1/*
2 * Driver for the Octeon bootbus compact flash.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License.  See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 2005 - 2012 Cavium Inc.
9 * Copyright (C) 2008 Wind River Systems
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/libata.h>
15#include <linux/hrtimer.h>
16#include <linux/slab.h>
17#include <linux/irq.h>
18#include <linux/of.h>
19#include <linux/of_address.h>
20#include <linux/of_platform.h>
21#include <linux/platform_device.h>
22#include <scsi/scsi_host.h>
23#include <trace/events/libata.h>
24#include <asm/byteorder.h>
25#include <asm/octeon/octeon.h>
26
27/*
28 * The Octeon bootbus compact flash interface is connected in at least
29 * 3 different configurations on various evaluation boards:
30 *
31 * -- 8  bits no irq, no DMA
32 * -- 16 bits no irq, no DMA
33 * -- 16 bits True IDE mode with DMA, but no irq.
34 *
35 * In the last case the DMA engine can generate an interrupt when the
36 * transfer is complete.  For the first two cases only PIO is supported.
37 *
38 */
39
40#define DRV_NAME	"pata_octeon_cf"
41#define DRV_VERSION	"2.2"
42
43/* Poll interval in nS. */
44#define OCTEON_CF_BUSY_POLL_INTERVAL 500000
45
46#define DMA_CFG 0
47#define DMA_TIM 0x20
48#define DMA_INT 0x38
49#define DMA_INT_EN 0x50
50
51struct octeon_cf_port {
52	struct hrtimer delayed_finish;
53	struct ata_port *ap;
54	int dma_finished;
55	void		*c0;
56	unsigned int cs0;
57	unsigned int cs1;
58	bool is_true_ide;
59	u64 dma_base;
60};
61
62static const struct scsi_host_template octeon_cf_sht = {
63	ATA_PIO_SHT(DRV_NAME),
64};
65
66static int enable_dma;
67module_param(enable_dma, int, 0444);
68MODULE_PARM_DESC(enable_dma,
69		 "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)");
70
71/*
72 * Convert nanosecond based time to setting used in the
73 * boot bus timing register, based on timing multiple
74 */
75static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
76{
77	/*
78	 * Compute # of eclock periods to get desired duration in
79	 * nanoseconds.
80	 */
81	return DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
82			  1000 * tim_mult);
83}
84
85static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier)
86{
87	union cvmx_mio_boot_reg_cfgx reg_cfg;
88	unsigned int tim_mult;
89
90	switch (multiplier) {
91	case 8:
92		tim_mult = 3;
93		break;
94	case 4:
95		tim_mult = 0;
96		break;
97	case 2:
98		tim_mult = 2;
99		break;
100	default:
101		tim_mult = 1;
102		break;
103	}
104
105	reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
106	reg_cfg.s.dmack = 0;	/* Don't assert DMACK on access */
107	reg_cfg.s.tim_mult = tim_mult;	/* Timing mutiplier */
108	reg_cfg.s.rd_dly = 0;	/* Sample on falling edge of BOOT_OE */
109	reg_cfg.s.sam = 0;	/* Don't combine write and output enable */
110	reg_cfg.s.we_ext = 0;	/* No write enable extension */
111	reg_cfg.s.oe_ext = 0;	/* No read enable extension */
112	reg_cfg.s.en = 1;	/* Enable this region */
113	reg_cfg.s.orbit = 0;	/* Don't combine with previous region */
114	reg_cfg.s.ale = 0;	/* Don't do address multiplexing */
115	cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
116}
117
118/*
119 * Called after libata determines the needed PIO mode. This
120 * function programs the Octeon bootbus regions to support the
121 * timing requirements of the PIO mode.
