1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6#define pr_fmt(fmt) "ACPI: " fmt
7
8#include <linux/module.h>
9#include <linux/init.h>
10#include <linux/slab.h>
11#include <linux/kernel.h>
12#include <linux/acpi.h>
13#include <linux/acpi_iort.h>
14#include <linux/acpi_viot.h>
15#include <linux/iommu.h>
16#include <linux/signal.h>
17#include <linux/kthread.h>
18#include <linux/dmi.h>
19#include <linux/dma-map-ops.h>
20#include <linux/platform_data/x86/apple.h>
21#include <linux/pgtable.h>
22#include <linux/crc32.h>
23#include <linux/dma-direct.h>
24
25#include "internal.h"
26#include "sleep.h"
27
28#define ACPI_BUS_CLASS			"system_bus"
29#define ACPI_BUS_HID			"LNXSYBUS"
30#define ACPI_BUS_DEVICE_NAME		"System Bus"
31
32#define INVALID_ACPI_HANDLE	((acpi_handle)ZERO_PAGE(0))
33
34static const char *dummy_hid = "device";
35
36static LIST_HEAD(acpi_dep_list);
37static DEFINE_MUTEX(acpi_dep_list_lock);
38LIST_HEAD(acpi_bus_id_list);
39static DEFINE_MUTEX(acpi_scan_lock);
40static LIST_HEAD(acpi_scan_handlers_list);
41DEFINE_MUTEX(acpi_device_lock);
42LIST_HEAD(acpi_wakeup_device_list);
43static DEFINE_MUTEX(acpi_hp_context_lock);
44
45/*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50static u64 spcr_uart_addr;
51
52void acpi_scan_lock_acquire(void)
53{
54	mutex_lock(&acpi_scan_lock);
55}
56EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
58void acpi_scan_lock_release(void)
59{
60	mutex_unlock(&acpi_scan_lock);
61}
62EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
64void acpi_lock_hp_context(void)
65{
66	mutex_lock(&acpi_hp_context_lock);
67}
68
69void acpi_unlock_hp_context(void)
70{
71	mutex_unlock(&acpi_hp_context_lock);
72}
73
74void acpi_initialize_hp_context(struct acpi_device *adev,
75				struct acpi_hotplug_context *hp,
76				int (*notify)(struct acpi_device *, u32),
77				void (*uevent)(struct acpi_device *, u32))
78{
79	acpi_lock_hp_context();
80	hp->notify = notify;
81	hp->uevent = uevent;
82	acpi_set_hp_context(adev, hp);
83	acpi_unlock_hp_context();
84}
85EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86
87int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88{
89	if (!handler)
90		return -EINVAL;
91
92	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93	return 0;
94}
95
96int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97				       const char *hotplug_profile_name)
98{
99	int error;
100
101	error = acpi_scan_add_handler(handler);
102	if (error)
103		return error;
104
105	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106	return 0;
107}
108
109bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110{
111	struct acpi_device_physical_node *pn;
112	bool offline = true;
113	char *envp[] = { "EVENT=offline", NULL };
114
115	/*
116	 * acpi_container_offline() calls this for all of the container's
117	 * children under the container's physical_node_lock lock.
118	 */
119	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120
121	list_for_each_entry(pn, &adev->physical_node_list, node)
122		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123			if (uevent)
124				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125
126			offline = false;
127			break;
128		}
129
130	mutex_unlock(&adev->physical_node_lock);
131	return offline;
132}
133
134static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135				    void **ret_p)
136{
137	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138	struct acpi_device_physical_node *pn;
139	bool second_pass = (bool)data;
140	acpi_status status = AE_OK;
141
142	if (!device)
143		return AE_OK;
144
145	if (device->handler && !device->handler->hotplug.enabled) {
146		*ret_p = &device->dev;
147		return AE_SUPPORT;
148	}
149
150	mutex_lock(&device->physical_node_lock);
151
152	list_for_each_entry(pn, &device->physical_node_list, node) {
153		int ret;
154
155		if (second_pass) {
156			/* Skip devices offlined by the first pass. */
157			if (pn->put_online)
158				continue;
159		} else {
160			pn->put_online = false;
161		}
162		ret = device_offline(pn->dev);
163		if (ret >= 0) {
164			pn->put_online = !ret;
165		} else {
166			*ret_p = pn->dev;
167			if (second_pass) {
168				status = AE_ERROR;
169				break;
170			}
171		}
172	}
173
174	mutex_unlock(&device->physical_node_lock);
175
176	return status;
177}
178
179static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180				   void **ret_p)
181{
182	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183	struct acpi_device_physical_node *pn;
184
185	if (!device)
186		return AE_OK;
187
188	mutex_lock(&device->physical_node_lock);
189
190	list_for_each_entry(pn, &device->physical_node_list, node)
191		if (pn->put_online) {
192			device_online(pn->dev);
193			pn->put_online = false;
194		}
195
196	mutex_unlock(&device->physical_node_lock);
197
198	return AE_OK;
199}
200
201static int acpi_scan_try_to_offline(struct acpi_device *device)
202{
203	acpi_handle handle = device->handle;
204	struct device *errdev = NULL;
205	acpi_status status;
206
207	/*
208	 * Carry out two passes here and ignore errors in the first pass,
209	 * because if the devices in question are memory blocks and
210	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211	 * that the other blocks depend on, but it is not known in advance which
212	 * block holds them.
213	 *
214	 * If the first pass is successful, the second one isn't needed, though.
215	 */
216	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217				     NULL, acpi_bus_offline, (void *)false,
218				     (void **)&errdev);
219	if (status == AE_SUPPORT) {
220		dev_warn(errdev, "Offline disabled.\n");
221		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222				    acpi_bus_online, NULL, NULL, NULL);
223		return -EPERM;
224	}
225	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226	if (errdev) {
227		errdev = NULL;
228		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229				    NULL, acpi_bus_offline, (void *)true,
230				    (void **)&errdev);
231		if (!errdev)
232			acpi_bus_offline(handle, 0, (void *)true,
233					 (void **)&errdev);
234
235		if (errdev) {
236			dev_warn(errdev, "Offline failed.\n");
237			acpi_bus_online(handle, 0, NULL, NULL);
238			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239					    ACPI_UINT32_MAX, acpi_bus_online,
240					    NULL, NULL, NULL);
241			return -EBUSY;
242		}
243	}
244	return 0;
245}
246
247static int acpi_scan_check_and_detach(struct acpi_device *adev, void *check)
248{
249	struct acpi_scan_handler *handler = adev->handler;
250
251	acpi_dev_for_each_child_reverse(adev, acpi_scan_check_and_detach, check);
252
253	if (check) {
254		acpi_bus_get_status(adev);
255		/*
256		 * Skip devices that are still there and take the enabled
257		 * flag into account.
258		 */
259		if (acpi_device_is_enabled(adev))
260			return 0;
261
262		/* Skip device that have not been enumerated. */
263		if (!acpi_device_enumerated(adev)) {
264			dev_dbg(&adev->dev, "Still not enumerated\n");
265			return 0;
266		}
267	}
268
269	adev->flags.match_driver = false;
270	if (handler) {
271		if (handler->detach)
272			handler->detach(adev);
273
274		adev->handler = NULL;
275	} else {
276		device_release_driver(&adev->dev);
277	}
278	/*
279	 * Most likely, the device is going away, so put it into D3cold before
280	 * that.
281	 */
282	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
283	adev->flags.initialized = false;
284	acpi_device_clear_enumerated(adev);
285
286	return 0;
287}
288
289static void acpi_scan_check_subtree(struct acpi_device *adev)
290{
291	acpi_scan_check_and_detach(adev, (void *)true);
292}
293
294static int acpi_scan_hot_remove(struct acpi_device *device)
295{
296	acpi_handle handle = device->handle;
297	unsigned long long sta;
298	acpi_status status;
299
300	if (device->handler && device->handler->hotplug.demand_offline) {
301		if (!acpi_scan_is_offline(device, true))
302			return -EBUSY;
303	} else {
304		int error = acpi_scan_try_to_offline(device);
305		if (error)
306			return error;
307	}
308
309	acpi_handle_debug(handle, "Ejecting\n");
310
311	acpi_bus_trim(device);
312
313	acpi_evaluate_lck(handle, 0);
314	/*
315	 * TBD: _EJD support.
316	 */
317	status = acpi_evaluate_ej0(handle);
318	if (status == AE_NOT_FOUND)
319		return -ENODEV;
320	else if (ACPI_FAILURE(status))
321		return -EIO;
322
323	/*
324	 * Verify if eject was indeed successful.  If not, log an error
325	 * message.  No need to call _OST since _EJ0 call was made OK.
326	 */
327	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
328	if (ACPI_FAILURE(status)) {
329		acpi_handle_warn(handle,
330			"Status check after eject failed (0x%x)\n", status);
331	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
332		acpi_handle_warn(handle,
333			"Eject incomplete - status 0x%llx\n", sta);
334	}
335
336	return 0;
337}
338
339static int acpi_scan_rescan_bus(struct acpi_device *adev)
340{
341	struct acpi_scan_handler *handler = adev->handler;
342	int ret;
343
344	if (handler && handler->hotplug.scan_dependent)
345		ret = handler->hotplug.scan_dependent(adev);
346	else
347		ret = acpi_bus_scan(adev->handle);
348
349	if (ret)
350		dev_info(&adev->dev, "Namespace scan failure\n");
351
352	return ret;
353}
354
355static int acpi_scan_device_check(struct acpi_device *adev)
356{
357	struct acpi_device *parent;
358
359	acpi_scan_check_subtree(adev);
360
361	if (!acpi_device_is_present(adev))
362		return 0;
363
364	/*
365	 * This function is only called for device objects for which matching
366	 * scan handlers exist.  The only situation in which the scan handler
367	 * is not attached to this device object yet is when the device has
368	 * just appeared (either it wasn't present at all before or it was
369	 * removed and then added again).
