:
4592	put_device(dev);
4593
4594	kfree(old_device_name);
4595
4596	return error;
4597}
4598EXPORT_SYMBOL_GPL(device_rename);
4599
4600static int device_move_class_links(struct device *dev,
4601				   struct device *old_parent,
4602				   struct device *new_parent)
4603{
4604	int error = 0;
4605
4606	if (old_parent)
4607		sysfs_remove_link(&dev->kobj, "device");
4608	if (new_parent)
4609		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4610					  "device");
4611	return error;
4612}
4613
4614/**
4615 * device_move - moves a device to a new parent
4616 * @dev: the pointer to the struct device to be moved
4617 * @new_parent: the new parent of the device (can be NULL)
4618 * @dpm_order: how to reorder the dpm_list
4619 */
4620int device_move(struct device *dev, struct device *new_parent,
4621		enum dpm_order dpm_order)
4622{
4623	int error;
4624	struct device *old_parent;
4625	struct kobject *new_parent_kobj;
4626
4627	dev = get_device(dev);
4628	if (!dev)
4629		return -EINVAL;
4630
4631	device_pm_lock();
4632	new_parent = get_device(new_parent);
4633	new_parent_kobj = get_device_parent(dev, new_parent);
4634	if (IS_ERR(new_parent_kobj)) {
4635		error = PTR_ERR(new_parent_kobj);
4636		put_device(new_parent);
4637		goto out;
4638	}
4639
4640	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4641		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4642	error = kobject_move(&dev->kobj, new_parent_kobj);
4643	if (error) {
4644		cleanup_glue_dir(dev, new_parent_kobj);
4645		put_device(new_parent);
4646		goto out;
4647	}
4648	old_parent = dev->parent;
4649	dev->parent = new_parent;
4650	if (old_parent)
4651		klist_remove(&dev->p->knode_parent);
4652	if (new_parent) {
4653		klist_add_tail(&dev->p->knode_parent,
4654			       &new_parent->p->klist_children);
4655		set_dev_node(dev, dev_to_node(new_parent));
4656	}
4657
4658	if (dev->class) {
4659		error = device_move_class_links(dev, old_parent, new_parent);
4660		if (error) {
4661			/* We ignore errors on cleanup since we're hosed anyway... */
4662			device_move_class_links(dev, new_parent, old_parent);
4663			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4664				if (new_parent)
4665					klist_remove(&dev->p->knode_parent);
4666				dev->parent = old_parent;
4667				if (old_parent) {
4668					klist_add_tail(&dev->p->knode_parent,
4669						       &old_parent->p->klist_children);
4670					set_dev_node(dev, dev_to_node(old_parent));
4671				}
4672			}
4673			cleanup_glue_dir(dev, new_parent_kobj);
4674			put_device(new_parent);
4675			goto out;
4676		}
4677	}
4678	switch (dpm_order) {
4679	case DPM_ORDER_NONE:
4680		break;
4681	case DPM_ORDER_DEV_AFTER_PARENT:
4682		device_pm_move_after(dev, new_parent);
4683		devices_kset_move_after(dev, new_parent);
4684		break;
4685	case DPM_ORDER_PARENT_BEFORE_DEV:
4686		device_pm_move_before(new_parent, dev);
4687		devices_kset_move_before(new_parent, dev);
4688		break;
4689	case DPM_ORDER_DEV_LAST:
4690		device_pm_move_last(dev);
4691		devices_kset_move_last(dev);
4692		break;
4693	}
4694
4695	put_device(old_parent);
4696out:
4697	device_pm_unlock();
4698	put_device(dev);
4699	return error;
4700}
4701EXPORT_SYMBOL_GPL(device_move);
4702
4703static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4704				     kgid_t kgid)
4705{
4706	struct kobject *kobj = &dev->kobj;
4707	const struct class *class = dev->class;
4708	const struct device_type *type = dev->type;
4709	int error;
4710
4711	if (class) {
4712		/*
4713		 * Change the device groups of the device class for @dev to
4714		 * @kuid/@kgid.