122 *
123 * @ap:     ATA port information
124 * @dev:    ATA device
125 */
126static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
127{
128	struct octeon_cf_port *cf_port = ap->private_data;
129	union cvmx_mio_boot_reg_timx reg_tim;
130	int T;
131	struct ata_timing timing;
132
133	unsigned int div;
134	int use_iordy;
135	int trh;
136	int pause;
137	/* These names are timing parameters from the ATA spec */
138	int t2;
139
140	/*
141	 * A divisor value of four will overflow the timing fields at
142	 * clock rates greater than 800MHz
143	 */
144	if (octeon_get_io_clock_rate() <= 800000000)
145		div = 4;
146	else
147		div = 8;
148	T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate());
149
150	BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T));
151
152	t2 = timing.active;
153	if (t2)
154		t2--;
155
156	trh = ns_to_tim_reg(div, 20);
157	if (trh)
158		trh--;
159
160	pause = (int)timing.cycle - (int)timing.active -
161		(int)timing.setup - trh;
162	if (pause < 0)
163		pause = 0;
164	if (pause)
165		pause--;
166
167	octeon_cf_set_boot_reg_cfg(cf_port->cs0, div);
168	if (cf_port->is_true_ide)
169		/* True IDE mode, program both chip selects.  */
170		octeon_cf_set_boot_reg_cfg(cf_port->cs1, div);
171
172
173	use_iordy = ata_pio_need_iordy(dev);
174
175	reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0));
176	/* Disable page mode */
177	reg_tim.s.pagem = 0;
178	/* Enable dynamic timing */
179	reg_tim.s.waitm = use_iordy;
180	/* Pages are disabled */
181	reg_tim.s.pages = 0;
182	/* We don't use multiplexed address mode */
183	reg_tim.s.ale = 0;
184	/* Not used */
185	reg_tim.s.page = 0;
186	/* Time after IORDY to coninue to assert the data */
187	reg_tim.s.wait = 0;
188	/* Time to wait to complete the cycle. */
189	reg_tim.s.pause = pause;
190	/* How long to hold after a write to de-assert CE. */
191	reg_tim.s.wr_hld = trh;
192	/* How long to wait after a read to de-assert CE. */
193	reg_tim.s.rd_hld = trh;
194	/* How long write enable is asserted */
195	reg_tim.s.we = t2;
196	/* How long read enable is asserted */
197	reg_tim.s.oe = t2;
198	/* Time after CE that read/write starts */
199	reg_tim.s.ce = ns_to_tim_reg(div, 5);
200	/* Time before CE that address is valid */
201	reg_tim.s.adr = 0;
202
203	/* Program the bootbus region timing for the data port chip select. */
204	cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64);
205	if (cf_port->is_true_ide)
206		/* True IDE mode, program both chip selects.  */
207		cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1),
208			       reg_tim.u64);
209}
210
211static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
212{
213	struct octeon_cf_port *cf_port = ap->private_data;
214	union cvmx_mio_boot_pin_defs pin_defs;
215	union cvmx_mio_boot_dma_timx dma_tim;
216	unsigned int oe_a;
217	unsigned int oe_n;
218	unsigned int dma_ackh;
219	unsigned int dma_arq;
220	unsigned int pause;
221	unsigned int T0, Tkr, Td;
222	unsigned int tim_mult;
223	int c;
224
225	const struct ata_timing *timing;
226
227	timing = ata_timing_find_mode(dev->dma_mode);
228	T0	= timing->cycle;
229	Td	= timing->active;
230	Tkr	= timing->recover;
231	dma_ackh = timing->dmack_hold;
232
233	dma_tim.u64 = 0;
234	/* dma_tim.s.tim_mult = 0 --> 4x */
235	tim_mult = 4;
236
237	/* not spec'ed, value in eclocks, not affected by tim_mult */
238	dma_arq = 8;
239	pause = 25 - dma_arq * 1000 /
240		(octeon_get_io_clock_rate() / 1000000); /* Tz */
241
242	oe_a = Td;
243	/* Tkr from cf spec, lengthened to meet T0 */
244	oe_n = max(T0 - oe_a, Tkr);
245
246	pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS);
247
248	/* DMA channel number. */
249	c = (cf_port->dma_base & 8) >> 3;
250
251	/* Invert the polarity if the default is 0*/
252	dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1;
253
254	dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
255	dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
256
257	/*
258	 * This is tI, C.F. spec. says 0, but Sony CF card requires
259	 * more, we use 20 nS.