370	 */
371	if (adev->handler) {
372		dev_dbg(&adev->dev, "Already enumerated\n");
373		return 0;
374	}
375
376	parent = acpi_dev_parent(adev);
377	if (!parent)
378		parent = adev;
379
380	return acpi_scan_rescan_bus(parent);
381}
382
383static int acpi_scan_bus_check(struct acpi_device *adev)
384{
385	acpi_scan_check_subtree(adev);
386
387	return acpi_scan_rescan_bus(adev);
388}
389
390static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
391{
392	switch (type) {
393	case ACPI_NOTIFY_BUS_CHECK:
394		return acpi_scan_bus_check(adev);
395	case ACPI_NOTIFY_DEVICE_CHECK:
396		return acpi_scan_device_check(adev);
397	case ACPI_NOTIFY_EJECT_REQUEST:
398	case ACPI_OST_EC_OSPM_EJECT:
399		if (adev->handler && !adev->handler->hotplug.enabled) {
400			dev_info(&adev->dev, "Eject disabled\n");
401			return -EPERM;
402		}
403		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
404				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
405		return acpi_scan_hot_remove(adev);
406	}
407	return -EINVAL;
408}
409
410void acpi_device_hotplug(struct acpi_device *adev, u32 src)
411{
412	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
413	int error = -ENODEV;
414
415	lock_device_hotplug();
416	mutex_lock(&acpi_scan_lock);
417
418	/*
419	 * The device object's ACPI handle cannot become invalid as long as we
420	 * are holding acpi_scan_lock, but it might have become invalid before
421	 * that lock was acquired.
422	 */
423	if (adev->handle == INVALID_ACPI_HANDLE)
424		goto err_out;
425
426	if (adev->flags.is_dock_station) {
427		error = dock_notify(adev, src);
428	} else if (adev->flags.hotplug_notify) {
429		error = acpi_generic_hotplug_event(adev, src);
430	} else {
431		int (*notify)(struct acpi_device *, u32);
432
433		acpi_lock_hp_context();
434		notify = adev->hp ? adev->hp->notify : NULL;
435		acpi_unlock_hp_context();
436		/*
437		 * There may be additional notify handlers for device objects
438		 * without the .event() callback, so ignore them here.
439		 */
440		if (notify)
441			error = notify(adev, src);
442		else
443			goto out;
444	}
445	switch (error) {
446	case 0:
447		ost_code = ACPI_OST_SC_SUCCESS;
448		break;
449	case -EPERM:
450		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
451		break;
452	case -EBUSY:
453		ost_code = ACPI_OST_SC_DEVICE_BUSY;
454		break;
455	default:
456		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
457		break;
458	}
459
460 err_out:
461	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
462
463 out:
464	acpi_put_acpi_dev(adev);
465	mutex_unlock(&acpi_scan_lock);
466	unlock_device_hotplug();
467}
468
469static void acpi_free_power_resources_lists(struct acpi_device *device)
470{
471	int i;
472
473	if (device->wakeup.flags.valid)
474		acpi_power_resources_list_free(&device->wakeup.resources);
475
476	if (!device->power.flags.power_resources)
477		return;
478
479	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
480		struct acpi_device_power_state *ps = &device->power.states[i];
481		acpi_power_resources_list_free(&ps->resources);
482	}
483}
484
485static void acpi_device_release(struct device *dev)
486{
487	struct acpi_device *acpi_dev = to_acpi_device(dev);
488
489	acpi_free_properties(acpi_dev);
490	acpi_free_pnp_ids(&acpi_dev->pnp);
491	acpi_free_power_resources_lists(acpi_dev);
492	kfree(acpi_dev);
493}
494
495static void acpi_device_del(struct acpi_device *device)
496{
497	struct acpi_device_bus_id *acpi_device_bus_id;
498
499	mutex_lock(&acpi_device_lock);
500
501	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
502		if (!strcmp(acpi_device_bus_id->bus_id,
503			    acpi_device_hid(device))) {
504			ida_free(&acpi_device_bus_id->instance_ida,
505				 device->pnp.instance_no);
506			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
507				list_del(&acpi_device_bus_id->node);
508				kfree_const(acpi_device_bus_id->bus_id);
509				kfree(acpi_device_bus_id);
510			}
511			break;
512		}
513
514	list_del(&device->wakeup_list);
515
516	mutex_unlock(&acpi_device_lock);
517
518	acpi_power_add_remove_device(device, false);
519	acpi_device_remove_files(device);
520	if (device->remove)
521		device->remove(device);
522
523	device_del(&device->dev);
524}
525
526static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
527
528static LIST_HEAD(acpi_device_del_list);
529static DEFINE_MUTEX(acpi_device_del_lock);
530
531static void acpi_device_del_work_fn(struct work_struct *work_not_used)
532{
533	for (;;) {
534		struct acpi_device *adev;
535
536		mutex_lock(&acpi_device_del_lock);
537
538		if (list_empty(&acpi_device_del_list)) {
539			mutex_unlock(&acpi_device_del_lock);
540			break;
541		}
542		adev = list_first_entry(&acpi_device_del_list,
543					struct acpi_device, del_list);
544		list_del(&adev->del_list);
545
546		mutex_unlock(&acpi_device_del_lock);
547
548		blocking_notifier_call_chain(&acpi_reconfig_chain,
549					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
550
551		acpi_device_del(adev);
552		/*
553		 * Drop references to all power resources that might have been
554		 * used by the device.
555		 */
556		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
557		acpi_dev_put(adev);
558	}
559}
560
561/**
562 * acpi_scan_drop_device - Drop an ACPI device object.
563 * @handle: Handle of an ACPI namespace node, not used.
564 * @context: Address of the ACPI device object to drop.
565 *
566 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
567 * namespace node the device object pointed to by @context is attached to.
568 *
569 * The unregistration is carried out asynchronously to avoid running
570 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
571 * ensure the correct ordering (the device objects must be unregistered in the
572 * same order in which the corresponding namespace nodes are deleted).
573 */
574static void acpi_scan_drop_device(acpi_handle handle, void *context)
575{
576	static DECLARE_WORK(work, acpi_device_del_work_fn);
577	struct acpi_device *adev = context;
578
579	mutex_lock(&acpi_device_del_lock);
580
581	/*
582	 * Use the ACPI hotplug workqueue which is ordered, so this work item
583	 * won't run after any hotplug work items submitted subsequently.  That
584	 * prevents attempts to register device objects identical to those being
585	 * deleted from happening concurrently (such attempts result from
586	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
587	 * run after all of the work items submitted previously, which helps
588	 * those work items to ensure that they are not accessing stale device
589	 * objects.
590	 */
591	if (list_empty(&acpi_device_del_list))
592		acpi_queue_hotplug_work(&work);
593
594	list_add_tail(&adev->del_list, &acpi_device_del_list);
595	/* Make acpi_ns_validate_handle() return NULL for this handle. */
596	adev->handle = INVALID_ACPI_HANDLE;
597
598	mutex_unlock(&acpi_device_del_lock);
599}
600
601static struct acpi_device *handle_to_device(acpi_handle handle,
602					    void (*callback)(void *))
603{
604	struct acpi_device *adev = NULL;
605	acpi_status status;
606
607	status = acpi_get_data_full(handle, acpi_scan_drop_device,
608				    (void **)&adev, callback);
609	if (ACPI_FAILURE(status) || !adev) {
610		acpi_handle_debug(handle, "No context!\n");
611		return NULL;
612	}
613	return adev;
614}
615
616/**
617 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
618 * @handle: ACPI handle associated with the requested ACPI device object.
619 *
620 * Return a pointer to the ACPI device object associated with @handle, if
621 * present, or NULL otherwise.
622 */
623struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
624{
625	return handle_to_device(handle, NULL);
626}
627EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
628
629static void get_acpi_device(void *dev)
630{
631	acpi_dev_get(dev);
632}
633
634/**
635 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
636 * @handle: ACPI handle associated with the requested ACPI device object.
637 *
638 * Return a pointer to the ACPI device object associated with @handle and bump
639 * up that object's reference counter (under the ACPI Namespace lock), if
640 * present, or return NULL otherwise.
641 *
642 * The ACPI device object reference acquired by this function needs to be
643 * dropped via acpi_dev_put().
644 */
645struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
646{
647	return handle_to_device(handle, get_acpi_device);
648}
649EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
650
651static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
652{
653	struct acpi_device_bus_id *acpi_device_bus_id;
654
655	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
656	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
657		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
658			return acpi_device_bus_id;
659	}
660	return NULL;
661}
662
663static int acpi_device_set_name(struct acpi_device *device,
664				struct acpi_device_bus_id *acpi_device_bus_id)
665{
666	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
667	int result;
668
669	result = ida_alloc(instance_ida, GFP_KERNEL);
670	if (result < 0)
671		return result;
672
673	device->pnp.instance_no = result;
674	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
675	return 0;
676}
677
678int acpi_tie_acpi_dev(struct acpi_device *adev)
679{
680	acpi_handle handle = adev->handle;
681	acpi_status status;
682
683	if (!handle)
684		return 0;
685
686	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
687	if (ACPI_FAILURE(status)) {
688		acpi_handle_err(handle, "Unable to attach device data\n");
689		return -ENODEV;
690	}
691
692	return 0;
693}
694
695static void acpi_store_pld_crc(struct acpi_device *adev)
696{
697	struct acpi_pld_info *pld;
698	acpi_status status;
699
700	status = acpi_get_physical_device_location(adev->handle, &pld);
701	if (ACPI_FAILURE(status))
702		return;
703
704	adev->pld_crc = crc32(~0, pld, sizeof(*pld));
705	ACPI_FREE(pld);
706}
707
708int acpi_device_add(struct acpi_device *device)
709{
710	struct acpi_device_bus_id *acpi_device_bus_id;
711	int result;
712
713	/*
714	 * Linkage
715	 * -------
716	 * Link this device to its parent and siblings.
