1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * processor_idle - idle state submodule to the ACPI processor driver
4 *
5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *  			- Added processor hotplug support
10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 *  			- Added support for C3 on SMP
12 */
13#define pr_fmt(fmt) "ACPI: " fmt
14
15#include <linux/module.h>
16#include <linux/acpi.h>
17#include <linux/dmi.h>
18#include <linux/sched.h>       /* need_resched() */
19#include <linux/sort.h>
20#include <linux/tick.h>
21#include <linux/cpuidle.h>
22#include <linux/cpu.h>
23#include <linux/minmax.h>
24#include <linux/perf_event.h>
25#include <acpi/processor.h>
26#include <linux/context_tracking.h>
27
28/*
29 * Include the apic definitions for x86 to have the APIC timer related defines
30 * available also for UP (on SMP it gets magically included via linux/smp.h).
31 * asm/acpi.h is not an option, as it would require more include magic. Also
32 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
33 */
34#ifdef CONFIG_X86
35#include <asm/apic.h>
36#include <asm/cpu.h>
37#endif
38
39#define ACPI_IDLE_STATE_START	(IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40
41static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
42module_param(max_cstate, uint, 0400);
43static bool nocst __read_mostly;
44module_param(nocst, bool, 0400);
45static bool bm_check_disable __read_mostly;
46module_param(bm_check_disable, bool, 0400);
47
48static unsigned int latency_factor __read_mostly = 2;
49module_param(latency_factor, uint, 0644);
50
51static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
52
53struct cpuidle_driver acpi_idle_driver = {
54	.name =		"acpi_idle",
55	.owner =	THIS_MODULE,
56};
57
58#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
59static
60DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
61
62static int disabled_by_idle_boot_param(void)
63{
64	return boot_option_idle_override == IDLE_POLL ||
65		boot_option_idle_override == IDLE_HALT;
66}
67
68/*
69 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
70 * For now disable this. Probably a bug somewhere else.
71 *
72 * To skip this limit, boot/load with a large max_cstate limit.
73 */
74static int set_max_cstate(const struct dmi_system_id *id)
75{
76	if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
77		return 0;
78
79	pr_notice("%s detected - limiting to C%ld max_cstate."
80		  " Override with \"processor.max_cstate=%d\"\n", id->ident,
81		  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
82
83	max_cstate = (long)id->driver_data;
84
85	return 0;
86}
87
88static const struct dmi_system_id processor_power_dmi_table[] = {
89	{ set_max_cstate, "Clevo 5600D", {
90	  DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
91	  DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
92	 (void *)2},
93	{ set_max_cstate, "Pavilion zv5000", {
94	  DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
95	  DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
96	 (void *)1},
97	{ set_max_cstate, "Asus L8400B", {
98	  DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
99	  DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
100	 (void *)1},
101	{},
102};
103
104
105/*
106 * Callers should disable interrupts before the call and enable
107 * interrupts after return.
108 */
109static void __cpuidle acpi_safe_halt(void)
110{
111	if (!tif_need_resched()) {
112		raw_safe_halt();
113		raw_local_irq_disable();
114	}
115}
116
117#ifdef ARCH_APICTIMER_STOPS_ON_C3
118
119/*
120 * Some BIOS implementations switch to C3 in the published C2 state.
121 * This seems to be a common problem on AMD boxen, but other vendors
122 * are affected too. We pick the most conservative approach: we assume
123 * that the local APIC stops in both C2 and C3.
124 */
125static void lapic_timer_check_state(int state, struct acpi_processor *pr,
126				   struct acpi_processor_cx *cx)
127{
128	struct acpi_processor_power *pwr = &pr->power;
129	u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
130
131	if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
132		return;
133
134	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
135		type = ACPI_STATE_C1;
136
137	/*
138	 * Check, if one of the previous states already marked the lapic
139	 * unstable
140	 */
141	if (pwr->timer_broadcast_on_state < state)
142		return;
143
144	if (cx->type >= type)
145		pr->power.timer_broadcast_on_state = state;
146}
147
148static void __lapic_timer_propagate_broadcast(void *arg)
149{
150	struct acpi_processor *pr = arg;
151
152	if (pr->power.timer_broadcast_on_state < INT_MAX)
153		tick_broadcast_enable();
154	else
155		tick_broadcast_disable();
156}
157
158static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
159{
160	smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
161				 (void *)pr, 1);
162}
163
164/* Power(C) State timer broadcast control */
165static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
166					struct acpi_processor_cx *cx)
167{
168	return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
169}
170
171#else
172
173static void lapic_timer_check_state(int state, struct acpi_processor *pr,
174				   struct acpi_processor_cx *cstate) { }
175static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
176
177static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
178					struct acpi_processor_cx *cx)
179{
180	return false;
181}
182
183#endif
184
185#if defined(CONFIG_X86)
186static void tsc_check_state(int state)
187{
188	switch (boot_cpu_data.x86_vendor) {
189	case X86_VENDOR_HYGON:
190	case X86_VENDOR_AMD:
191	case X86_VENDOR_INTEL:
192	case X86_VENDOR_CENTAUR:
193	case X86_VENDOR_ZHAOXIN:
194		/*
195		 * AMD Fam10h TSC will tick in all
196		 * C/P/S0/S1 states when this bit is set.