260	 */
261	dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
262	dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
263
264	dma_tim.s.dmarq = dma_arq;
265	dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
266
267	dma_tim.s.rd_dly = 0;	/* Sample right on edge */
268
269	/*  writes only */
270	dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
271	dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
272
273	ata_dev_dbg(dev, "ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
274		 ns_to_tim_reg(tim_mult, 60));
275	ata_dev_dbg(dev, "oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n",
276		 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
277		 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
278
279	cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64);
280}
281
282/*
283 * Handle an 8 bit I/O request.
284 *
285 * @qc:         Queued command
286 * @buffer:     Data buffer
287 * @buflen:     Length of the buffer.
288 * @rw:         True to write.
289 */
290static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc,
291					 unsigned char *buffer,
292					 unsigned int buflen,
293					 int rw)
294{
295	struct ata_port *ap		= qc->dev->link->ap;
296	void __iomem *data_addr		= ap->ioaddr.data_addr;
297	unsigned long words;
298	int count;
299
300	words = buflen;
301	if (rw) {
302		count = 16;
303		while (words--) {
304			iowrite8(*buffer, data_addr);
305			buffer++;
306			/*
307			 * Every 16 writes do a read so the bootbus
308			 * FIFO doesn't fill up.
309			 */
310			if (--count == 0) {
311				ioread8(ap->ioaddr.altstatus_addr);
312				count = 16;
313			}
314		}
315	} else {
316		ioread8_rep(data_addr, buffer, words);
317	}
318	return buflen;
319}
320
321/*
322 * Handle a 16 bit I/O request.
323 *
324 * @qc:         Queued command
325 * @buffer:     Data buffer
326 * @buflen:     Length of the buffer.
327 * @rw:         True to write.
328 */
329static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc,
330					  unsigned char *buffer,
331					  unsigned int buflen,
332					  int rw)
333{
334	struct ata_port *ap		= qc->dev->link->ap;
335	void __iomem *data_addr		= ap->ioaddr.data_addr;
336	unsigned long words;
337	int count;
338
339	words = buflen / 2;
340	if (rw) {
341		count = 16;
342		while (words--) {
343			iowrite16(*(uint16_t *)buffer, data_addr);
344			buffer += sizeof(uint16_t);
345			/*
346			 * Every 16 writes do a read so the bootbus
347			 * FIFO doesn't fill up.
348			 */
349			if (--count == 0) {
350				ioread8(ap->ioaddr.altstatus_addr);
351				count = 16;
352			}
353		}
354	} else {
355		while (words--) {
356			*(uint16_t *)buffer = ioread16(data_addr);
357			buffer += sizeof(uint16_t);
358		}
359	}
360	/* Transfer trailing 1 byte, if any. */
361	if (unlikely(buflen & 0x01)) {
362		__le16 align_buf[1] = { 0 };
363
364		if (rw == READ) {
365			align_buf[0] = cpu_to_le16(ioread16(data_addr));
366			memcpy(buffer, align_buf, 1);
367		} else {
368			memcpy(align_buf, buffer, 1);
369			iowrite16(le16_to_cpu(align_buf[0]), data_addr);
370		}
371		words++;
372	}
373	return buflen;
374}
375
376/*
377 * Read the taskfile for 16bit non-True IDE only.