717	 */
718	INIT_LIST_HEAD(&device->wakeup_list);
719	INIT_LIST_HEAD(&device->physical_node_list);
720	INIT_LIST_HEAD(&device->del_list);
721	mutex_init(&device->physical_node_lock);
722
723	mutex_lock(&acpi_device_lock);
724
725	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
726	if (acpi_device_bus_id) {
727		result = acpi_device_set_name(device, acpi_device_bus_id);
728		if (result)
729			goto err_unlock;
730	} else {
731		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
732					     GFP_KERNEL);
733		if (!acpi_device_bus_id) {
734			result = -ENOMEM;
735			goto err_unlock;
736		}
737		acpi_device_bus_id->bus_id =
738			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
739		if (!acpi_device_bus_id->bus_id) {
740			kfree(acpi_device_bus_id);
741			result = -ENOMEM;
742			goto err_unlock;
743		}
744
745		ida_init(&acpi_device_bus_id->instance_ida);
746
747		result = acpi_device_set_name(device, acpi_device_bus_id);
748		if (result) {
749			kfree_const(acpi_device_bus_id->bus_id);
750			kfree(acpi_device_bus_id);
751			goto err_unlock;
752		}
753
754		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
755	}
756
757	if (device->wakeup.flags.valid)
758		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
759
760	acpi_store_pld_crc(device);
761
762	mutex_unlock(&acpi_device_lock);
763
764	result = device_add(&device->dev);
765	if (result) {
766		dev_err(&device->dev, "Error registering device\n");
767		goto err;
768	}
769
770	result = acpi_device_setup_files(device);
771	if (result)
772		pr_err("Error creating sysfs interface for device %s\n",
773		       dev_name(&device->dev));
774
775	return 0;
776
777err:
778	mutex_lock(&acpi_device_lock);
779
780	list_del(&device->wakeup_list);
781
782err_unlock:
783	mutex_unlock(&acpi_device_lock);
784
785	acpi_detach_data(device->handle, acpi_scan_drop_device);
786
787	return result;
788}
789
790/* --------------------------------------------------------------------------
791                                 Device Enumeration
792   -------------------------------------------------------------------------- */
793static bool acpi_info_matches_ids(struct acpi_device_info *info,
794				  const char * const ids[])
795{
796	struct acpi_pnp_device_id_list *cid_list = NULL;
797	int i, index;
798
799	if (!(info->valid & ACPI_VALID_HID))
800		return false;
801
802	index = match_string(ids, -1, info->hardware_id.string);
803	if (index >= 0)
804		return true;
805
806	if (info->valid & ACPI_VALID_CID)
807		cid_list = &info->compatible_id_list;
808
809	if (!cid_list)
810		return false;
811
812	for (i = 0; i < cid_list->count; i++) {
813		index = match_string(ids, -1, cid_list->ids[i].string);
814		if (index >= 0)
815			return true;
816	}
817
818	return false;
819}
820
821/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
822static const char * const acpi_ignore_dep_ids[] = {
823	"PNP0D80", /* Windows-compatible System Power Management Controller */
824	"INT33BD", /* Intel Baytrail Mailbox Device */
825	"LATT2021", /* Lattice FW Update Client Driver */
826	NULL
827};
828
829/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
830static const char * const acpi_honor_dep_ids[] = {
831	"INT3472", /* Camera sensor PMIC / clk and regulator info */
832	"INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
833	"INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
834	"INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
835	"INTC10CF", /* IVSC (MTL) driver must be loaded to allow i2c access to camera sensors */
836	NULL
837};
838
839static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
840{
841	struct acpi_device *adev;
842
843	/*
844	 * Fixed hardware devices do not appear in the namespace and do not
845	 * have handles, but we fabricate acpi_devices for them, so we have
846	 * to deal with them specially.
847	 */
848	if (!handle)
849		return acpi_root;
850
851	do {
852		acpi_status status;
853
854		status = acpi_get_parent(handle, &handle);
855		if (ACPI_FAILURE(status)) {
856			if (status != AE_NULL_ENTRY)
857				return acpi_root;
858
859			return NULL;
860		}
861		adev = acpi_fetch_acpi_dev(handle);
862	} while (!adev);
863	return adev;
864}
865
866acpi_status
867acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
868{
869	acpi_status status;
870	acpi_handle tmp;
871	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
872	union acpi_object *obj;
873
874	status = acpi_get_handle(handle, "_EJD", &tmp);
875	if (ACPI_FAILURE(status))
876		return status;
877
878	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
879	if (ACPI_SUCCESS(status)) {
880		obj = buffer.pointer;
881		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
882					 ejd);
883		kfree(buffer.pointer);
884	}
885	return status;
886}
887EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
888
889static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
890{
891	acpi_handle handle = dev->handle;
892	struct acpi_device_wakeup *wakeup = &dev->wakeup;
893	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
894	union acpi_object *package = NULL;
895	union acpi_object *element = NULL;
896	acpi_status status;
897	int err = -ENODATA;
898
899	INIT_LIST_HEAD(&wakeup->resources);
900
901	/* _PRW */
902	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
903	if (ACPI_FAILURE(status)) {
904		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
905				 acpi_format_exception(status));
906		return err;
907	}
908
909	package = (union acpi_object *)buffer.pointer;
910
911	if (!package || package->package.count < 2)
912		goto out;
913
914	element = &(package->package.elements[0]);
915	if (!element)
916		goto out;
917
918	if (element->type == ACPI_TYPE_PACKAGE) {
919		if ((element->package.count < 2) ||
920		    (element->package.elements[0].type !=
921		     ACPI_TYPE_LOCAL_REFERENCE)
922		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
923			goto out;
924
925		wakeup->gpe_device =
926		    element->package.elements[0].reference.handle;
927		wakeup->gpe_number =
928		    (u32) element->package.elements[1].integer.value;
929	} else if (element->type == ACPI_TYPE_INTEGER) {
930		wakeup->gpe_device = NULL;
931		wakeup->gpe_number = element->integer.value;
932	} else {
933		goto out;
934	}
935
936	element = &(package->package.elements[1]);
937	if (element->type != ACPI_TYPE_INTEGER)
938		goto out;
939
940	wakeup->sleep_state = element->integer.value;
941
942	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
943	if (err)
944		goto out;
945
946	if (!list_empty(&wakeup->resources)) {
947		int sleep_state;
948
949		err = acpi_power_wakeup_list_init(&wakeup->resources,
950						  &sleep_state);
951		if (err) {
952			acpi_handle_warn(handle, "Retrieving current states "
953					 "of wakeup power resources failed\n");
954			acpi_power_resources_list_free(&wakeup->resources);
955			goto out;
956		}
957		if (sleep_state < wakeup->sleep_state) {
958			acpi_handle_warn(handle, "Overriding _PRW sleep state "
959					 "(S%d) by S%d from power resources\n",
960					 (int)wakeup->sleep_state, sleep_state);
961			wakeup->sleep_state = sleep_state;
962		}
963	}
964
965 out:
966	kfree(buffer.pointer);
967	return err;
968}
969
970/* Do not use a button for S5 wakeup */
971#define ACPI_AVOID_WAKE_FROM_S5		BIT(0)
972
973static bool acpi_wakeup_gpe_init(struct acpi_device *device)
974{
975	static const struct acpi_device_id button_device_ids[] = {
976		{"PNP0C0C", 0},				/* Power button */
977		{"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5},	/* Lid */
978		{"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5},	/* Sleep button */
979		{"", 0},
980	};
981	struct acpi_device_wakeup *wakeup = &device->wakeup;
982	const struct acpi_device_id *match;
983	acpi_status status;
984
985	wakeup->flags.notifier_present = 0;
986
987	/* Power button, Lid switch always enable wakeup */
988	match = acpi_match_acpi_device(button_device_ids, device);
989	if (match) {
990		if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
991		    wakeup->sleep_state == ACPI_STATE_S5)
992			wakeup->sleep_state = ACPI_STATE_S4;
993		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
994		device_set_wakeup_capable(&device->dev, true);
995		return true;
996	}
997
998	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
999					 wakeup->gpe_number);
1000	return ACPI_SUCCESS(status);
1001}
1002
1003static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
1004{
1005	int err;
1006
1007	/* Presence of _PRW indicates wake capable */
1008	if (!acpi_has_method(device->handle, "_PRW"))
1009		return;
1010
1011	err = acpi_bus_extract_wakeup_device_power_package(device);
1012	if (err) {
1013		dev_err(&device->dev, "Unable to extract wakeup power resources");
1014		return;
1015	}
1016
1017	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
1018	device->wakeup.prepare_count = 0;
1019	/*
1020	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
1021	 * system for the ACPI device with the _PRW object.
1022	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
1023	 * So it is necessary to call _DSW object first. Only when it is not
1024	 * present will the _PSW object used.
1025	 */
1026	err = acpi_device_sleep_wake(device, 0, 0, 0);
1027	if (err)
1028		pr_debug("error in _DSW or _PSW evaluation\n");
1029}
1030
1031static void acpi_bus_init_power_state(struct acpi_device *device, int state)
1032{
1033	struct acpi_device_power_state *ps = &device->power.states[state];
1034	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1035	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1036	acpi_status status;
1037
1038	INIT_LIST_HEAD(&ps->resources);
1039
1040	/* Evaluate "_PRx" to get referenced power resources */
1041	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1042	if (ACPI_SUCCESS(status)) {
1043		union acpi_object *package = buffer.pointer;
1044
1045		if (buffer.length && package
1046		    && package->type == ACPI_TYPE_PACKAGE
1047		    && package->package.count)
1048			acpi_extract_power_resources(package, 0, &ps->resources);
1049
1050		ACPI_FREE(buffer.pointer);
1051	}
1052
1053	/* Evaluate "_PSx" to see if we can do explicit sets */
1054	pathname[2] = 'S';
1055	if (acpi_has_method(device->handle, pathname))
1056		ps->flags.explicit_set = 1;
1057
1058	/* State is valid if there are means to put the device into it. */
1059	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1060		ps->flags.valid = 1;
1061
1062	ps->power = -1;		/* Unknown - driver assigned */
1063	ps->latency = -1;	/* Unknown - driver assigned */
1064}
1065
1066static void acpi_bus_get_power_flags(struct acpi_device *device)
1067{
1068	unsigned long long dsc = ACPI_STATE_D0;
1069	u32 i;
1070
1071	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1072	if (!acpi_has_method(device->handle, "_PS0") &&
1073	    !acpi_has_method(device->handle, "_PR0"))
1074		return;
1075
1076	device->flags.power_manageable = 1;
1077
1078	/*
1079	 * Power Management Flags
1080	 */
1081	if (acpi_has_method(device->handle, "_PSC"))
1082		device->power.flags.explicit_get = 1;
1083
1084	if (acpi_has_method(device->handle, "_IRC"))
1085		device->power.flags.inrush_current = 1;
1086
1087	if (acpi_has_method(device->handle, "_DSW"))
1088		device->power.flags.dsw_present = 1;
1089
1090	acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1091	device->power.state_for_enumeration = dsc;
1092
1093	/*
1094	 * Enumerate supported power management states
1095	 */
1096	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1097		acpi_bus_init_power_state(device, i);
1098
1099	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1100
1101	/* Set the defaults for D0 and D3hot (always supported). */
1102	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1103	device->power.states[ACPI_STATE_D0].power = 100;
1104	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1105
1106	/*
1107	 * Use power resources only if the D0 list of them is populated, because
1108	 * some platforms may provide _PR3 only to indicate D3cold support and
1109	 * in those cases the power resources list returned by it may be bogus.