197		 */
198		if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
199			return;
200		fallthrough;
201	default:
202		/* TSC could halt in idle, so notify users */
203		if (state > ACPI_STATE_C1)
204			mark_tsc_unstable("TSC halts in idle");
205	}
206}
207#else
208static void tsc_check_state(int state) { return; }
209#endif
210
211static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
212{
213
214	if (!pr->pblk)
215		return -ENODEV;
216
217	/* if info is obtained from pblk/fadt, type equals state */
218	pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
219	pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
220
221#ifndef CONFIG_HOTPLUG_CPU
222	/*
223	 * Check for P_LVL2_UP flag before entering C2 and above on
224	 * an SMP system.
225	 */
226	if ((num_online_cpus() > 1) &&
227	    !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
228		return -ENODEV;
229#endif
230
231	/* determine C2 and C3 address from pblk */
232	pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
233	pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
234
235	/* determine latencies from FADT */
236	pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
237	pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
238
239	/*
240	 * FADT specified C2 latency must be less than or equal to
241	 * 100 microseconds.
242	 */
243	if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
244		acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
245				  acpi_gbl_FADT.c2_latency);
246		/* invalidate C2 */
247		pr->power.states[ACPI_STATE_C2].address = 0;
248	}
249
250	/*
251	 * FADT supplied C3 latency must be less than or equal to
252	 * 1000 microseconds.
253	 */
254	if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
255		acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
256				  acpi_gbl_FADT.c3_latency);
257		/* invalidate C3 */
258		pr->power.states[ACPI_STATE_C3].address = 0;
259	}
260
261	acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
262			  pr->power.states[ACPI_STATE_C2].address,
263			  pr->power.states[ACPI_STATE_C3].address);
264
265	snprintf(pr->power.states[ACPI_STATE_C2].desc,
266			 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
267			 pr->power.states[ACPI_STATE_C2].address);
268	snprintf(pr->power.states[ACPI_STATE_C3].desc,
269			 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
270			 pr->power.states[ACPI_STATE_C3].address);
271
272	return 0;
273}
274
275static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
276{
277	if (!pr->power.states[ACPI_STATE_C1].valid) {
278		/* set the first C-State to C1 */
279		/* all processors need to support C1 */
280		pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
281		pr->power.states[ACPI_STATE_C1].valid = 1;
282		pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
283
284		snprintf(pr->power.states[ACPI_STATE_C1].desc,
285			 ACPI_CX_DESC_LEN, "ACPI HLT");
286	}
287	/* the C0 state only exists as a filler in our array */
288	pr->power.states[ACPI_STATE_C0].valid = 1;
289	return 0;
290}
291
292static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293{
294	int ret;
295
296	if (nocst)
297		return -ENODEV;
298
299	ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
300	if (ret)
301		return ret;
302
303	if (!pr->power.count)
304		return -EFAULT;
305
306	pr->flags.has_cst = 1;
307	return 0;
308}
309
310static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
311					   struct acpi_processor_cx *cx)
312{
313	static int bm_check_flag = -1;
314	static int bm_control_flag = -1;
315
316
317	if (!cx->address)
318		return;
319
320	/*
321	 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
322	 * DMA transfers are used by any ISA device to avoid livelock.
323	 * Note that we could disable Type-F DMA (as recommended by
324	 * the erratum), but this is known to disrupt certain ISA
325	 * devices thus we take the conservative approach.
326	 */
327	if (errata.piix4.fdma) {
328		acpi_handle_debug(pr->handle,
329				  "C3 not supported on PIIX4 with Type-F DMA\n");
330		return;
331	}
332
333	/* All the logic here assumes flags.bm_check is same across all CPUs */
334	if (bm_check_flag == -1) {
335		/* Determine whether bm_check is needed based on CPU  */
336		acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
337		bm_check_flag = pr->flags.bm_check;
338		bm_control_flag = pr->flags.bm_control;
339	} else {
340		pr->flags.bm_check = bm_check_flag;
341		pr->flags.bm_control = bm_control_flag;
342	}
343
344	if (pr->flags.bm_check) {
345		if (!pr->flags.bm_control) {
346			if (pr->flags.has_cst != 1) {
347				/* bus mastering control is necessary */
348				acpi_handle_debug(pr->handle,
349						  "C3 support requires BM control\n");
350				return;
351			} else {
352				/* Here we enter C3 without bus mastering */
353				acpi_handle_debug(pr->handle,
354						  "C3 support without BM control\n");
355			}
356		}
357	} else {
358		/*
359		 * WBINVD should be set in fadt, for C3 state to be
360		 * supported on when bm_check is not required.
361		 */
362		if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
363			acpi_handle_debug(pr->handle,
364					  "Cache invalidation should work properly"
365					  " for C3 to be enabled on SMP systems\n");
366			return;
367		}
368	}
369
370	/*
371	 * Otherwise we've met all of our C3 requirements.