4715		 */
4716		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4717						  kgid);
4718		if (error)
4719			return error;
4720	}
4721
4722	if (type) {
4723		/*
4724		 * Change the device groups of the device type for @dev to
4725		 * @kuid/@kgid.
4726		 */
4727		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4728						  kgid);
4729		if (error)
4730			return error;
4731	}
4732
4733	/* Change the device groups of @dev to @kuid/@kgid. */
4734	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4735	if (error)
4736		return error;
4737
4738	if (device_supports_offline(dev) && !dev->offline_disabled) {
4739		/* Change online device attributes of @dev to @kuid/@kgid. */
4740		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4741						kuid, kgid);
4742		if (error)
4743			return error;
4744	}
4745
4746	return 0;
4747}
4748
4749/**
4750 * device_change_owner - change the owner of an existing device.
4751 * @dev: device.
4752 * @kuid: new owner's kuid
4753 * @kgid: new owner's kgid
4754 *
4755 * This changes the owner of @dev and its corresponding sysfs entries to
4756 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4757 * core.
4758 *
4759 * Returns 0 on success or error code on failure.
4760 */
4761int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4762{
4763	int error;
4764	struct kobject *kobj = &dev->kobj;
4765	struct subsys_private *sp;
4766
4767	dev = get_device(dev);
4768	if (!dev)
4769		return -EINVAL;
4770
4771	/*
4772	 * Change the kobject and the default attributes and groups of the
4773	 * ktype associated with it to @kuid/@kgid.
4774	 */
4775	error = sysfs_change_owner(kobj, kuid, kgid);
4776	if (error)
4777		goto out;
4778
4779	/*
4780	 * Change the uevent file for @dev to the new owner. The uevent file
4781	 * was created in a separate step when @dev got added and we mirror
4782	 * that step here.
4783	 */
4784	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4785					kgid);
4786	if (error)
4787		goto out;
4788
4789	/*
4790	 * Change the device groups, the device groups associated with the
4791	 * device class, and the groups associated with the device type of @dev
4792	 * to @kuid/@kgid.
4793	 */
4794	error = device_attrs_change_owner(dev, kuid, kgid);
4795	if (error)
4796		goto out;
4797
4798	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4799	if (error)
4800		goto out;
4801
4802	/*
4803	 * Change the owner of the symlink located in the class directory of
4804	 * the device class associated with @dev which points to the actual
4805	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4806	 * symlink shows the same permissions as its target.
4807	 */
4808	sp = class_to_subsys(dev->class);
4809	if (!sp) {
4810		error = -EINVAL;
4811		goto out;
4812	}
4813	error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid);
4814	subsys_put(sp);
4815
4816out:
4817	put_device(dev);
4818	return error;
4819}
4820EXPORT_SYMBOL_GPL(device_change_owner);
4821
4822/**
4823 * device_shutdown - call ->shutdown() on each device to shutdown.
4824 */
4825void device_shutdown(void)
4826{
4827	struct device *dev, *parent;
4828
4829	wait_for_device_probe();
4830	device_block_probing();
4831
4832	cpufreq_suspend();
4833
4834	spin_lock(&devices_kset->list_lock);
4835	/*
4836	 * Walk the devices list backward, shutting down each in turn.
4837	 * Beware that device unplug events may also start pulling
4838	 * devices offline, even as the system is shutting down.
4839	 */
4840	while (!list_empty(&devices_kset->list)) {
4841		dev = list_entry(devices_kset->list.prev, struct device,
4842				kobj.entry);
4843
4844		/*
4845		 * hold reference count of device's parent to
4846		 * prevent it from being freed because parent's
4847		 * lock is to be held
4848		 */
4849		parent = get_device(dev->parent);
4850		get_device(dev);
4851		/*
4852		 * Make sure the device is off the kset list, in the
4853		 * event that dev->*->shutdown() doesn't remove it.