1110	 */
1111	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1112		device->power.flags.power_resources = 1;
1113		/*
1114		 * D3cold is supported if the D3hot list of power resources is
1115		 * not empty.
1116		 */
1117		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1118			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1119	}
1120
1121	if (acpi_bus_init_power(device))
1122		device->flags.power_manageable = 0;
1123}
1124
1125static void acpi_bus_get_flags(struct acpi_device *device)
1126{
1127	/* Presence of _STA indicates 'dynamic_status' */
1128	if (acpi_has_method(device->handle, "_STA"))
1129		device->flags.dynamic_status = 1;
1130
1131	/* Presence of _RMV indicates 'removable' */
1132	if (acpi_has_method(device->handle, "_RMV"))
1133		device->flags.removable = 1;
1134
1135	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1136	if (acpi_has_method(device->handle, "_EJD") ||
1137	    acpi_has_method(device->handle, "_EJ0"))
1138		device->flags.ejectable = 1;
1139}
1140
1141static void acpi_device_get_busid(struct acpi_device *device)
1142{
1143	char bus_id[5] = { '?', 0 };
1144	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1145	int i = 0;
1146
1147	/*
1148	 * Bus ID
1149	 * ------
1150	 * The device's Bus ID is simply the object name.
1151	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1152	 */
1153	if (!acpi_dev_parent(device)) {
1154		strcpy(device->pnp.bus_id, "ACPI");
1155		return;
1156	}
1157
1158	switch (device->device_type) {
1159	case ACPI_BUS_TYPE_POWER_BUTTON:
1160		strcpy(device->pnp.bus_id, "PWRF");
1161		break;
1162	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1163		strcpy(device->pnp.bus_id, "SLPF");
1164		break;
1165	case ACPI_BUS_TYPE_ECDT_EC:
1166		strcpy(device->pnp.bus_id, "ECDT");
1167		break;
1168	default:
1169		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1170		/* Clean up trailing underscores (if any) */
1171		for (i = 3; i > 1; i--) {
1172			if (bus_id[i] == '_')
1173				bus_id[i] = '\0';
1174			else
1175				break;
1176		}
1177		strcpy(device->pnp.bus_id, bus_id);
1178		break;
1179	}
1180}
1181
1182/*
1183 * acpi_ata_match - see if an acpi object is an ATA device
1184 *
1185 * If an acpi object has one of the ACPI ATA methods defined,
1186 * then we can safely call it an ATA device.
1187 */
1188bool acpi_ata_match(acpi_handle handle)
1189{
1190	return acpi_has_method(handle, "_GTF") ||
1191	       acpi_has_method(handle, "_GTM") ||
1192	       acpi_has_method(handle, "_STM") ||
1193	       acpi_has_method(handle, "_SDD");
1194}
1195
1196/*
1197 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1198 *
1199 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1200 * then we can safely call it an ejectable drive bay
1201 */
1202bool acpi_bay_match(acpi_handle handle)
1203{
1204	acpi_handle phandle;
1205
1206	if (!acpi_has_method(handle, "_EJ0"))
1207		return false;
1208	if (acpi_ata_match(handle))
1209		return true;
1210	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1211		return false;
1212
1213	return acpi_ata_match(phandle);
1214}
1215
1216bool acpi_device_is_battery(struct acpi_device *adev)
1217{
1218	struct acpi_hardware_id *hwid;
1219
1220	list_for_each_entry(hwid, &adev->pnp.ids, list)
1221		if (!strcmp("PNP0C0A", hwid->id))
1222			return true;
1223
1224	return false;
1225}
1226
1227static bool is_ejectable_bay(struct acpi_device *adev)
1228{
1229	acpi_handle handle = adev->handle;
1230
1231	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1232		return true;
1233
1234	return acpi_bay_match(handle);
1235}
1236
1237/*
1238 * acpi_dock_match - see if an acpi object has a _DCK method
1239 */
1240bool acpi_dock_match(acpi_handle handle)
1241{
1242	return acpi_has_method(handle, "_DCK");
1243}
1244
1245static acpi_status
1246acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1247			  void **return_value)
1248{
1249	long *cap = context;
1250
1251	if (acpi_has_method(handle, "_BCM") &&
1252	    acpi_has_method(handle, "_BCL")) {
1253		acpi_handle_debug(handle, "Found generic backlight support\n");
1254		*cap |= ACPI_VIDEO_BACKLIGHT;
1255		/* We have backlight support, no need to scan further */
1256		return AE_CTRL_TERMINATE;
1257	}
1258	return 0;
1259}
1260
1261/* Returns true if the ACPI object is a video device which can be
1262 * handled by video.ko.
1263 * The device will get a Linux specific CID added in scan.c to
1264 * identify the device as an ACPI graphics device
1265 * Be aware that the graphics device may not be physically present
1266 * Use acpi_video_get_capabilities() to detect general ACPI video
1267 * capabilities of present cards
1268 */
1269long acpi_is_video_device(acpi_handle handle)
1270{
1271	long video_caps = 0;
1272
1273	/* Is this device able to support video switching ? */
1274	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1275		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1276
1277	/* Is this device able to retrieve a video ROM ? */
1278	if (acpi_has_method(handle, "_ROM"))
1279		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1280
1281	/* Is this device able to configure which video head to be POSTed ? */
1282	if (acpi_has_method(handle, "_VPO") &&
1283	    acpi_has_method(handle, "_GPD") &&
1284	    acpi_has_method(handle, "_SPD"))
1285		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1286
1287	/* Only check for backlight functionality if one of the above hit. */
1288	if (video_caps)
1289		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1290				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1291				    &video_caps, NULL);
1292
1293	return video_caps;
1294}
1295EXPORT_SYMBOL(acpi_is_video_device);
1296
1297const char *acpi_device_hid(struct acpi_device *device)
1298{
1299	struct acpi_hardware_id *hid;
1300
1301	if (list_empty(&device->pnp.ids))
1302		return dummy_hid;
1303
1304	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1305	return hid->id;
1306}
1307EXPORT_SYMBOL(acpi_device_hid);
1308
1309static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1310{
1311	struct acpi_hardware_id *id;
1312
1313	id = kmalloc(sizeof(*id), GFP_KERNEL);
1314	if (!id)
1315		return;
1316
1317	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1318	if (!id->id) {
1319		kfree(id);
1320		return;
1321	}
1322
1323	list_add_tail(&id->list, &pnp->ids);
1324	pnp->type.hardware_id = 1;
1325}
1326
1327/*
1328 * Old IBM workstations have a DSDT bug wherein the SMBus object
1329 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1330 * prefix.  Work around this.
1331 */
1332static bool acpi_ibm_smbus_match(acpi_handle handle)
1333{
1334	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1335	struct acpi_buffer path = { sizeof(node_name), node_name };
1336
1337	if (!dmi_name_in_vendors("IBM"))
1338		return false;
1339
1340	/* Look for SMBS object */
1341	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1342	    strcmp("SMBS", path.pointer))
1343		return false;
1344
1345	/* Does it have the necessary (but misnamed) methods? */
1346	if (acpi_has_method(handle, "SBI") &&
1347	    acpi_has_method(handle, "SBR") &&
1348	    acpi_has_method(handle, "SBW"))
1349		return true;
1350
1351	return false;
1352}
1353
1354static bool acpi_object_is_system_bus(acpi_handle handle)
1355{
1356	acpi_handle tmp;
1357
1358	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1359	    tmp == handle)
1360		return true;
1361	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1362	    tmp == handle)
1363		return true;
1364
1365	return false;
1366}
1367
1368static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1369			     int device_type)
1370{
1371	struct acpi_device_info *info = NULL;
1372	struct acpi_pnp_device_id_list *cid_list;
1373	int i;
1374
1375	switch (device_type) {
1376	case ACPI_BUS_TYPE_DEVICE:
1377		if (handle == ACPI_ROOT_OBJECT) {
1378			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1379			break;
1380		}
1381
1382		acpi_get_object_info(handle, &info);
1383		if (!info) {
1384			pr_err("%s: Error reading device info\n", __func__);
1385			return;
1386		}
1387
1388		if (info->valid & ACPI_VALID_HID) {
1389			acpi_add_id(pnp, info->hardware_id.string);
1390			pnp->type.platform_id = 1;
1391		}
1392		if (info->valid & ACPI_VALID_CID) {
1393			cid_list = &info->compatible_id_list;
1394			for (i = 0; i < cid_list->count; i++)
1395				acpi_add_id(pnp, cid_list->ids[i].string);
1396		}
1397		if (info->valid & ACPI_VALID_ADR) {
1398			pnp->bus_address = info->address;
1399			pnp->type.bus_address = 1;
1400		}
1401		if (info->valid & ACPI_VALID_UID)
1402			pnp->unique_id = kstrdup(info->unique_id.string,
1403							GFP_KERNEL);
1404		if (info->valid & ACPI_VALID_CLS)
1405			acpi_add_id(pnp, info->class_code.string);
1406
1407		kfree(info);
1408
1409		/*
1410		 * Some devices don't reliably have _HIDs & _CIDs, so add
1411		 * synthetic HIDs to make sure drivers can find them.