378 */
379static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
380{
381	u16 blob;
382	/* The base of the registers is at ioaddr.data_addr. */
383	void __iomem *base = ap->ioaddr.data_addr;
384
385	blob = __raw_readw(base + 0xc);
386	tf->error = blob >> 8;
387
388	blob = __raw_readw(base + 2);
389	tf->nsect = blob & 0xff;
390	tf->lbal = blob >> 8;
391
392	blob = __raw_readw(base + 4);
393	tf->lbam = blob & 0xff;
394	tf->lbah = blob >> 8;
395
396	blob = __raw_readw(base + 6);
397	tf->device = blob & 0xff;
398	tf->status = blob >> 8;
399
400	if (tf->flags & ATA_TFLAG_LBA48) {
401		if (likely(ap->ioaddr.ctl_addr)) {
402			iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
403
404			blob = __raw_readw(base + 0xc);
405			tf->hob_feature = blob >> 8;
406
407			blob = __raw_readw(base + 2);
408			tf->hob_nsect = blob & 0xff;
409			tf->hob_lbal = blob >> 8;
410
411			blob = __raw_readw(base + 4);
412			tf->hob_lbam = blob & 0xff;
413			tf->hob_lbah = blob >> 8;
414
415			iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
416			ap->last_ctl = tf->ctl;
417		} else {
418			WARN_ON(1);
419		}
420	}
421}
422
423static u8 octeon_cf_check_status16(struct ata_port *ap)
424{
425	u16 blob;
426	void __iomem *base = ap->ioaddr.data_addr;
427
428	blob = __raw_readw(base + 6);
429	return blob >> 8;
430}
431
432static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
433				 unsigned long deadline)
434{
435	struct ata_port *ap = link->ap;
436	void __iomem *base = ap->ioaddr.data_addr;
437	int rc;
438	u8 err;
439
440	__raw_writew(ap->ctl, base + 0xe);
441	udelay(20);
442	__raw_writew(ap->ctl | ATA_SRST, base + 0xe);
443	udelay(20);
444	__raw_writew(ap->ctl, base + 0xe);
445
446	rc = ata_sff_wait_after_reset(link, 1, deadline);
447	if (rc) {
448		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
449		return rc;
450	}
451
452	/* determine by signature whether we have ATA or ATAPI devices */
453	classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
454	return 0;
455}
456
457/*
458 * Load the taskfile for 16bit non-True IDE only.  The device_addr is
459 * not loaded, we do this as part of octeon_cf_exec_command16.
460 */
461static void octeon_cf_tf_load16(struct ata_port *ap,
462				const struct ata_taskfile *tf)
463{
464	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
465	/* The base of the registers is at ioaddr.data_addr. */
466	void __iomem *base = ap->ioaddr.data_addr;
467
468	if (tf->ctl != ap->last_ctl) {
469		iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
470		ap->last_ctl = tf->ctl;
471		ata_wait_idle(ap);
472	}
473	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
474		__raw_writew(tf->hob_feature << 8, base + 0xc);
475		__raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
476		__raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
477	}
478	if (is_addr) {
479		__raw_writew(tf->feature << 8, base + 0xc);
480		__raw_writew(tf->nsect | tf->lbal << 8, base + 2);
481		__raw_writew(tf->lbam | tf->lbah << 8, base + 4);
482	}
483	ata_wait_idle(ap);
484}
485
486
487static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
488{
489/*  There is only one device, do nothing. */
490	return;
491}
492
493/*
494 * Issue ATA command to host controller.  The device_addr is also sent
495 * as it must be written in a combined write with the command.
496 */
497static void octeon_cf_exec_command16(struct ata_port *ap,
498				const struct ata_taskfile *tf)
499{
500	/* The base of the registers is at ioaddr.data_addr. */
501	void __iomem *base = ap->ioaddr.data_addr;
502	u16 blob = 0;
503
504	if (tf->flags & ATA_TFLAG_DEVICE)
505		blob = tf->device;
506
507	blob |= (tf->command << 8);
508	__raw_writew(blob, base + 6);
509
510	ata_wait_idle(ap);
511}
512
513static void octeon_cf_ata_port_noaction(struct ata_port *ap)
514{
515}
516
517static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
518{
519	struct ata_port *ap = qc->ap;
520	struct octeon_cf_port *cf_port;
521
522	cf_port = ap->private_data;
523	/* issue r/w command */
524	qc->cursg = qc->sg;
525	cf_port->dma_finished = 0;
526	ap->ops->sff_exec_command(ap, &qc->tf);
527}
528
529/*
530 * Start a DMA transfer that was already setup
531 *
532 * @qc:     Information about the DMA
533 */
534static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
535{
536	struct octeon_cf_port *cf_port = qc->ap->private_data;
537	union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
538	union cvmx_mio_boot_dma_intx mio_boot_dma_int;
539	struct scatterlist *sg;
540
541	/* Get the scatter list entry we need to DMA into */
542	sg = qc->cursg;
543	BUG_ON(!sg);
544
545	/*
546	 * Clear the DMA complete status.