4854		 */
4855		list_del_init(&dev->kobj.entry);
4856		spin_unlock(&devices_kset->list_lock);
4857
4858		/* hold lock to avoid race with probe/release */
4859		if (parent)
4860			device_lock(parent);
4861		device_lock(dev);
4862
4863		/* Don't allow any more runtime suspends */
4864		pm_runtime_get_noresume(dev);
4865		pm_runtime_barrier(dev);
4866
4867		if (dev->class && dev->class->shutdown_pre) {
4868			if (initcall_debug)
4869				dev_info(dev, "shutdown_pre\n");
4870			dev->class->shutdown_pre(dev);
4871		}
4872		if (dev->bus && dev->bus->shutdown) {
4873			if (initcall_debug)
4874				dev_info(dev, "shutdown\n");
4875			dev->bus->shutdown(dev);
4876		} else if (dev->driver && dev->driver->shutdown) {
4877			if (initcall_debug)
4878				dev_info(dev, "shutdown\n");
4879			dev->driver->shutdown(dev);
4880		}
4881
4882		device_unlock(dev);
4883		if (parent)
4884			device_unlock(parent);
4885
4886		put_device(dev);
4887		put_device(parent);
4888
4889		spin_lock(&devices_kset->list_lock);
4890	}
4891	spin_unlock(&devices_kset->list_lock);
4892}
4893
4894/*
4895 * Device logging functions
4896 */
4897
4898#ifdef CONFIG_PRINTK
4899static void
4900set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4901{
4902	const char *subsys;
4903
4904	memset(dev_info, 0, sizeof(*dev_info));
4905
4906	if (dev->class)
4907		subsys = dev->class->name;
4908	else if (dev->bus)
4909		subsys = dev->bus->name;
4910	else
4911		return;
4912
4913	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4914
4915	/*
4916	 * Add device identifier DEVICE=:
4917	 *   b12:8         block dev_t
4918	 *   c127:3        char dev_t
4919	 *   n8            netdev ifindex
4920	 *   +sound:card0  subsystem:devname
4921	 */
4922	if (MAJOR(dev->devt)) {
4923		char c;
4924
4925		if (strcmp(subsys, "block") == 0)
4926			c = 'b';
4927		else
4928			c = 'c';
4929
4930		snprintf(dev_info->device, sizeof(dev_info->device),
4931			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4932	} else if (strcmp(subsys, "net") == 0) {
4933		struct net_device *net = to_net_dev(dev);
4934
4935		snprintf(dev_info->device, sizeof(dev_info->device),
4936			 "n%u", net->ifindex);
4937	} else {
4938		snprintf(dev_info->device, sizeof(dev_info->device),
4939			 "+%s:%s", subsys, dev_name(dev));
4940	}
4941}
4942
4943int dev_vprintk_emit(int level, const struct device *dev,
4944		     const char *fmt, va_list args)
4945{
4946	struct dev_printk_info dev_info;
4947
4948	set_dev_info(dev, &dev_info);
4949
4950	return vprintk_emit(0, level, &dev_info, fmt, args);
4951}
4952EXPORT_SYMBOL(dev_vprintk_emit);
4953
4954int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4955{
4956	va_list args;
4957	int r;
4958
4959	va_start(args, fmt);
4960
4961	r = dev_vprintk_emit(level, dev, fmt, args);
4962
4963	va_end(args);
4964
4965	return r;
4966}
4967EXPORT_SYMBOL(dev_printk_emit);
4968
4969static void __dev_printk(const char *level, const struct device *dev,
4970			struct va_format *vaf)
4971{
4972	if (dev)
4973		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4974				dev_driver_string(dev), dev_name(dev), vaf);
4975	else
4976		printk("%s(NULL device *): %pV", level, vaf);
4977}
4978
4979void _dev_printk(const char *level, const struct device *dev,
4980		 const char *fmt, ...)