1412		 */
1413		if (acpi_is_video_device(handle)) {
1414			acpi_add_id(pnp, ACPI_VIDEO_HID);
1415			pnp->type.backlight = 1;
1416			break;
1417		}
1418		if (acpi_bay_match(handle))
1419			acpi_add_id(pnp, ACPI_BAY_HID);
1420		else if (acpi_dock_match(handle))
1421			acpi_add_id(pnp, ACPI_DOCK_HID);
1422		else if (acpi_ibm_smbus_match(handle))
1423			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1424		else if (list_empty(&pnp->ids) &&
1425			 acpi_object_is_system_bus(handle)) {
1426			/* \_SB, \_TZ, LNXSYBUS */
1427			acpi_add_id(pnp, ACPI_BUS_HID);
1428			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1429			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1430		}
1431
1432		break;
1433	case ACPI_BUS_TYPE_POWER:
1434		acpi_add_id(pnp, ACPI_POWER_HID);
1435		break;
1436	case ACPI_BUS_TYPE_PROCESSOR:
1437		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1438		break;
1439	case ACPI_BUS_TYPE_THERMAL:
1440		acpi_add_id(pnp, ACPI_THERMAL_HID);
1441		break;
1442	case ACPI_BUS_TYPE_POWER_BUTTON:
1443		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1444		break;
1445	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1446		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1447		break;
1448	case ACPI_BUS_TYPE_ECDT_EC:
1449		acpi_add_id(pnp, ACPI_ECDT_HID);
1450		break;
1451	}
1452}
1453
1454void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1455{
1456	struct acpi_hardware_id *id, *tmp;
1457
1458	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1459		kfree_const(id->id);
1460		kfree(id);
1461	}
1462	kfree(pnp->unique_id);
1463}
1464
1465/**
1466 * acpi_dma_supported - Check DMA support for the specified device.
1467 * @adev: The pointer to acpi device
1468 *
1469 * Return false if DMA is not supported. Otherwise, return true
1470 */
1471bool acpi_dma_supported(const struct acpi_device *adev)
1472{
1473	if (!adev)
1474		return false;
1475
1476	if (adev->flags.cca_seen)
1477		return true;
1478
1479	/*
1480	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1481	* DMA on "Intel platforms".  Presumably that includes all x86 and
1482	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1483	*/
1484	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1485		return true;
1486
1487	return false;
1488}
1489
1490/**
1491 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1492 * @adev: The pointer to acpi device
1493 *
1494 * Return enum dev_dma_attr.
1495 */
1496enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1497{
1498	if (!acpi_dma_supported(adev))
1499		return DEV_DMA_NOT_SUPPORTED;
1500
1501	if (adev->flags.coherent_dma)
1502		return DEV_DMA_COHERENT;
1503	else
1504		return DEV_DMA_NON_COHERENT;
1505}
1506
1507/**
1508 * acpi_dma_get_range() - Get device DMA parameters.
1509 *
1510 * @dev: device to configure
1511 * @map: pointer to DMA ranges result
1512 *
1513 * Evaluate DMA regions and return pointer to DMA regions on
1514 * parsing success; it does not update the passed in values on failure.
1515 *
1516 * Return 0 on success, < 0 on failure.
1517 */
1518int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1519{
1520	struct acpi_device *adev;
1521	LIST_HEAD(list);
1522	struct resource_entry *rentry;
1523	int ret;
1524	struct device *dma_dev = dev;
1525	struct bus_dma_region *r;
1526
1527	/*
1528	 * Walk the device tree chasing an ACPI companion with a _DMA
1529	 * object while we go. Stop if we find a device with an ACPI
1530	 * companion containing a _DMA method.
1531	 */
1532	do {
1533		adev = ACPI_COMPANION(dma_dev);
1534		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1535			break;
1536
1537		dma_dev = dma_dev->parent;
1538	} while (dma_dev);
1539
1540	if (!dma_dev)
1541		return -ENODEV;
1542
1543	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1544		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1545		return -EINVAL;
1546	}
1547
1548	ret = acpi_dev_get_dma_resources(adev, &list);
1549	if (ret > 0) {
1550		r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1551		if (!r) {
1552			ret = -ENOMEM;
1553			goto out;
1554		}
1555
1556		*map = r;
1557
1558		list_for_each_entry(rentry, &list, node) {
1559			if (rentry->res->start >= rentry->res->end) {
1560				kfree(*map);
1561				*map = NULL;
1562				ret = -EINVAL;
1563				dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1564				goto out;
1565			}
1566
1567			r->cpu_start = rentry->res->start;
1568			r->dma_start = rentry->res->start - rentry->offset;
1569			r->size = resource_size(rentry->res);
1570			r++;
1571		}
1572	}
1573 out:
1574	acpi_dev_free_resource_list(&list);
1575
1576	return ret >= 0 ? 0 : ret;
1577}
1578
1579#ifdef CONFIG_IOMMU_API
1580int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1581			   struct fwnode_handle *fwnode,
1582			   const struct iommu_ops *ops)
1583{
1584	int ret = iommu_fwspec_init(dev, fwnode, ops);
1585
1586	if (!ret)
1587		ret = iommu_fwspec_add_ids(dev, &id, 1);
1588
1589	return ret;
1590}
1591
1592static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1593{
1594	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1595
1596	return fwspec ? fwspec->ops : NULL;
1597}
1598
1599static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1600{
1601	int err;
1602	const struct iommu_ops *ops;
1603
1604	/* Serialise to make dev->iommu stable under our potential fwspec */
1605	mutex_lock(&iommu_probe_device_lock);
1606	/*
1607	 * If we already translated the fwspec there is nothing left to do,
1608	 * return the iommu_ops.
1609	 */
1610	ops = acpi_iommu_fwspec_ops(dev);
1611	if (ops) {
1612		mutex_unlock(&iommu_probe_device_lock);
1613		return 0;
1614	}
1615
1616	err = iort_iommu_configure_id(dev, id_in);
1617	if (err && err != -EPROBE_DEFER)
1618		err = viot_iommu_configure(dev);
1619	mutex_unlock(&iommu_probe_device_lock);
1620
1621	/*
1622	 * If we have reason to believe the IOMMU driver missed the initial
1623	 * iommu_probe_device() call for dev, replay it to get things in order.
1624	 */
1625	if (!err && dev->bus)
1626		err = iommu_probe_device(dev);
1627
1628	/* Ignore all other errors apart from EPROBE_DEFER */
1629	if (err == -EPROBE_DEFER) {
1630		return err;
1631	} else if (err) {
1632		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1633		return -ENODEV;
1634	}
1635	if (!acpi_iommu_fwspec_ops(dev))
1636		return -ENODEV;
1637	return 0;
1638}
1639
1640#else /* !CONFIG_IOMMU_API */
1641
1642int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1643			   struct fwnode_handle *fwnode,
1644			   const struct iommu_ops *ops)
1645{
1646	return -ENODEV;
1647}
1648
1649static int acpi_iommu_configure_id(struct device *dev, const u32 *id_in)
1650{
1651	return -ENODEV;
1652}
1653
1654#endif /* !CONFIG_IOMMU_API */
1655
1656/**
1657 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1658 * @dev: The pointer to the device
1659 * @attr: device dma attributes
1660 * @input_id: input device id const value pointer
1661 */
1662int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1663			  const u32 *input_id)
1664{
1665	int ret;
1666
1667	if (attr == DEV_DMA_NOT_SUPPORTED) {
1668		set_dma_ops(dev, &dma_dummy_ops);
1669		return 0;
1670	}
1671
1672	acpi_arch_dma_setup(dev);
1673
1674	ret = acpi_iommu_configure_id(dev, input_id);
1675	if (ret == -EPROBE_DEFER)
1676		return -EPROBE_DEFER;
1677
1678	/*
1679	 * Historically this routine doesn't fail driver probing due to errors
1680	 * in acpi_iommu_configure_id()
1681	 */
1682
1683	arch_setup_dma_ops(dev, 0, U64_MAX, attr == DEV_DMA_COHERENT);
1684
1685	return 0;
1686}
1687EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1688
1689static void acpi_init_coherency(struct acpi_device *adev)
1690{
1691	unsigned long long cca = 0;
1692	acpi_status status;
1693	struct acpi_device *parent = acpi_dev_parent(adev);
1694
1695	if (parent && parent->flags.cca_seen) {
1696		/*
1697		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1698		 * already saw one.
1699		 */
1700		adev->flags.cca_seen = 1;
1701		cca = parent->flags.coherent_dma;
1702	} else {
1703		status = acpi_evaluate_integer(adev->handle, "_CCA",
1704					       NULL, &cca);
1705		if (ACPI_SUCCESS(status))
1706			adev->flags.cca_seen = 1;
1707		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1708			/*
1709			 * If architecture does not specify that _CCA is
1710			 * required for DMA-able devices (e.g. x86),
1711			 * we default to _CCA=1.
1712			 */
1713			cca = 1;
1714		else
1715			acpi_handle_debug(adev->handle,
1716					  "ACPI device is missing _CCA.\n");
1717	}
1718
1719	adev->flags.coherent_dma = cca;
1720}
1721
1722static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1723{
1724	bool *is_serial_bus_slave_p = data;
1725
1726	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1727		return 1;
1728
1729	*is_serial_bus_slave_p = true;
1730
1731	 /* no need to do more checking */
1732	return -1;
1733}
1734
1735static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1736{
1737	struct acpi_device *parent = acpi_dev_parent(device);
1738	static const struct acpi_device_id indirect_io_hosts[] = {
1739		{"HISI0191", 0},
1740		{}
1741	};
1742
1743	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1744}
1745
1746static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1747{
1748	struct list_head resource_list;
1749	bool is_serial_bus_slave = false;
1750	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1751	/*
1752	 * These devices have multiple SerialBus resources and a client
1753	 * device must be instantiated for each of them, each with
1754	 * its own device id.