547	 */
548	mio_boot_dma_int.u64 = 0;
549	mio_boot_dma_int.s.done = 1;
550	cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64);
551
552	/* Enable the interrupt.  */
553	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64);
554
555	/* Set the direction of the DMA */
556	mio_boot_dma_cfg.u64 = 0;
557#ifdef __LITTLE_ENDIAN
558	mio_boot_dma_cfg.s.endian = 1;
559#endif
560	mio_boot_dma_cfg.s.en = 1;
561	mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
562
563	/*
564	 * Don't stop the DMA if the device deasserts DMARQ. Many
565	 * compact flashes deassert DMARQ for a short time between
566	 * sectors. Instead of stopping and restarting the DMA, we'll
567	 * let the hardware do it. If the DMA is really stopped early
568	 * due to an error condition, a later timeout will force us to
569	 * stop.
570	 */
571	mio_boot_dma_cfg.s.clr = 0;
572
573	/* Size is specified in 16bit words and minus one notation */
574	mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
575
576	/* We need to swap the high and low bytes of every 16 bits */
577	mio_boot_dma_cfg.s.swap8 = 1;
578
579	mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
580
581	cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64);
582}
583
584/*
585 *
586 *	LOCKING:
587 *	spin_lock_irqsave(host lock)
588 *
589 */
590static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
591					struct ata_queued_cmd *qc)
592{
593	struct ata_eh_info *ehi = &ap->link.eh_info;
594	struct octeon_cf_port *cf_port = ap->private_data;
595	union cvmx_mio_boot_dma_cfgx dma_cfg;
596	union cvmx_mio_boot_dma_intx dma_int;
597	u8 status;
598
599	trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
600
601	if (ap->hsm_task_state != HSM_ST_LAST)
602		return 0;
603
604	dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
605	if (dma_cfg.s.size != 0xfffff) {
606		/* Error, the transfer was not complete.  */
607		qc->err_mask |= AC_ERR_HOST_BUS;
608		ap->hsm_task_state = HSM_ST_ERR;
609	}
610
611	/* Stop and clear the dma engine.  */
612	dma_cfg.u64 = 0;
613	dma_cfg.s.size = -1;
614	cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
615
616	/* Disable the interrupt.  */
617	dma_int.u64 = 0;
618	cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
619
620	/* Clear the DMA complete status */
621	dma_int.s.done = 1;
622	cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
623
624	status = ap->ops->sff_check_status(ap);
625
626	ata_sff_hsm_move(ap, qc, status, 0);
627
628	if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
629		ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
630
631	return 1;
632}
633
634/*
635 * Check if any queued commands have more DMAs, if so start the next
636 * transfer, else do end of transfer handling.
637 */
638static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
639{
640	struct ata_host *host = dev_instance;
641	struct octeon_cf_port *cf_port;
642	int i;
643	unsigned int handled = 0;
644	unsigned long flags;
645
646	spin_lock_irqsave(&host->lock, flags);
647
648	for (i = 0; i < host->n_ports; i++) {
649		u8 status;
650		struct ata_port *ap;
651		struct ata_queued_cmd *qc;
652		union cvmx_mio_boot_dma_intx dma_int;
653		union cvmx_mio_boot_dma_cfgx dma_cfg;
654
655		ap = host->ports[i];
656		cf_port = ap->private_data;
657
658		dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT);
659		dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG);
660
661		qc = ata_qc_from_tag(ap, ap->link.active_tag);
662
663		if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING))
664			continue;
665
666		if (dma_int.s.done && !dma_cfg.s.en) {
667			if (!sg_is_last(qc->cursg)) {
668				qc->cursg = sg_next(qc->cursg);
669				handled = 1;
670				trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
671				octeon_cf_dma_start(qc);
672				continue;
673			} else {
674				cf_port->dma_finished = 1;
675			}
676		}
677		if (!cf_port->dma_finished)
678			continue;
679		status = ioread8(ap->ioaddr.altstatus_addr);
680		if (status & (ATA_BUSY | ATA_DRQ)) {
681			/*
682			 * We are busy, try to handle it later.  This
683			 * is the DMA finished interrupt, and it could
684			 * take a little while for the card to be
685			 * ready for more commands.