372	 * Normalize the C3 latency to expidite policy.  Enable
373	 * checking of bus mastering status (bm_check) so we can
374	 * use this in our C3 policy
375	 */
376	cx->valid = 1;
377
378	/*
379	 * On older chipsets, BM_RLD needs to be set
380	 * in order for Bus Master activity to wake the
381	 * system from C3.  Newer chipsets handle DMA
382	 * during C3 automatically and BM_RLD is a NOP.
383	 * In either case, the proper way to
384	 * handle BM_RLD is to set it and leave it set.
385	 */
386	acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
387}
388
389static int acpi_cst_latency_cmp(const void *a, const void *b)
390{
391	const struct acpi_processor_cx *x = a, *y = b;
392
393	if (!(x->valid && y->valid))
394		return 0;
395	if (x->latency > y->latency)
396		return 1;
397	if (x->latency < y->latency)
398		return -1;
399	return 0;
400}
401static void acpi_cst_latency_swap(void *a, void *b, int n)
402{
403	struct acpi_processor_cx *x = a, *y = b;
404
405	if (!(x->valid && y->valid))
406		return;
407	swap(x->latency, y->latency);
408}
409
410static int acpi_processor_power_verify(struct acpi_processor *pr)
411{
412	unsigned int i;
413	unsigned int working = 0;
414	unsigned int last_latency = 0;
415	unsigned int last_type = 0;
416	bool buggy_latency = false;
417
418	pr->power.timer_broadcast_on_state = INT_MAX;
419
420	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
421		struct acpi_processor_cx *cx = &pr->power.states[i];
422
423		switch (cx->type) {
424		case ACPI_STATE_C1:
425			cx->valid = 1;
426			break;
427
428		case ACPI_STATE_C2:
429			if (!cx->address)
430				break;
431			cx->valid = 1;
432			break;
433
434		case ACPI_STATE_C3:
435			acpi_processor_power_verify_c3(pr, cx);
436			break;
437		}
438		if (!cx->valid)
439			continue;
440		if (cx->type >= last_type && cx->latency < last_latency)
441			buggy_latency = true;
442		last_latency = cx->latency;
443		last_type = cx->type;
444
445		lapic_timer_check_state(i, pr, cx);
446		tsc_check_state(cx->type);
447		working++;
448	}
449
450	if (buggy_latency) {
451		pr_notice("FW issue: working around C-state latencies out of order\n");
452		sort(&pr->power.states[1], max_cstate,
453		     sizeof(struct acpi_processor_cx),
454		     acpi_cst_latency_cmp,
455		     acpi_cst_latency_swap);
456	}
457
458	lapic_timer_propagate_broadcast(pr);
459
460	return working;
461}
462
463static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
464{
465	unsigned int i;
466	int result;
467
468
469	/* NOTE: the idle thread may not be running while calling
470	 * this function */
471
472	/* Zero initialize all the C-states info. */
473	memset(pr->power.states, 0, sizeof(pr->power.states));
474
475	result = acpi_processor_get_power_info_cst(pr);
476	if (result == -ENODEV)
477		result = acpi_processor_get_power_info_fadt(pr);
478
479	if (result)
480		return result;
481
482	acpi_processor_get_power_info_default(pr);
483
484	pr->power.count = acpi_processor_power_verify(pr);
485
486	/*
487	 * if one state of type C2 or C3 is available, mark this
488	 * CPU as being "idle manageable"
489	 */
490	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
491		if (pr->power.states[i].valid) {
492			pr->power.count = i;
493			pr->flags.power = 1;
494		}
495	}
496
497	return 0;
498}
499
500/**
501 * acpi_idle_bm_check - checks if bus master activity was detected
502 */
503static int acpi_idle_bm_check(void)
504{
505	u32 bm_status = 0;
506
507	if (bm_check_disable)
508		return 0;
509
510	acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
511	if (bm_status)
512		acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
513	/*
514	 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
515	 * the true state of bus mastering activity; forcing us to
516	 * manually check the BMIDEA bit of each IDE channel.
517	 */
518	else if (errata.piix4.bmisx) {
519		if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
520		    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
521			bm_status = 1;
522	}
523	return bm_status;
524}
525
526static __cpuidle void io_idle(unsigned long addr)
527{
528	/* IO port based C-state */
529	inb(addr);
530
531#ifdef	CONFIG_X86
532	/* No delay is needed if we are in guest */
533	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
534		return;
535	/*
536	 * Modern (>=Nehalem) Intel systems use ACPI via intel_idle,
537	 * not this code.  Assume that any Intel systems using this
538	 * are ancient and may need the dummy wait.  This also assumes
539	 * that the motivating chipset issue was Intel-only.
540	 */
541	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
542		return;
543#endif
544	/*
545	 * Dummy wait op - must do something useless after P_LVL2 read
546	 * because chipsets cannot guarantee that STPCLK# signal gets
547	 * asserted in time to freeze execution properly
548	 *
549	 * This workaround has been in place since the original ACPI
550	 * implementation was merged, circa 2002.
551	 *
552	 * If a profile is pointing to this instruction, please first
553	 * consider moving your system to a more modern idle
554	 * mechanism.