4981{
4982	struct va_format vaf;
4983	va_list args;
4984
4985	va_start(args, fmt);
4986
4987	vaf.fmt = fmt;
4988	vaf.va = &args;
4989
4990	__dev_printk(level, dev, &vaf);
4991
4992	va_end(args);
4993}
4994EXPORT_SYMBOL(_dev_printk);
4995
4996#define define_dev_printk_level(func, kern_level)		\
4997void func(const struct device *dev, const char *fmt, ...)	\
4998{								\
4999	struct va_format vaf;					\
5000	va_list args;						\
5001								\
5002	va_start(args, fmt);					\
5003								\
5004	vaf.fmt = fmt;						\
5005	vaf.va = &args;						\
5006								\
5007	__dev_printk(kern_level, dev, &vaf);			\
5008								\
5009	va_end(args);						\
5010}								\
5011EXPORT_SYMBOL(func);
5012
5013define_dev_printk_level(_dev_emerg, KERN_EMERG);
5014define_dev_printk_level(_dev_alert, KERN_ALERT);
5015define_dev_printk_level(_dev_crit, KERN_CRIT);
5016define_dev_printk_level(_dev_err, KERN_ERR);
5017define_dev_printk_level(_dev_warn, KERN_WARNING);
5018define_dev_printk_level(_dev_notice, KERN_NOTICE);
5019define_dev_printk_level(_dev_info, KERN_INFO);
5020
5021#endif
5022
5023/**
5024 * dev_err_probe - probe error check and log helper
5025 * @dev: the pointer to the struct device
5026 * @err: error value to test
5027 * @fmt: printf-style format string
5028 * @...: arguments as specified in the format string
5029 *
5030 * This helper implements common pattern present in probe functions for error
5031 * checking: print debug or error message depending if the error value is
5032 * -EPROBE_DEFER and propagate error upwards.
5033 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
5034 * checked later by reading devices_deferred debugfs attribute.
5035 * It replaces code sequence::
5036 *
5037 * 	if (err != -EPROBE_DEFER)
5038 * 		dev_err(dev, ...);
5039 * 	else
5040 * 		dev_dbg(dev, ...);
5041 * 	return err;
5042 *
5043 * with::
5044 *
5045 * 	return dev_err_probe(dev, err, ...);
5046 *
5047 * Using this helper in your probe function is totally fine even if @err is
5048 * known to never be -EPROBE_DEFER.
5049 * The benefit compared to a normal dev_err() is the standardized format
5050 * of the error code, it being emitted symbolically (i.e. you get "EAGAIN"
5051 * instead of "-35") and the fact that the error code is returned which allows
5052 * more compact error paths.
5053 *
5054 * Returns @err.
5055 */
5056int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
5057{
5058	struct va_format vaf;
5059	va_list args;
5060
5061	va_start(args, fmt);
5062	vaf.fmt = fmt;
5063	vaf.va = &args;
5064
5065	if (err != -EPROBE_DEFER) {
5066		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5067	} else {
5068		device_set_deferred_probe_reason(dev, &vaf);
5069		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
5070	}
5071
5072	va_end(args);
5073
5074	return err;
5075}
5076EXPORT_SYMBOL_GPL(dev_err_probe);
5077
5078static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
5079{
5080	return fwnode && !IS_ERR(fwnode->secondary);
5081}
5082
5083/**
5084 * set_primary_fwnode - Change the primary firmware node of a given device.
5085 * @dev: Device to handle.
5086 * @fwnode: New primary firmware node of the device.
5087 *
5088 * Set the device's firmware node pointer to @fwnode, but if a secondary
5089 * firmware node of the device is present, preserve it.