686			 */
687			/* Clear DMA irq. */
688			dma_int.u64 = 0;
689			dma_int.s.done = 1;
690			cvmx_write_csr(cf_port->dma_base + DMA_INT,
691				       dma_int.u64);
692			hrtimer_start_range_ns(&cf_port->delayed_finish,
693					       ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL),
694					       OCTEON_CF_BUSY_POLL_INTERVAL / 5,
695					       HRTIMER_MODE_REL);
696			handled = 1;
697		} else {
698			handled |= octeon_cf_dma_finished(ap, qc);
699		}
700	}
701	spin_unlock_irqrestore(&host->lock, flags);
702	return IRQ_RETVAL(handled);
703}
704
705static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt)
706{
707	struct octeon_cf_port *cf_port = container_of(hrt,
708						      struct octeon_cf_port,
709						      delayed_finish);
710	struct ata_port *ap = cf_port->ap;
711	struct ata_host *host = ap->host;
712	struct ata_queued_cmd *qc;
713	unsigned long flags;
714	u8 status;
715	enum hrtimer_restart rv = HRTIMER_NORESTART;
716
717	spin_lock_irqsave(&host->lock, flags);
718
719	/*
720	 * If the port is not waiting for completion, it must have
721	 * handled it previously.  The hsm_task_state is
722	 * protected by host->lock.
723	 */
724	if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
725		goto out;
726
727	status = ioread8(ap->ioaddr.altstatus_addr);
728	if (status & (ATA_BUSY | ATA_DRQ)) {
729		/* Still busy, try again. */
730		hrtimer_forward_now(hrt,
731				    ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL));
732		rv = HRTIMER_RESTART;
733		goto out;
734	}
735	qc = ata_qc_from_tag(ap, ap->link.active_tag);
736	if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)))
737		octeon_cf_dma_finished(ap, qc);
738out:
739	spin_unlock_irqrestore(&host->lock, flags);
740	return rv;
741}
742
743static void octeon_cf_dev_config(struct ata_device *dev)
744{
745	/*
746	 * A maximum of 2^20 - 1 16 bit transfers are possible with
747	 * the bootbus DMA.  So we need to throttle max_sectors to
748	 * (2^12 - 1 == 4095) to assure that this can never happen.
749	 */
750	dev->max_sectors = min(dev->max_sectors, 4095U);
751}
752
753/*
754 * We don't do ATAPI DMA so return 0.
755 */
756static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
757{
758	return 0;
759}
760
761static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
762{
763	struct ata_port *ap = qc->ap;
764
765	switch (qc->tf.protocol) {
766	case ATA_PROT_DMA:
767		WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
768
769		trace_ata_tf_load(ap, &qc->tf);
770		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
771		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
772		octeon_cf_dma_setup(qc);	    /* set up dma */
773		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
774		octeon_cf_dma_start(qc);	    /* initiate dma */
775		ap->hsm_task_state = HSM_ST_LAST;
776		break;
777
778	case ATAPI_PROT_DMA:
779		dev_err(ap->dev, "Error, ATAPI not supported\n");
780		BUG();
781
782	default:
783		return ata_sff_qc_issue(qc);
784	}
785
786	return 0;
787}
788
789static struct ata_port_operations octeon_cf_ops = {
790	.inherits		= &ata_sff_port_ops,
791	.check_atapi_dma	= octeon_cf_check_atapi_dma,
792	.qc_prep		= ata_noop_qc_prep,
793	.qc_issue		= octeon_cf_qc_issue,
794	.sff_dev_select		= octeon_cf_dev_select,
795	.sff_irq_on		= octeon_cf_ata_port_noaction,
796	.sff_irq_clear		= octeon_cf_ata_port_noaction,
797	.cable_detect		= ata_cable_40wire,
798	.set_piomode		= octeon_cf_set_piomode,
799	.set_dmamode		= octeon_cf_set_dmamode,
800	.dev_config		= octeon_cf_dev_config,