555	 */
556	inl(acpi_gbl_FADT.xpm_timer_block.address);
557}
558
559/**
560 * acpi_idle_do_entry - enter idle state using the appropriate method
561 * @cx: cstate data
562 *
563 * Caller disables interrupt before call and enables interrupt after return.
564 */
565static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
566{
567	perf_lopwr_cb(true);
568
569	if (cx->entry_method == ACPI_CSTATE_FFH) {
570		/* Call into architectural FFH based C-state */
571		acpi_processor_ffh_cstate_enter(cx);
572	} else if (cx->entry_method == ACPI_CSTATE_HALT) {
573		acpi_safe_halt();
574	} else {
575		io_idle(cx->address);
576	}
577
578	perf_lopwr_cb(false);
579}
580
581/**
582 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
583 * @dev: the target CPU
584 * @index: the index of suggested state
585 */
586static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
587{
588	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
589
590	ACPI_FLUSH_CPU_CACHE();
591
592	while (1) {
593
594		if (cx->entry_method == ACPI_CSTATE_HALT)
595			raw_safe_halt();
596		else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
597			io_idle(cx->address);
598		} else
599			return -ENODEV;
600	}
601
602	/* Never reached */
603	return 0;
604}
605
606static __always_inline bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
607{
608	return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
609		!(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
610}
611
612static int c3_cpu_count;
613static DEFINE_RAW_SPINLOCK(c3_lock);
614
615/**
616 * acpi_idle_enter_bm - enters C3 with proper BM handling
617 * @drv: cpuidle driver
618 * @pr: Target processor
619 * @cx: Target state context
620 * @index: index of target state
621 */
622static int __cpuidle acpi_idle_enter_bm(struct cpuidle_driver *drv,
623			       struct acpi_processor *pr,
624			       struct acpi_processor_cx *cx,
625			       int index)
626{
627	static struct acpi_processor_cx safe_cx = {
628		.entry_method = ACPI_CSTATE_HALT,
629	};
630
631	/*
632	 * disable bus master
633	 * bm_check implies we need ARB_DIS
634	 * bm_control implies whether we can do ARB_DIS
635	 *
636	 * That leaves a case where bm_check is set and bm_control is not set.
637	 * In that case we cannot do much, we enter C3 without doing anything.
638	 */
639	bool dis_bm = pr->flags.bm_control;
640
641	instrumentation_begin();
642
643	/* If we can skip BM, demote to a safe state. */
644	if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
645		dis_bm = false;
646		index = drv->safe_state_index;
647		if (index >= 0) {
648			cx = this_cpu_read(acpi_cstate[index]);
649		} else {
650			cx = &safe_cx;
651			index = -EBUSY;
652		}
653	}
654
655	if (dis_bm) {
656		raw_spin_lock(&c3_lock);
657		c3_cpu_count++;
658		/* Disable bus master arbitration when all CPUs are in C3 */
659		if (c3_cpu_count == num_online_cpus())
660			acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
661		raw_spin_unlock(&c3_lock);
662	}
663
664	ct_cpuidle_enter();
665
666	acpi_idle_do_entry(cx);
667
668	ct_cpuidle_exit();
669
670	/* Re-enable bus master arbitration */
671	if (dis_bm) {
672		raw_spin_lock(&c3_lock);
673		acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
674		c3_cpu_count--;
675		raw_spin_unlock(&c3_lock);
676	}
677
678	instrumentation_end();
679
680	return index;
681}
682
683static int __cpuidle acpi_idle_enter(struct cpuidle_device *dev,
684			   struct cpuidle_driver *drv, int index)
685{
686	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
687	struct acpi_processor *pr;
688
689	pr = __this_cpu_read(processors);
690	if (unlikely(!pr))
691		return -EINVAL;
692
693	if (cx->type != ACPI_STATE_C1) {
694		if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
695			return acpi_idle_enter_bm(drv, pr, cx, index);
696
697		/* C2 to C1 demotion. */
698		if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
699			index = ACPI_IDLE_STATE_START;
700			cx = per_cpu(acpi_cstate[index], dev->cpu);
701		}
702	}
703
704	if (cx->type == ACPI_STATE_C3)
705		ACPI_FLUSH_CPU_CACHE();
706
707	acpi_idle_do_entry(cx);
708
709	return index;
710}
711
712static int __cpuidle acpi_idle_enter_s2idle(struct cpuidle_device *dev,
713				  struct cpuidle_driver *drv, int index)
714{
715	struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
716
717	if (cx->type == ACPI_STATE_C3) {
718		struct acpi_processor *pr = __this_cpu_read(processors);
719
720		if (unlikely(!pr))
721			return 0;
722
723		if (pr->flags.bm_check) {
724			u8 bm_sts_skip = cx->bm_sts_skip;
725
726			/* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
727			cx->bm_sts_skip = 1;
728			acpi_idle_enter_bm(drv, pr, cx, index);
729			cx->bm_sts_skip = bm_sts_skip;
730
731			return 0;
732		} else {
733			ACPI_FLUSH_CPU_CACHE();
734		}
735	}
736	acpi_idle_do_entry(cx);
737
738	return 0;
739}
740
741static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
742					   struct cpuidle_device *dev)
743{
744	int i, count = ACPI_IDLE_STATE_START;
745	struct acpi_processor_cx *cx;
746	struct cpuidle_state *state;
747
748	if (max_cstate == 0)
749		max_cstate = 1;
750
751	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
752		state = &acpi_idle_driver.states[count];
753		cx = &pr->power.states[i];
754
755		if (!cx->valid)
756			continue;
757
758		per_cpu(acpi_cstate[count], dev->cpu) = cx;
759
760		if (lapic_timer_needs_broadcast(pr, cx))