5090 *
5091 * Valid fwnode cases are:
5092 *  - primary --> secondary --> -ENODEV
5093 *  - primary --> NULL
5094 *  - secondary --> -ENODEV
5095 *  - NULL
5096 */
5097void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5098{
5099	struct device *parent = dev->parent;
5100	struct fwnode_handle *fn = dev->fwnode;
5101
5102	if (fwnode) {
5103		if (fwnode_is_primary(fn))
5104			fn = fn->secondary;
5105
5106		if (fn) {
5107			WARN_ON(fwnode->secondary);
5108			fwnode->secondary = fn;
5109		}
5110		dev->fwnode = fwnode;
5111	} else {
5112		if (fwnode_is_primary(fn)) {
5113			dev->fwnode = fn->secondary;
5114
5115			/* Skip nullifying fn->secondary if the primary is shared */
5116			if (parent && fn == parent->fwnode)
5117				return;
5118
5119			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
5120			fn->secondary = NULL;
5121		} else {
5122			dev->fwnode = NULL;
5123		}
5124	}
5125}
5126EXPORT_SYMBOL_GPL(set_primary_fwnode);
5127
5128/**
5129 * set_secondary_fwnode - Change the secondary firmware node of a given device.
5130 * @dev: Device to handle.
5131 * @fwnode: New secondary firmware node of the device.
5132 *
5133 * If a primary firmware node of the device is present, set its secondary
5134 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
5135 * @fwnode.
5136 */
5137void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
5138{
5139	if (fwnode)
5140		fwnode->secondary = ERR_PTR(-ENODEV);
5141
5142	if (fwnode_is_primary(dev->fwnode))
5143		dev->fwnode->secondary = fwnode;
5144	else
5145		dev->fwnode = fwnode;
5146}
5147EXPORT_SYMBOL_GPL(set_secondary_fwnode);
5148
5149/**
5150 * device_set_of_node_from_dev - reuse device-tree node of another device
5151 * @dev: device whose device-tree node is being set
5152 * @dev2: device whose device-tree node is being reused
5153 *
5154 * Takes another reference to the new device-tree node after first dropping
5155 * any reference held to the old node.
5156 */
5157void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
5158{
5159	of_node_put(dev->of_node);
5160	dev->of_node = of_node_get(dev2->of_node);
5161	dev->of_node_reused = true;
5162}
5163EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
5164
5165void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
5166{
5167	dev->fwnode = fwnode;
5168	dev->of_node = to_of_node(fwnode);
5169}
5170EXPORT_SYMBOL_GPL(device_set_node);
5171
5172int device_match_name(struct device *dev, const void *name)
5173{
5174	return sysfs_streq(dev_name(dev), name);
5175}
5176EXPORT_SYMBOL_GPL(device_match_name);
5177
5178int device_match_of_node(struct device *dev, const void *np)
5179{
5180	return dev->of_node == np;
5181}
5182EXPORT_SYMBOL_GPL(device_match_of_node);
5183
5184int device_match_fwnode(struct device *dev, const void *fwnode)
5185{
5186	return dev_fwnode(dev) == fwnode;
5187}
5188EXPORT_SYMBOL_GPL(device_match_fwnode);
5189
5190int device_match_devt(struct device *dev, const void *pdevt)
5191{
5192	return dev->devt == *(dev_t *)pdevt;
5193}
5194EXPORT_SYMBOL_GPL(device_match_devt);
5195
5196int device_match_acpi_dev(struct device *dev, const void *adev)
5197{
5198	return ACPI_COMPANION(dev) == adev;
5199}
5200EXPORT_SYMBOL(device_match_acpi_dev);
5201
5202int device_match_acpi_handle(struct device *dev, const void *handle)
5203{
5204	return ACPI_HANDLE(dev) == handle;
5205}
5206EXPORT_SYMBOL(device_match_acpi_handle);
5207
5208int device_match_any(struct device *dev, const void *unused)
5209{
5210	return 1;
5211}
5212EXPORT_SYMBOL_GPL(device_match_any);
5213