801};
802
803static int octeon_cf_probe(struct platform_device *pdev)
804{
805	struct resource *res_cs0, *res_cs1;
806
807	bool is_16bit;
808	u64 reg;
809	struct device_node *node;
810	void __iomem *cs0;
811	void __iomem *cs1 = NULL;
812	struct ata_host *host;
813	struct ata_port *ap;
814	int irq = 0;
815	irq_handler_t irq_handler = NULL;
816	void __iomem *base;
817	struct octeon_cf_port *cf_port;
818	u32 bus_width;
819	int rv;
820
821	node = pdev->dev.of_node;
822	if (node == NULL)
823		return -EINVAL;
824
825	cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL);
826	if (!cf_port)
827		return -ENOMEM;
828
829	cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide");
830
831	if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0)
832		is_16bit = (bus_width == 16);
833	else
834		is_16bit = false;
835
836	rv = of_property_read_reg(node, 0, &reg, NULL);
837	if (rv < 0)
838		return rv;
839	cf_port->cs0 = upper_32_bits(reg);
840
841	if (cf_port->is_true_ide) {
842		struct device_node *dma_node;
843		dma_node = of_parse_phandle(node,
844					    "cavium,dma-engine-handle", 0);
845		if (dma_node) {
846			struct platform_device *dma_dev;
847			dma_dev = of_find_device_by_node(dma_node);
848			if (dma_dev) {
849				struct resource *res_dma;
850				int i;
851				res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0);
852				if (!res_dma) {
853					put_device(&dma_dev->dev);
854					of_node_put(dma_node);
855					return -EINVAL;
856				}
857				cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start,
858									 resource_size(res_dma));
859				if (!cf_port->dma_base) {
860					put_device(&dma_dev->dev);
861					of_node_put(dma_node);
862					return -EINVAL;
863				}
864
865				i = platform_get_irq(dma_dev, 0);
866				if (i > 0) {
867					irq = i;
868					irq_handler = octeon_cf_interrupt;
869				}
870				put_device(&dma_dev->dev);
871			}
872			of_node_put(dma_node);
873		}
874		res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
875		if (!res_cs1)
876			return -EINVAL;
877
878		cs1 = devm_ioremap(&pdev->dev, res_cs1->start,
879					   resource_size(res_cs1));
880		if (!cs1)
881			return -EINVAL;
882
883		rv = of_property_read_reg(node, 1, &reg, NULL);
884		if (rv < 0)
885			return rv;
886		cf_port->cs1 = upper_32_bits(reg);
887	}
888
889	res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
890	if (!res_cs0)
891		return -EINVAL;
892
893	cs0 = devm_ioremap(&pdev->dev, res_cs0->start,
894				   resource_size(res_cs0));
895	if (!cs0)
896		return -ENOMEM;
897
898	/* allocate host */
899	host = ata_host_alloc(&pdev->dev, 1);
900	if (!host)
901		return -ENOMEM;
902
903	ap = host->ports[0];
904	ap->private_data = cf_port;
905	pdev->dev.platform_data = cf_port;
906	cf_port->ap = ap;
907	ap->ops = &octeon_cf_ops;
908	ap->pio_mask = ATA_PIO6;
909	ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
910
911	if (!is_16bit) {
912		base = cs0 + 0x800;
913		ap->ioaddr.cmd_addr	= base;
914		ata_sff_std_ports(&ap->ioaddr);
915
916		ap->ioaddr.altstatus_addr = base + 0xe;
917		ap->ioaddr.ctl_addr	= base + 0xe;
918		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
919	} else if (cf_port->is_true_ide) {
920		base = cs0;
921		ap->ioaddr.cmd_addr	= base + (ATA_REG_CMD << 1) + 1;
922		ap->ioaddr.data_addr	= base + (ATA_REG_DATA << 1);
923		ap->ioaddr.error_addr	= base + (ATA_REG_ERR << 1) + 1;
924		ap->ioaddr.feature_addr	= base + (ATA_REG_FEATURE << 1) + 1;
925		ap->ioaddr.nsect_addr	= base + (ATA_REG_NSECT << 1) + 1;
926		ap->ioaddr.lbal_addr	= base + (ATA_REG_LBAL << 1) + 1;