761			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
762
763		if (cx->type == ACPI_STATE_C3) {
764			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
765			if (pr->flags.bm_check)
766				state->flags |= CPUIDLE_FLAG_RCU_IDLE;
767		}
768
769		count++;
770		if (count == CPUIDLE_STATE_MAX)
771			break;
772	}
773
774	if (!count)
775		return -EINVAL;
776
777	return 0;
778}
779
780static int acpi_processor_setup_cstates(struct acpi_processor *pr)
781{
782	int i, count;
783	struct acpi_processor_cx *cx;
784	struct cpuidle_state *state;
785	struct cpuidle_driver *drv = &acpi_idle_driver;
786
787	if (max_cstate == 0)
788		max_cstate = 1;
789
790	if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
791		cpuidle_poll_state_init(drv);
792		count = 1;
793	} else {
794		count = 0;
795	}
796
797	for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
798		cx = &pr->power.states[i];
799
800		if (!cx->valid)
801			continue;
802
803		state = &drv->states[count];
804		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
805		strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
806		state->exit_latency = cx->latency;
807		state->target_residency = cx->latency * latency_factor;
808		state->enter = acpi_idle_enter;
809
810		state->flags = 0;
811		if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2 ||
812		    cx->type == ACPI_STATE_C3) {
813			state->enter_dead = acpi_idle_play_dead;
814			if (cx->type != ACPI_STATE_C3)
815				drv->safe_state_index = count;
816		}
817		/*
818		 * Halt-induced C1 is not good for ->enter_s2idle, because it
819		 * re-enables interrupts on exit.  Moreover, C1 is generally not
820		 * particularly interesting from the suspend-to-idle angle, so
821		 * avoid C1 and the situations in which we may need to fall back
822		 * to it altogether.
823		 */
824		if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
825			state->enter_s2idle = acpi_idle_enter_s2idle;
826
827		count++;
828		if (count == CPUIDLE_STATE_MAX)
829			break;
830	}
831
832	drv->state_count = count;
833
834	if (!count)
835		return -EINVAL;
836
837	return 0;
838}
839
840static inline void acpi_processor_cstate_first_run_checks(void)
841{
842	static int first_run;
843
844	if (first_run)
845		return;
846	dmi_check_system(processor_power_dmi_table);
847	max_cstate = acpi_processor_cstate_check(max_cstate);
848	if (max_cstate < ACPI_C_STATES_MAX)
849		pr_notice("processor limited to max C-state %d\n", max_cstate);
850
851	first_run++;
852
853	if (nocst)
854		return;
855
856	acpi_processor_claim_cst_control();
857}
858#else
859
860static inline int disabled_by_idle_boot_param(void) { return 0; }
861static inline void acpi_processor_cstate_first_run_checks(void) { }
862static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
863{
864	return -ENODEV;
865}
866
867static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
868					   struct cpuidle_device *dev)
869{
870	return -EINVAL;
871}
872
873static int acpi_processor_setup_cstates(struct acpi_processor *pr)
874{
875	return -EINVAL;
876}
877
878#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
879
880struct acpi_lpi_states_array {
881	unsigned int size;
882	unsigned int composite_states_size;
883	struct acpi_lpi_state *entries;
884	struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
885};
886
887static int obj_get_integer(union acpi_object *obj, u32 *value)
888{
889	if (obj->type != ACPI_TYPE_INTEGER)
890		return -EINVAL;
891
892	*value = obj->integer.value;
893	return 0;
894}
895
896static int acpi_processor_evaluate_lpi(acpi_handle handle,
897				       struct acpi_lpi_states_array *info)
898{
899	acpi_status status;
900	int ret = 0;
901	int pkg_count, state_idx = 1, loop;
902	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
903	union acpi_object *lpi_data;
904	struct acpi_lpi_state *lpi_state;
905
906	status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
907	if (ACPI_FAILURE(status)) {
908		acpi_handle_debug(handle, "No _LPI, giving up\n");
909		return -ENODEV;
910	}
911
912	lpi_data = buffer.pointer;
913
914	/* There must be at least 4 elements = 3 elements + 1 package */
915	if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
916	    lpi_data->package.count < 4) {
917		pr_debug("not enough elements in _LPI\n");
918		ret = -ENODATA;
919		goto end;
920	}
921
922	pkg_count = lpi_data->package.elements[2].integer.value;
923
924	/* Validate number of power states. */
925	if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
926		pr_debug("count given by _LPI is not valid\n");
927		ret = -ENODATA;
928		goto end;
929	}
930
931	lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
932	if (!lpi_state) {
933		ret = -ENOMEM;
934		goto end;
935	}
936
937	info->size = pkg_count;
938	info->entries = lpi_state;
939
940	/* LPI States start at index 3 */
941	for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
942		union acpi_object *element, *pkg_elem, *obj;
943
944		element = &lpi_data->package.elements[loop];
945		if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
946			continue;
947
948		pkg_elem = element->package.elements;
949
950		obj = pkg_elem + 6;
951		if (obj->type == ACPI_TYPE_BUFFER) {
952			struct acpi_power_register *reg;
953
954			reg = (struct acpi_power_register *)obj->buffer.pointer;
955			if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