1755	 * Normally we only instantiate one client device for the first
1756	 * resource, using the ACPI HID as id. These special cases are handled
1757	 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1758	 * knows which client device id to use for each resource.
1759	 */
1760		{"BSG1160", },
1761		{"BSG2150", },
1762		{"CSC3551", },
1763		{"CSC3554", },
1764		{"CSC3556", },
1765		{"CSC3557", },
1766		{"INT33FE", },
1767		{"INT3515", },
1768		/* Non-conforming _HID for Cirrus Logic already released */
1769		{"CLSA0100", },
1770		{"CLSA0101", },
1771	/*
1772	 * Some ACPI devs contain SerialBus resources even though they are not
1773	 * attached to a serial bus at all.
1774	 */
1775		{ACPI_VIDEO_HID, },
1776		{"MSHW0028", },
1777	/*
1778	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1779	 * expects a regular tty cdev to be created (instead of the in kernel
1780	 * serdev) and which have a kernel driver which expects a platform_dev
1781	 * such as the rfkill-gpio driver.
1782	 */
1783		{"BCM4752", },
1784		{"LNV4752", },
1785		{}
1786	};
1787
1788	if (acpi_is_indirect_io_slave(device))
1789		return true;
1790
1791	/* Macs use device properties in lieu of _CRS resources */
1792	if (x86_apple_machine &&
1793	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1794	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1795	     fwnode_property_present(&device->fwnode, "baud")))
1796		return true;
1797
1798	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1799		return false;
1800
1801	INIT_LIST_HEAD(&resource_list);
1802	acpi_dev_get_resources(device, &resource_list,
1803			       acpi_check_serial_bus_slave,
1804			       &is_serial_bus_slave);
1805	acpi_dev_free_resource_list(&resource_list);
1806
1807	return is_serial_bus_slave;
1808}
1809
1810void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1811			     int type, void (*release)(struct device *))
1812{
1813	struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1814
1815	INIT_LIST_HEAD(&device->pnp.ids);
1816	device->device_type = type;
1817	device->handle = handle;
1818	device->dev.parent = parent ? &parent->dev : NULL;
1819	device->dev.release = release;
1820	device->dev.bus = &acpi_bus_type;
1821	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1822	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1823	acpi_device_get_busid(device);
1824	acpi_set_pnp_ids(handle, &device->pnp, type);
1825	acpi_init_properties(device);
1826	acpi_bus_get_flags(device);
1827	device->flags.match_driver = false;
1828	device->flags.initialized = true;
1829	device->flags.enumeration_by_parent =
1830		acpi_device_enumeration_by_parent(device);
1831	acpi_device_clear_enumerated(device);
1832	device_initialize(&device->dev);
1833	dev_set_uevent_suppress(&device->dev, true);
1834	acpi_init_coherency(device);
1835}
1836
1837static void acpi_scan_dep_init(struct acpi_device *adev)
1838{
1839	struct acpi_dep_data *dep;
1840
1841	list_for_each_entry(dep, &acpi_dep_list, node) {
1842		if (dep->consumer == adev->handle) {
1843			if (dep->honor_dep)
1844				adev->flags.honor_deps = 1;
1845
1846			if (!dep->met)
1847				adev->dep_unmet++;
1848		}
1849	}
1850}
1851
1852void acpi_device_add_finalize(struct acpi_device *device)
1853{
1854	dev_set_uevent_suppress(&device->dev, false);
1855	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1856}
1857
1858static void acpi_scan_init_status(struct acpi_device *adev)
1859{
1860	if (acpi_bus_get_status(adev))
1861		acpi_set_device_status(adev, 0);
1862}
1863
1864static int acpi_add_single_object(struct acpi_device **child,
1865				  acpi_handle handle, int type, bool dep_init)
1866{
1867	struct acpi_device *device;
1868	bool release_dep_lock = false;
1869	int result;
1870
1871	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1872	if (!device)
1873		return -ENOMEM;
1874
1875	acpi_init_device_object(device, handle, type, acpi_device_release);
1876	/*
1877	 * Getting the status is delayed till here so that we can call
1878	 * acpi_bus_get_status() and use its quirk handling.  Note that
1879	 * this must be done before the get power-/wakeup_dev-flags calls.
1880	 */
1881	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1882		if (dep_init) {
1883			mutex_lock(&acpi_dep_list_lock);
1884			/*
1885			 * Hold the lock until the acpi_tie_acpi_dev() call
1886			 * below to prevent concurrent acpi_scan_clear_dep()
1887			 * from deleting a dependency list entry without
1888			 * updating dep_unmet for the device.
1889			 */
1890			release_dep_lock = true;
1891			acpi_scan_dep_init(device);
1892		}
1893		acpi_scan_init_status(device);
1894	}
1895
1896	acpi_bus_get_power_flags(device);
1897	acpi_bus_get_wakeup_device_flags(device);
1898
1899	result = acpi_tie_acpi_dev(device);
1900
1901	if (release_dep_lock)
1902		mutex_unlock(&acpi_dep_list_lock);
1903
1904	if (!result)
1905		result = acpi_device_add(device);
1906
1907	if (result) {
1908		acpi_device_release(&device->dev);
1909		return result;
1910	}
1911
1912	acpi_power_add_remove_device(device, true);
1913	acpi_device_add_finalize(device);
1914
1915	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1916			  dev_name(&device->dev), device->dev.parent ?
1917				dev_name(device->dev.parent) : "(null)");
1918
1919	*child = device;
1920	return 0;
1921}
1922
1923static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1924					    void *context)
1925{
1926	struct resource *res = context;
1927
1928	if (acpi_dev_resource_memory(ares, res))
1929		return AE_CTRL_TERMINATE;
1930
1931	return AE_OK;
1932}
1933
1934static bool acpi_device_should_be_hidden(acpi_handle handle)
1935{
1936	acpi_status status;
1937	struct resource res;
1938
1939	/* Check if it should ignore the UART device */
1940	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1941		return false;
1942
1943	/*
1944	 * The UART device described in SPCR table is assumed to have only one
1945	 * memory resource present. So we only look for the first one here.
1946	 */
1947	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1948				     acpi_get_resource_memory, &res);
1949	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1950		return false;
1951
1952	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1953			 &res.start);
1954
1955	return true;
1956}
1957
1958bool acpi_device_is_present(const struct acpi_device *adev)
1959{
1960	return adev->status.present || adev->status.functional;
1961}
1962
1963bool acpi_device_is_enabled(const struct acpi_device *adev)
1964{
1965	return adev->status.present && adev->status.enabled;
1966}
1967
1968static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1969				       const char *idstr,
1970				       const struct acpi_device_id **matchid)
1971{
1972	const struct acpi_device_id *devid;
1973
1974	if (handler->match)
1975		return handler->match(idstr, matchid);
1976
1977	for (devid = handler->ids; devid->id[0]; devid++)
1978		if (!strcmp((char *)devid->id, idstr)) {
1979			if (matchid)
1980				*matchid = devid;
1981
1982			return true;
1983		}
1984
1985	return false;
1986}
1987
1988static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1989					const struct acpi_device_id **matchid)
1990{
1991	struct acpi_scan_handler *handler;
1992
1993	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1994		if (acpi_scan_handler_matching(handler, idstr, matchid))
1995			return handler;
1996
1997	return NULL;
1998}
1999
2000void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
2001{
2002	if (!!hotplug->enabled == !!val)
2003		return;
2004
2005	mutex_lock(&acpi_scan_lock);
2006
2007	hotplug->enabled = val;
2008
2009	mutex_unlock(&acpi_scan_lock);
2010}
2011
2012static void acpi_scan_init_hotplug(struct acpi_device *adev)
2013{
2014	struct acpi_hardware_id *hwid;
2015
2016	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
2017		acpi_dock_add(adev);
2018		return;
2019	}
2020	list_for_each_entry(hwid, &adev->pnp.ids, list) {
2021		struct acpi_scan_handler *handler;
2022
2023		handler = acpi_scan_match_handler(hwid->id, NULL);
2024		if (handler) {
2025			adev->flags.hotplug_notify = true;
2026			break;
2027		}
2028	}
2029}
2030
2031static u32 acpi_scan_check_dep(acpi_handle handle)
2032{
2033	struct acpi_handle_list dep_devices;
2034	u32 count;
2035	int i;
2036
2037	/*
2038	 * Check for _HID here to avoid deferring the enumeration of:
2039	 * 1. PCI devices.
2040	 * 2. ACPI nodes describing USB ports.
2041	 * Still, checking for _HID catches more then just these cases ...
2042	 */
2043	if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
2044		return 0;
2045
2046	if (!acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices)) {
2047		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2048		return 0;
2049	}
2050
2051	for (count = 0, i = 0; i < dep_devices.count; i++) {
2052		struct acpi_device_info *info;
2053		struct acpi_dep_data *dep;
2054		bool skip, honor_dep;
2055		acpi_status status;
2056
2057		status = acpi_get_object_info(dep_devices.handles[i], &info);
2058		if (ACPI_FAILURE(status)) {
2059			acpi_handle_debug(handle, "Error reading _DEP device info\n");
2060			continue;
2061		}
2062
2063		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2064		honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2065		kfree(info);
2066
2067		if (skip)
2068			continue;
2069
2070		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2071		if (!dep)
2072			continue;
2073
2074		count++;
2075
2076		dep->supplier = dep_devices.handles[i];
2077		dep->consumer = handle;
2078		dep->honor_dep = honor_dep;
2079
2080		mutex_lock(&acpi_dep_list_lock);
2081		list_add_tail(&dep->node , &acpi_dep_list);
2082		mutex_unlock(&acpi_dep_list_lock);
2083	}
2084
2085	acpi_handle_list_free(&dep_devices);
2086	return count;
2087}
2088
2089static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
2090{
2091	acpi_mipi_check_crs_csi2(handle);
2092	return AE_OK;
2093}
2094
2095static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
2096				      struct acpi_device **adev_p)
2097{
2098	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2099	acpi_object_type acpi_type;
2100	int type;
2101
2102	if (device)
2103		goto out;
2104
2105	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2106		return AE_OK;
2107
2108	switch (acpi_type) {
2109	case ACPI_TYPE_DEVICE:
2110		if (acpi_device_should_be_hidden(handle))
2111			return AE_OK;
2112
2113		if (first_pass) {
2114			acpi_mipi_check_crs_csi2(handle);
2115
2116			/* Bail out if there are dependencies. */
2117			if (acpi_scan_check_dep(handle) > 0) {
2118				/*
2119				 * The entire CSI-2 connection graph needs to be
2120				 * extracted before any drivers or scan handlers
2121				 * are bound to struct device objects, so scan
2122				 * _CRS CSI-2 resource descriptors for all
2123				 * devices below the current handle.