927		ap->ioaddr.lbam_addr	= base + (ATA_REG_LBAM << 1) + 1;
928		ap->ioaddr.lbah_addr	= base + (ATA_REG_LBAH << 1) + 1;
929		ap->ioaddr.device_addr	= base + (ATA_REG_DEVICE << 1) + 1;
930		ap->ioaddr.status_addr	= base + (ATA_REG_STATUS << 1) + 1;
931		ap->ioaddr.command_addr	= base + (ATA_REG_CMD << 1) + 1;
932		ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
933		ap->ioaddr.ctl_addr	= cs1 + (6 << 1) + 1;
934		octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
935
936		ap->mwdma_mask	= enable_dma ? ATA_MWDMA4 : 0;
937
938		/* True IDE mode needs a timer to poll for not-busy.  */
939		hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC,
940			     HRTIMER_MODE_REL);
941		cf_port->delayed_finish.function = octeon_cf_delayed_finish;
942	} else {
943		/* 16 bit but not True IDE */
944		base = cs0 + 0x800;
945		octeon_cf_ops.sff_data_xfer	= octeon_cf_data_xfer16;
946		octeon_cf_ops.softreset		= octeon_cf_softreset16;
947		octeon_cf_ops.sff_check_status	= octeon_cf_check_status16;
948		octeon_cf_ops.sff_tf_read	= octeon_cf_tf_read16;
949		octeon_cf_ops.sff_tf_load	= octeon_cf_tf_load16;
950		octeon_cf_ops.sff_exec_command	= octeon_cf_exec_command16;
951
952		ap->ioaddr.data_addr	= base + ATA_REG_DATA;
953		ap->ioaddr.nsect_addr	= base + ATA_REG_NSECT;
954		ap->ioaddr.lbal_addr	= base + ATA_REG_LBAL;
955		ap->ioaddr.ctl_addr	= base + 0xe;
956		ap->ioaddr.altstatus_addr = base + 0xe;
957	}
958	cf_port->c0 = ap->ioaddr.ctl_addr;
959
960	rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
961	if (rv)
962		return rv;
963
964	ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
965
966	dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
967		 is_16bit ? 16 : 8,
968		 cf_port->is_true_ide ? ", True IDE" : "");
969
970	return ata_host_activate(host, irq, irq_handler,
971				 IRQF_SHARED, &octeon_cf_sht);
972}
973
974static void octeon_cf_shutdown(struct device *dev)
975{
976	union cvmx_mio_boot_dma_cfgx dma_cfg;
977	union cvmx_mio_boot_dma_intx dma_int;
978
979	struct octeon_cf_port *cf_port = dev_get_platdata(dev);
980
981	if (cf_port->dma_base) {
982		/* Stop and clear the dma engine.  */
983		dma_cfg.u64 = 0;
984		dma_cfg.s.size = -1;
985		cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64);
986
987		/* Disable the interrupt.  */
988		dma_int.u64 = 0;
989		cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64);
990
991		/* Clear the DMA complete status */
992		dma_int.s.done = 1;
993		cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64);
994
995		__raw_writeb(0, cf_port->c0);
996		udelay(20);
997		__raw_writeb(ATA_SRST, cf_port->c0);
998		udelay(20);
999		__raw_writeb(0, cf_port->c0);
1000		mdelay(100);
1001	}
1002}
1003
1004static const struct of_device_id octeon_cf_match[] = {
1005	{ .compatible = "cavium,ebt3000-compact-flash", },
1006	{ /* sentinel */ }
1007};
1008MODULE_DEVICE_TABLE(of, octeon_cf_match);
1009
1010static struct platform_driver octeon_cf_driver = {
1011	.probe		= octeon_cf_probe,
1012	.driver		= {
1013		.name	= DRV_NAME,
1014		.of_match_table = octeon_cf_match,
1015		.shutdown = octeon_cf_shutdown
1016	},
1017};
1018
1019static int __init octeon_cf_init(void)
1020{
1021	return platform_driver_register(&octeon_cf_driver);
1022}
1023
1024
1025MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
1026MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
1027MODULE_LICENSE("GPL");
1028MODULE_VERSION(DRV_VERSION);
1029MODULE_ALIAS("platform:" DRV_NAME);
1030
1031module_init(octeon_cf_init);
1032