956			    reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
957				continue;
958
959			lpi_state->address = reg->address;
960			lpi_state->entry_method =
961				reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
962				ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
963		} else if (obj->type == ACPI_TYPE_INTEGER) {
964			lpi_state->entry_method = ACPI_CSTATE_INTEGER;
965			lpi_state->address = obj->integer.value;
966		} else {
967			continue;
968		}
969
970		/* elements[7,8] skipped for now i.e. Residency/Usage counter*/
971
972		obj = pkg_elem + 9;
973		if (obj->type == ACPI_TYPE_STRING)
974			strscpy(lpi_state->desc, obj->string.pointer,
975				ACPI_CX_DESC_LEN);
976
977		lpi_state->index = state_idx;
978		if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
979			pr_debug("No min. residency found, assuming 10 us\n");
980			lpi_state->min_residency = 10;
981		}
982
983		if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
984			pr_debug("No wakeup residency found, assuming 10 us\n");
985			lpi_state->wake_latency = 10;
986		}
987
988		if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
989			lpi_state->flags = 0;
990
991		if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
992			lpi_state->arch_flags = 0;
993
994		if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
995			lpi_state->res_cnt_freq = 1;
996
997		if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
998			lpi_state->enable_parent_state = 0;
999	}
1000
1001	acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1002end:
1003	kfree(buffer.pointer);
1004	return ret;
1005}
1006
1007/*
1008 * flat_state_cnt - the number of composite LPI states after the process of flattening
1009 */
1010static int flat_state_cnt;
1011
1012/**
1013 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1014 *
1015 * @local: local LPI state
1016 * @parent: parent LPI state
1017 * @result: composite LPI state
1018 */
1019static bool combine_lpi_states(struct acpi_lpi_state *local,
1020			       struct acpi_lpi_state *parent,
1021			       struct acpi_lpi_state *result)
1022{
1023	if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1024		if (!parent->address) /* 0 means autopromotable */
1025			return false;
1026		result->address = local->address + parent->address;
1027	} else {
1028		result->address = parent->address;
1029	}
1030
1031	result->min_residency = max(local->min_residency, parent->min_residency);
1032	result->wake_latency = local->wake_latency + parent->wake_latency;
1033	result->enable_parent_state = parent->enable_parent_state;
1034	result->entry_method = local->entry_method;
1035
1036	result->flags = parent->flags;
1037	result->arch_flags = parent->arch_flags;
1038	result->index = parent->index;
1039
1040	strscpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1041	strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1042	strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1043	return true;
1044}
1045
1046#define ACPI_LPI_STATE_FLAGS_ENABLED			BIT(0)
1047
1048static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1049				  struct acpi_lpi_state *t)
1050{
1051	curr_level->composite_states[curr_level->composite_states_size++] = t;
1052}
1053
1054static int flatten_lpi_states(struct acpi_processor *pr,
1055			      struct acpi_lpi_states_array *curr_level,
1056			      struct acpi_lpi_states_array *prev_level)
1057{
1058	int i, j, state_count = curr_level->size;
1059	struct acpi_lpi_state *p, *t = curr_level->entries;
1060
1061	curr_level->composite_states_size = 0;
1062	for (j = 0; j < state_count; j++, t++) {
1063		struct acpi_lpi_state *flpi;
1064
1065		if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1066			continue;
1067
1068		if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1069			pr_warn("Limiting number of LPI states to max (%d)\n",
1070				ACPI_PROCESSOR_MAX_POWER);
1071			pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1072			break;
1073		}
1074
1075		flpi = &pr->power.lpi_states[flat_state_cnt];
1076
1077		if (!prev_level) { /* leaf/processor node */
1078			memcpy(flpi, t, sizeof(*t));
1079			stash_composite_state(curr_level, flpi);
1080			flat_state_cnt++;
1081			continue;
1082		}
1083
1084		for (i = 0; i < prev_level->composite_states_size; i++) {
1085			p = prev_level->composite_states[i];
1086			if (t->index <= p->enable_parent_state &&
1087			    combine_lpi_states(p, t, flpi)) {
1088				stash_composite_state(curr_level, flpi);
1089				flat_state_cnt++;
1090				flpi++;
1091			}
1092		}
1093	}
1094
1095	kfree(curr_level->entries);
1096	return 0;
1097}
1098
1099int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1100{
1101	return -EOPNOTSUPP;
1102}
1103
1104static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1105{
1106	int ret, i;
1107	acpi_status status;
1108	acpi_handle handle = pr->handle, pr_ahandle;
1109	struct acpi_device *d = NULL;
1110	struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1111
1112	/* make sure our architecture has support */
1113	ret = acpi_processor_ffh_lpi_probe(pr->id);
1114	if (ret == -EOPNOTSUPP)
1115		return ret;
1116
1117	if (!osc_pc_lpi_support_confirmed)
1118		return -EOPNOTSUPP;
1119
1120	if (!acpi_has_method(handle, "_LPI"))
1121		return -EINVAL;
1122
1123	flat_state_cnt = 0;
1124	prev = &info[0];
1125	curr = &info[1];
1126	handle = pr->handle;
1127	ret = acpi_processor_evaluate_lpi(handle, prev);
1128	if (ret)