2124				 */
2125				acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2126						    ACPI_UINT32_MAX,
2127						    acpi_scan_check_crs_csi2_cb,
2128						    NULL, NULL, NULL);
2129				return AE_CTRL_DEPTH;
2130			}
2131		}
2132
2133		fallthrough;
2134	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2135		type = ACPI_BUS_TYPE_DEVICE;
2136		break;
2137
2138	case ACPI_TYPE_PROCESSOR:
2139		type = ACPI_BUS_TYPE_PROCESSOR;
2140		break;
2141
2142	case ACPI_TYPE_THERMAL:
2143		type = ACPI_BUS_TYPE_THERMAL;
2144		break;
2145
2146	case ACPI_TYPE_POWER:
2147		acpi_add_power_resource(handle);
2148		fallthrough;
2149	default:
2150		return AE_OK;
2151	}
2152
2153	/*
2154	 * If first_pass is true at this point, the device has no dependencies,
2155	 * or the creation of the device object would have been postponed above.
2156	 */
2157	acpi_add_single_object(&device, handle, type, !first_pass);
2158	if (!device)
2159		return AE_CTRL_DEPTH;
2160
2161	acpi_scan_init_hotplug(device);
2162
2163out:
2164	if (!*adev_p)
2165		*adev_p = device;
2166
2167	return AE_OK;
2168}
2169
2170static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2171					void *not_used, void **ret_p)
2172{
2173	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2174}
2175
2176static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2177					void *not_used, void **ret_p)
2178{
2179	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2180}
2181
2182static void acpi_default_enumeration(struct acpi_device *device)
2183{
2184	/*
2185	 * Do not enumerate devices with enumeration_by_parent flag set as
2186	 * they will be enumerated by their respective parents.
2187	 */
2188	if (!device->flags.enumeration_by_parent) {
2189		acpi_create_platform_device(device, NULL);
2190		acpi_device_set_enumerated(device);
2191	} else {
2192		blocking_notifier_call_chain(&acpi_reconfig_chain,
2193					     ACPI_RECONFIG_DEVICE_ADD, device);
2194	}
2195}
2196
2197static const struct acpi_device_id generic_device_ids[] = {
2198	{ACPI_DT_NAMESPACE_HID, },
2199	{"", },
2200};
2201
2202static int acpi_generic_device_attach(struct acpi_device *adev,
2203				      const struct acpi_device_id *not_used)
2204{
2205	/*
2206	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2207	 * below can be unconditional.
2208	 */
2209	if (adev->data.of_compatible)
2210		acpi_default_enumeration(adev);
2211
2212	return 1;
2213}
2214
2215static struct acpi_scan_handler generic_device_handler = {
2216	.ids = generic_device_ids,
2217	.attach = acpi_generic_device_attach,
2218};
2219
2220static int acpi_scan_attach_handler(struct acpi_device *device)
2221{
2222	struct acpi_hardware_id *hwid;
2223	int ret = 0;
2224
2225	list_for_each_entry(hwid, &device->pnp.ids, list) {
2226		const struct acpi_device_id *devid;
2227		struct acpi_scan_handler *handler;
2228
2229		handler = acpi_scan_match_handler(hwid->id, &devid);
2230		if (handler) {
2231			if (!handler->attach) {
2232				device->pnp.type.platform_id = 0;
2233				continue;
2234			}
2235			device->handler = handler;
2236			ret = handler->attach(device, devid);
2237			if (ret > 0)
2238				break;
2239
2240			device->handler = NULL;
2241			if (ret < 0)
2242				break;
2243		}
2244	}
2245
2246	return ret;
2247}
2248
2249static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2250{
2251	bool skip = !first_pass && device->flags.visited;
2252	acpi_handle ejd;
2253	int ret;
2254
2255	if (skip)
2256		goto ok;
2257
2258	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2259		register_dock_dependent_device(device, ejd);
2260
2261	acpi_bus_get_status(device);
2262	/* Skip devices that are not ready for enumeration (e.g. not present) */
2263	if (!acpi_dev_ready_for_enumeration(device)) {
2264		device->flags.initialized = false;
2265		acpi_device_clear_enumerated(device);
2266		device->flags.power_manageable = 0;
2267		return 0;
2268	}
2269	if (device->handler)
2270		goto ok;
2271
2272	if (!device->flags.initialized) {
2273		device->flags.power_manageable =
2274			device->power.states[ACPI_STATE_D0].flags.valid;
2275		if (acpi_bus_init_power(device))
2276			device->flags.power_manageable = 0;
2277
2278		device->flags.initialized = true;
2279	} else if (device->flags.visited) {
2280		goto ok;
2281	}
2282
2283	ret = acpi_scan_attach_handler(device);
2284	if (ret < 0)
2285		return 0;
2286
2287	device->flags.match_driver = true;
2288	if (ret > 0 && !device->flags.enumeration_by_parent) {
2289		acpi_device_set_enumerated(device);
2290		goto ok;
2291	}
2292
2293	ret = device_attach(&device->dev);
2294	if (ret < 0)
2295		return 0;
2296
2297	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2298		acpi_default_enumeration(device);
2299	else
2300		acpi_device_set_enumerated(device);
2301
2302ok:
2303	acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2304
2305	if (!skip && device->handler && device->handler->hotplug.notify_online)
2306		device->handler->hotplug.notify_online(device);
2307
2308	return 0;
2309}
2310
2311static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2312{
2313	struct acpi_device **adev_p = data;
2314	struct acpi_device *adev = *adev_p;
2315
2316	/*
2317	 * If we're passed a 'previous' consumer device then we need to skip
2318	 * any consumers until we meet the previous one, and then NULL @data
2319	 * so the next one can be returned.
2320	 */
2321	if (adev) {
2322		if (dep->consumer == adev->handle)
2323			*adev_p = NULL;
2324
2325		return 0;
2326	}
2327
2328	adev = acpi_get_acpi_dev(dep->consumer);
2329	if (adev) {
2330		*(struct acpi_device **)data = adev;
2331		return 1;
2332	}
2333	/* Continue parsing if the device object is not present. */
2334	return 0;
2335}
2336
2337struct acpi_scan_clear_dep_work {
2338	struct work_struct work;
2339	struct acpi_device *adev;
2340};
2341
2342static void acpi_scan_clear_dep_fn(struct work_struct *work)
2343{
2344	struct acpi_scan_clear_dep_work *cdw;
2345
2346	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2347
2348	acpi_scan_lock_acquire();
2349	acpi_bus_attach(cdw->adev, (void *)true);
2350	acpi_scan_lock_release();
2351
2352	acpi_dev_put(cdw->adev);
2353	kfree(cdw);
2354}
2355
2356static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2357{
2358	struct acpi_scan_clear_dep_work *cdw;
2359
2360	if (adev->dep_unmet)
2361		return false;
2362
2363	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2364	if (!cdw)
2365		return false;
2366
2367	cdw->adev = adev;
2368	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2369	/*
2370	 * Since the work function may block on the lock until the entire
2371	 * initial enumeration of devices is complete, put it into the unbound
2372	 * workqueue.
2373	 */
2374	queue_work(system_unbound_wq, &cdw->work);
2375
2376	return true;
2377}
2378
2379static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2380{
2381	list_del(&dep->node);
2382	kfree(dep);
2383}
2384
2385static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2386{
2387	struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2388
2389	if (adev) {
2390		adev->dep_unmet--;
2391		if (!acpi_scan_clear_dep_queue(adev))
2392			acpi_dev_put(adev);
2393	}
2394
2395	if (dep->free_when_met)
2396		acpi_scan_delete_dep_data(dep);
2397	else
2398		dep->met = true;
2399
2400	return 0;
2401}
2402
2403/**
2404 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2405 * @handle:	The ACPI handle of the supplier device
2406 * @callback:	Pointer to the callback function to apply
2407 * @data:	Pointer to some data to pass to the callback
2408 *
2409 * The return value of the callback determines this function's behaviour. If 0
2410 * is returned we continue to iterate over acpi_dep_list. If a positive value
2411 * is returned then the loop is broken but this function returns 0. If a
2412 * negative value is returned by the callback then the loop is broken and that
2413 * value is returned as the final error.
2414 */
2415static int acpi_walk_dep_device_list(acpi_handle handle,
2416				int (*callback)(struct acpi_dep_data *, void *),
2417				void *data)
2418{
2419	struct acpi_dep_data *dep, *tmp;
2420	int ret = 0;
2421
2422	mutex_lock(&acpi_dep_list_lock);
2423	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2424		if (dep->supplier == handle) {
2425			ret = callback(dep, data);
2426			if (ret)
2427				break;
2428		}
2429	}
2430	mutex_unlock(&acpi_dep_list_lock);
2431
2432	return ret > 0 ? 0 : ret;
2433}
2434
2435/**
2436 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2437 * @supplier: Pointer to the supplier &struct acpi_device
2438 *
2439 * Clear dependencies on the given device.
2440 */
2441void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2442{
2443	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2444}
2445EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2446
2447/**
2448 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2449 * @device: Pointer to the &struct acpi_device to check
2450 *
2451 * Check if the device is present and has no unmet dependencies.
2452 *
2453 * Return true if the device is ready for enumeratino. Otherwise, return false.