1129		return ret;
1130	flatten_lpi_states(pr, prev, NULL);
1131
1132	status = acpi_get_parent(handle, &pr_ahandle);
1133	while (ACPI_SUCCESS(status)) {
1134		d = acpi_fetch_acpi_dev(pr_ahandle);
1135		if (!d)
1136			break;
1137
1138		handle = pr_ahandle;
1139
1140		if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1141			break;
1142
1143		/* can be optional ? */
1144		if (!acpi_has_method(handle, "_LPI"))
1145			break;
1146
1147		ret = acpi_processor_evaluate_lpi(handle, curr);
1148		if (ret)
1149			break;
1150
1151		/* flatten all the LPI states in this level of hierarchy */
1152		flatten_lpi_states(pr, curr, prev);
1153
1154		tmp = prev, prev = curr, curr = tmp;
1155
1156		status = acpi_get_parent(handle, &pr_ahandle);
1157	}
1158
1159	pr->power.count = flat_state_cnt;
1160	/* reset the index after flattening */
1161	for (i = 0; i < pr->power.count; i++)
1162		pr->power.lpi_states[i].index = i;
1163
1164	/* Tell driver that _LPI is supported. */
1165	pr->flags.has_lpi = 1;
1166	pr->flags.power = 1;
1167
1168	return 0;
1169}
1170
1171int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1172{
1173	return -ENODEV;
1174}
1175
1176/**
1177 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1178 * @dev: the target CPU
1179 * @drv: cpuidle driver containing cpuidle state info
1180 * @index: index of target state
1181 *
1182 * Return: 0 for success or negative value for error
1183 */
1184static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1185			       struct cpuidle_driver *drv, int index)
1186{
1187	struct acpi_processor *pr;
1188	struct acpi_lpi_state *lpi;
1189
1190	pr = __this_cpu_read(processors);
1191
1192	if (unlikely(!pr))
1193		return -EINVAL;
1194
1195	lpi = &pr->power.lpi_states[index];
1196	if (lpi->entry_method == ACPI_CSTATE_FFH)
1197		return acpi_processor_ffh_lpi_enter(lpi);
1198
1199	return -EINVAL;
1200}
1201
1202static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1203{
1204	int i;
1205	struct acpi_lpi_state *lpi;
1206	struct cpuidle_state *state;
1207	struct cpuidle_driver *drv = &acpi_idle_driver;
1208
1209	if (!pr->flags.has_lpi)
1210		return -EOPNOTSUPP;
1211
1212	for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1213		lpi = &pr->power.lpi_states[i];
1214
1215		state = &drv->states[i];
1216		snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1217		strscpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1218		state->exit_latency = lpi->wake_latency;
1219		state->target_residency = lpi->min_residency;
1220		state->flags |= arch_get_idle_state_flags(lpi->arch_flags);
1221		if (i != 0 && lpi->entry_method == ACPI_CSTATE_FFH)
1222			state->flags |= CPUIDLE_FLAG_RCU_IDLE;
1223		state->enter = acpi_idle_lpi_enter;
1224		drv->safe_state_index = i;
1225	}
1226
1227	drv->state_count = i;
1228
1229	return 0;
1230}
1231
1232/**
1233 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1234 * global state data i.e. idle routines
1235 *
1236 * @pr: the ACPI processor
1237 */
1238static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1239{
1240	int i;
1241	struct cpuidle_driver *drv = &acpi_idle_driver;
1242
1243	if (!pr->flags.power_setup_done || !pr->flags.power)
1244		return -EINVAL;
1245
1246	drv->safe_state_index = -1;
1247	for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1248		drv->states[i].name[0] = '\0';
1249		drv->states[i].desc[0] = '\0';
1250	}
1251
1252	if (pr->flags.has_lpi)
1253		return acpi_processor_setup_lpi_states(pr);
1254
1255	return acpi_processor_setup_cstates(pr);
1256}
1257
1258/**
1259 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1260 * device i.e. per-cpu data
1261 *
1262 * @pr: the ACPI processor
1263 * @dev : the cpuidle device
1264 */
1265static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1266					    struct cpuidle_device *dev)
1267{
1268	if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1269		return -EINVAL;
1270
1271	dev->cpu = pr->id;
1272	if (pr->flags.has_lpi)
1273		return acpi_processor_ffh_lpi_probe(pr->id);
1274
1275	return acpi_processor_setup_cpuidle_cx(pr, dev);
1276}
1277
1278static int acpi_processor_get_power_info(struct acpi_processor *pr)
1279{
1280	int ret;
1281
1282	ret = acpi_processor_get_lpi_info(pr);
1283	if (ret)
1284		ret = acpi_processor_get_cstate_info(pr);
1285
1286	return ret;
1287}
1288
1289int acpi_processor_hotplug(struct acpi_processor *pr)
1290{
1291	int ret = 0;
1292	struct cpuidle_device *dev;
1293
1294	if (disabled_by_idle_boot_param())
1295		return 0;
1296
1297	if (!pr->flags.power_setup_done)
1298		return -ENODEV;
1299
1300	dev = per_cpu(acpi_cpuidle_device, pr->id);
1301	cpuidle_pause_and_lock();
1302	cpuidle_disable_device(dev);
1303	ret = acpi_processor_get_power_info(pr);
1304	if (!ret && pr->flags.power) {
1305		acpi_processor_setup_cpuidle_dev(pr, dev);
1306		ret = cpuidle_enable_device(dev);
1307	}
1308	cpuidle_resume_and_unlock();
1309
1310	return ret;
1311}
1312
1313int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1314{
1315	int cpu;
1316	struct acpi_processor *_pr;
1317	struct cpuidle_device *dev;
1318
1319	if (disabled_by_idle_boot_param())
1320		return 0;
1321
1322	if (!pr->flags.power_setup_done)
1323		return -ENODEV;
1324
1325	/*
1326	 * FIXME:  Design the ACPI notification to make it once per
1327	 * system instead of once per-cpu.  This condition is a hack
1328	 * to make the code that updates C-States be called once.
1329	 */
1330
1331	if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1332
1333		/* Protect against cpu-hotplug */
1334		cpus_read_lock();
1335		cpuidle_pause_and_lock();
1336
1337		/* Disable all cpuidle devices */
1338		for_each_online_cpu(cpu) {
1339			_pr = per_cpu(processors, cpu);
1340			if (!_pr || !_pr->flags.power_setup_done)
1341				continue;
1342			dev = per_cpu(acpi_cpuidle_device, cpu);
1343			cpuidle_disable_device(dev);
1344		}
1345
1346		/* Populate Updated C-state information */
1347		acpi_processor_get_power_info(pr);
1348		acpi_processor_setup_cpuidle_states(pr);
1349
1350		/* Enable all cpuidle devices */
1351		for_each_online_cpu(cpu) {
1352			_pr = per_cpu(processors, cpu);
1353			if (!_pr || !_pr->flags.power_setup_done)
1354				continue;
1355			acpi_processor_get_power_info(_pr);
1356			if (_pr->flags.power) {
1357				dev = per_cpu(acpi_cpuidle_device, cpu);
1358				acpi_processor_setup_cpuidle_dev(_pr, dev);
1359				cpuidle_enable_device(dev);
1360			}
1361		}
1362		cpuidle_resume_and_unlock();
1363		cpus_read_unlock();
1364	}
1365
1366	return 0;
1367}
1368
1369static int acpi_processor_registered;
1370
1371int acpi_processor_power_init(struct acpi_processor *pr)
1372{
1373	int retval;
1374	struct cpuidle_device *dev;
1375
1376	if (disabled_by_idle_boot_param())
1377		return 0;
1378
1379	acpi_processor_cstate_first_run_checks();
1380
1381	if (!acpi_processor_get_power_info(pr))
1382		pr->flags.power_setup_done = 1;
1383
1384	/*
1385	 * Install the idle handler if processor power management is supported.
1386	 * Note that we use previously set idle handler will be used on
1387	 * platforms that only support C1.
1388	 */
1389	if (pr->flags.power) {
1390		/* Register acpi_idle_driver if not already registered */
1391		if (!acpi_processor_registered) {
1392			acpi_processor_setup_cpuidle_states(pr);
1393			retval = cpuidle_register_driver(&acpi_idle_driver);
1394			if (retval)
1395				return retval;
1396			pr_debug("%s registered with cpuidle\n",
1397				 acpi_idle_driver.name);
1398		}
1399
1400		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1401		if (!dev)
1402			return -ENOMEM;
1403		per_cpu(acpi_cpuidle_device, pr->id) = dev;
1404
1405		acpi_processor_setup_cpuidle_dev(pr, dev);
1406
1407		/* Register per-cpu cpuidle_device. Cpuidle driver
1408		 * must already be registered before registering device
1409		 */
1410		retval = cpuidle_register_device(dev);
1411		if (retval) {
1412			if (acpi_processor_registered == 0)
1413				cpuidle_unregister_driver(&acpi_idle_driver);
1414			return retval;
1415		}
1416		acpi_processor_registered++;
1417	}
1418	return 0;
1419}
1420
1421int acpi_processor_power_exit(struct acpi_processor *pr)
1422{
1423	struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1424
1425	if (disabled_by_idle_boot_param())
1426		return 0;
1427
1428	if (pr->flags.power) {
1429		cpuidle_unregister_device(dev);
1430		acpi_processor_registered--;
1431		if (acpi_processor_registered == 0)
1432			cpuidle_unregister_driver(&acpi_idle_driver);
1433
1434		kfree(dev);
1435	}
1436
1437	pr->flags.power_setup_done = 0;
1438	return 0;
1439}
1440