2454 */
2455bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2456{
2457	if (device->flags.honor_deps && device->dep_unmet)
2458		return false;
2459
2460	return acpi_device_is_present(device);
2461}
2462EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2463
2464/**
2465 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2466 * @supplier: Pointer to the dependee device
2467 * @start: Pointer to the current dependent device
2468 *
2469 * Returns the next &struct acpi_device which declares itself dependent on
2470 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2471 *
2472 * If the returned adev is not passed as @start to this function, the caller is
2473 * responsible for putting the reference to adev when it is no longer needed.
2474 */
2475struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2476						   struct acpi_device *start)
2477{
2478	struct acpi_device *adev = start;
2479
2480	acpi_walk_dep_device_list(supplier->handle,
2481				  acpi_dev_get_next_consumer_dev_cb, &adev);
2482
2483	acpi_dev_put(start);
2484
2485	if (adev == start)
2486		return NULL;
2487
2488	return adev;
2489}
2490EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2491
2492static void acpi_scan_postponed_branch(acpi_handle handle)
2493{
2494	struct acpi_device *adev = NULL;
2495
2496	if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2497		return;
2498
2499	acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2500			    acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2501
2502	/*
2503	 * Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
2504	 * have been added above.
2505	 */
2506	acpi_mipi_init_crs_csi2_swnodes();
2507
2508	acpi_bus_attach(adev, NULL);
2509}
2510
2511static void acpi_scan_postponed(void)
2512{
2513	struct acpi_dep_data *dep, *tmp;
2514
2515	mutex_lock(&acpi_dep_list_lock);
2516
2517	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2518		acpi_handle handle = dep->consumer;
2519
2520		/*
2521		 * In case there are multiple acpi_dep_list entries with the
2522		 * same consumer, skip the current entry if the consumer device
2523		 * object corresponding to it is present already.
2524		 */
2525		if (!acpi_fetch_acpi_dev(handle)) {
2526			/*
2527			 * Even though the lock is released here, tmp is
2528			 * guaranteed to be valid, because none of the list
2529			 * entries following dep is marked as "free when met"
2530			 * and so they cannot be deleted.
2531			 */
2532			mutex_unlock(&acpi_dep_list_lock);
2533
2534			acpi_scan_postponed_branch(handle);
2535
2536			mutex_lock(&acpi_dep_list_lock);
2537		}
2538
2539		if (dep->met)
2540			acpi_scan_delete_dep_data(dep);
2541		else
2542			dep->free_when_met = true;
2543	}
2544
2545	mutex_unlock(&acpi_dep_list_lock);
2546}
2547
2548/**
2549 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2550 * @handle: Root of the namespace scope to scan.
2551 *
2552 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2553 * found devices.
2554 *
2555 * If no devices were found, -ENODEV is returned, but it does not mean that
2556 * there has been a real error.  There just have been no suitable ACPI objects
2557 * in the table trunk from which the kernel could create a device and add an
2558 * appropriate driver.
2559 *
2560 * Must be called under acpi_scan_lock.
2561 */
2562int acpi_bus_scan(acpi_handle handle)
2563{
2564	struct acpi_device *device = NULL;
2565
2566	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2567
2568	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2569		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2570				    acpi_bus_check_add_1, NULL, NULL,
2571				    (void **)&device);
2572
2573	if (!device)
2574		return -ENODEV;
2575
2576	/*
2577	 * Set up ACPI _CRS CSI-2 software nodes using information extracted
2578	 * from the _CRS CSI-2 resource descriptors during the ACPI namespace
2579	 * walk above and MIPI DisCo for Imaging device properties.
2580	 */
2581	acpi_mipi_scan_crs_csi2();
2582	acpi_mipi_init_crs_csi2_swnodes();
2583
2584	acpi_bus_attach(device, (void *)true);
2585
2586	/* Pass 2: Enumerate all of the remaining devices. */
2587
2588	acpi_scan_postponed();
2589
2590	acpi_mipi_crs_csi2_cleanup();
2591
2592	return 0;
2593}
2594EXPORT_SYMBOL(acpi_bus_scan);
2595
2596/**
2597 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2598 * @adev: Root of the ACPI namespace scope to walk.
2599 *
2600 * Must be called under acpi_scan_lock.
2601 */
2602void acpi_bus_trim(struct acpi_device *adev)
2603{
2604	acpi_scan_check_and_detach(adev, NULL);
2605}
2606EXPORT_SYMBOL_GPL(acpi_bus_trim);
2607
2608int acpi_bus_register_early_device(int type)
2609{
2610	struct acpi_device *device = NULL;
2611	int result;
2612
2613	result = acpi_add_single_object(&device, NULL, type, false);
2614	if (result)
2615		return result;
2616
2617	device->flags.match_driver = true;
2618	return device_attach(&device->dev);
2619}
2620EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2621
2622static void acpi_bus_scan_fixed(void)
2623{
2624	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2625		struct acpi_device *adev = NULL;
2626
2627		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2628				       false);
2629		if (adev) {
2630			adev->flags.match_driver = true;
2631			if (device_attach(&adev->dev) >= 0)
2632				device_init_wakeup(&adev->dev, true);
2633			else
2634				dev_dbg(&adev->dev, "No driver\n");
2635		}
2636	}
2637
2638	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2639		struct acpi_device *adev = NULL;
2640
2641		acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2642				       false);
2643		if (adev) {
2644			adev->flags.match_driver = true;
2645			if (device_attach(&adev->dev) < 0)
2646				dev_dbg(&adev->dev, "No driver\n");
2647		}
2648	}
2649}
2650
2651static void __init acpi_get_spcr_uart_addr(void)
2652{
2653	acpi_status status;
2654	struct acpi_table_spcr *spcr_ptr;
2655
2656	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2657				(struct acpi_table_header **)&spcr_ptr);
2658	if (ACPI_FAILURE(status)) {
2659		pr_warn("STAO table present, but SPCR is missing\n");
2660		return;
2661	}
2662
2663	spcr_uart_addr = spcr_ptr->serial_port.address;
2664	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2665}
2666
2667static bool acpi_scan_initialized;
2668
2669void __init acpi_scan_init(void)
2670{
2671	acpi_status status;
2672	struct acpi_table_stao *stao_ptr;
2673
2674	acpi_pci_root_init();
2675	acpi_pci_link_init();
2676	acpi_processor_init();
2677	acpi_platform_init();
2678	acpi_lpss_init();
2679	acpi_apd_init();
2680	acpi_cmos_rtc_init();
2681	acpi_container_init();
2682	acpi_memory_hotplug_init();
2683	acpi_watchdog_init();
2684	acpi_pnp_init();
2685	acpi_int340x_thermal_init();
2686	acpi_init_lpit();
2687
2688	acpi_scan_add_handler(&generic_device_handler);
2689
2690	/*
2691	 * If there is STAO table, check whether it needs to ignore the UART
2692	 * device in SPCR table.
2693	 */
2694	status = acpi_get_table(ACPI_SIG_STAO, 0,
2695				(struct acpi_table_header **)&stao_ptr);
2696	if (ACPI_SUCCESS(status)) {
2697		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2698			pr_info("STAO Name List not yet supported.\n");
2699
2700		if (stao_ptr->ignore_uart)
2701			acpi_get_spcr_uart_addr();
2702
2703		acpi_put_table((struct acpi_table_header *)stao_ptr);
2704	}
2705
2706	acpi_gpe_apply_masked_gpes();
2707	acpi_update_all_gpes();
2708
2709	/*
2710	 * Although we call __add_memory() that is documented to require the
2711	 * device_hotplug_lock, it is not necessary here because this is an
2712	 * early code when userspace or any other code path cannot trigger
2713	 * hotplug/hotunplug operations.
2714	 */
2715	mutex_lock(&acpi_scan_lock);
2716	/*
2717	 * Enumerate devices in the ACPI namespace.
2718	 */
2719	if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2720		goto unlock;
2721
2722	acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2723	if (!acpi_root)
2724		goto unlock;
2725
2726	/* Fixed feature devices do not exist on HW-reduced platform */
2727	if (!acpi_gbl_reduced_hardware)
2728		acpi_bus_scan_fixed();
2729
2730	acpi_turn_off_unused_power_resources();
2731
2732	acpi_scan_initialized = true;
2733
2734unlock:
2735	mutex_unlock(&acpi_scan_lock);
2736}
2737
2738static struct acpi_probe_entry *ape;
2739static int acpi_probe_count;
2740static DEFINE_MUTEX(acpi_probe_mutex);
2741
2742static int __init acpi_match_madt(union acpi_subtable_headers *header,
2743				  const unsigned long end)
2744{
2745	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2746		if (!ape->probe_subtbl(header, end))
2747			acpi_probe_count++;
2748
2749	return 0;
2750}
2751
2752int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2753{
2754	int count = 0;
2755
2756	if (acpi_disabled)
2757		return 0;
2758
2759	mutex_lock(&acpi_probe_mutex);
2760	for (ape = ap_head; nr; ape++, nr--) {
2761		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2762			acpi_probe_count = 0;
2763			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2764			count += acpi_probe_count;
2765		} else {
2766			int res;
2767			res = acpi_table_parse(ape->id, ape->probe_table);
2768			if (!res)
2769				count++;
2770		}
2771	}
2772	mutex_unlock(&acpi_probe_mutex);
2773
2774	return count;
2775}
2776
2777static void acpi_table_events_fn(struct work_struct *work)
2778{
2779	acpi_scan_lock_acquire();
2780	acpi_bus_scan(ACPI_ROOT_OBJECT);
2781	acpi_scan_lock_release();
2782
2783	kfree(work);
2784}
2785
2786void acpi_scan_table_notify(void)
2787{
2788	struct work_struct *work;
2789
2790	if (!acpi_scan_initialized)
2791		return;
2792
2793	work = kmalloc(sizeof(*work), GFP_KERNEL);
2794	if (!work)
2795		return;
2796
2797	INIT_WORK(work, acpi_table_events_fn);
2798	schedule_work(work);
2799}
2800
2801int acpi_reconfig_notifier_register(struct notifier_block *nb)
2802{
2803	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2804}
2805EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2806
2807int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2808{
2809	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2810}
2811EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2812