1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8#include "habanalabs.h"
9#include <linux/habanalabs/hl_boot_if.h>
10
11#include <linux/firmware.h>
12#include <linux/crc32.h>
13#include <linux/slab.h>
14#include <linux/ctype.h>
15#include <linux/vmalloc.h>
16
17#include <trace/events/habanalabs.h>
18
19#define FW_FILE_MAX_SIZE		0x1400000 /* maximum size of 20MB */
20
21static char *comms_cmd_str_arr[COMMS_INVLD_LAST] = {
22	[COMMS_NOOP] = __stringify(COMMS_NOOP),
23	[COMMS_CLR_STS] = __stringify(COMMS_CLR_STS),
24	[COMMS_RST_STATE] = __stringify(COMMS_RST_STATE),
25	[COMMS_PREP_DESC] = __stringify(COMMS_PREP_DESC),
26	[COMMS_DATA_RDY] = __stringify(COMMS_DATA_RDY),
27	[COMMS_EXEC] = __stringify(COMMS_EXEC),
28	[COMMS_RST_DEV] = __stringify(COMMS_RST_DEV),
29	[COMMS_GOTO_WFE] = __stringify(COMMS_GOTO_WFE),
30	[COMMS_SKIP_BMC] = __stringify(COMMS_SKIP_BMC),
31	[COMMS_PREP_DESC_ELBI] = __stringify(COMMS_PREP_DESC_ELBI),
32};
33
34static char *comms_sts_str_arr[COMMS_STS_INVLD_LAST] = {
35	[COMMS_STS_NOOP] = __stringify(COMMS_STS_NOOP),
36	[COMMS_STS_ACK] = __stringify(COMMS_STS_ACK),
37	[COMMS_STS_OK] = __stringify(COMMS_STS_OK),
38	[COMMS_STS_ERR] = __stringify(COMMS_STS_ERR),
39	[COMMS_STS_VALID_ERR] = __stringify(COMMS_STS_VALID_ERR),
40	[COMMS_STS_TIMEOUT_ERR] = __stringify(COMMS_STS_TIMEOUT_ERR),
41};
42
43static char *extract_fw_ver_from_str(const char *fw_str)
44{
45	char *str, *fw_ver, *whitespace;
46	u32 ver_offset;
47
48	fw_ver = kmalloc(VERSION_MAX_LEN, GFP_KERNEL);
49	if (!fw_ver)
50		return NULL;
51
52	str = strnstr(fw_str, "fw-", VERSION_MAX_LEN);
53	if (!str)
54		goto free_fw_ver;
55
56	/* Skip the fw- part */
57	str += 3;
58	ver_offset = str - fw_str;
59
60	/* Copy until the next whitespace */
61	whitespace = strnstr(str, " ", VERSION_MAX_LEN - ver_offset);
62	if (!whitespace)
63		goto free_fw_ver;
64
65	strscpy(fw_ver, str, whitespace - str + 1);
66
67	return fw_ver;
68
69free_fw_ver:
70	kfree(fw_ver);
71	return NULL;
72}
73
74/**
75 * extract_u32_until_given_char() - given a string of the format "<u32><char>*", extract the u32.
76 * @str: the given string
77 * @ver_num: the pointer to the extracted u32 to be returned to the caller.
78 * @given_char: the given char at the end of the u32 in the string
79 *
80 * Return: Upon success, return a pointer to the given_char in the string. Upon failure, return NULL
81 */
82static char *extract_u32_until_given_char(char *str, u32 *ver_num, char given_char)
83{
84	char num_str[8] = {}, *ch;
85
86	ch = strchrnul(str, given_char);
87	if (*ch == '\0' || ch == str || ch - str >= sizeof(num_str))
88		return NULL;
89
90	memcpy(num_str, str, ch - str);
91	if (kstrtou32(num_str, 10, ver_num))
92		return NULL;
93	return ch;
94}
95
96/**
97 * hl_get_sw_major_minor_subminor() - extract the FW's SW version major, minor, sub-minor
98 *				      from the version string
99 * @hdev: pointer to the hl_device
100 * @fw_str: the FW's version string
101 *
102 * The extracted version is set in the hdev fields: fw_sw_{major/minor/sub_minor}_ver.
103 *
104 * fw_str is expected to have one of two possible formats, examples:
105 * 1) 'Preboot version hl-gaudi2-1.9.0-fw-42.0.1-sec-3'
106 * 2) 'Preboot version hl-gaudi2-1.9.0-rc-fw-42.0.1-sec-3'
107 * In those examples, the SW major,minor,subminor are correspondingly: 1,9,0.
108 *
109 * Return: 0 for success or a negative error code for failure.
110 */
111static int hl_get_sw_major_minor_subminor(struct hl_device *hdev, const char *fw_str)
112{
113	char *end, *start;
114
115	end = strnstr(fw_str, "-rc-", VERSION_MAX_LEN);
116	if (end == fw_str)
117		return -EINVAL;
118
119	if (!end)
120		end = strnstr(fw_str, "-fw-", VERSION_MAX_LEN);
121
122	if (end == fw_str)
123		return -EINVAL;
124
125	if (!end)
126		return -EINVAL;
127
128	for (start = end - 1; start != fw_str; start--) {
129		if (*start == '-')
130			break;
131	}
132
133	if (start == fw_str)
134		return -EINVAL;
135
136	/* start/end point each to the starting and ending hyphen of the sw version e.g. -1.9.0- */
137	start++;
138	start = extract_u32_until_given_char(start, &hdev->fw_sw_major_ver, '.');
139	if (!start)
140		goto err_zero_ver;
141
142	start++;
143	start = extract_u32_until_given_char(start, &hdev->fw_sw_minor_ver, '.');
144	if (!start)
145		goto err_zero_ver;
146
147	start++;
148	start = extract_u32_until_given_char(start, &hdev->fw_sw_sub_minor_ver, '-');
149	if (!start)
150		goto err_zero_ver;
151
152	return 0;
153
154err_zero_ver:
155	hdev->fw_sw_major_ver = 0;
156	hdev->fw_sw_minor_ver = 0;
157	hdev->fw_sw_sub_minor_ver = 0;
158	return -EINVAL;
159}
160
161/**
162 * hl_get_preboot_major_minor() - extract the FW's version major, minor from the version string.
163 * @hdev: pointer to the hl_device
164 * @preboot_ver: the FW's version string
165 *
166 * preboot_ver is expected to be the format of <major>.<minor>.<sub minor>*, e.g: 42.0.1-sec-3
167 * The extracted version is set in the hdev fields: fw_inner_{major/minor}_ver.
168 *
169 * Return: 0 on success, negative error code for failure.
170 */
171static int hl_get_preboot_major_minor(struct hl_device *hdev, char *preboot_ver)
172{
173	preboot_ver = extract_u32_until_given_char(preboot_ver, &hdev->fw_inner_major_ver, '.');
174	if (!preboot_ver) {
175		dev_err(hdev->dev, "Error parsing preboot major version\n");
176		goto err_zero_ver;
177	}
178
179	preboot_ver++;
180
181	preboot_ver = extract_u32_until_given_char(preboot_ver, &hdev->fw_inner_minor_ver, '.');
182	if (!preboot_ver) {
183		dev_err(hdev->dev, "Error parsing preboot minor version\n");
184		goto err_zero_ver;
185	}
186	return 0;
187
188err_zero_ver:
189	hdev->fw_inner_major_ver = 0;
190	hdev->fw_inner_minor_ver = 0;
191	return -EINVAL;
192}
193
194static int hl_request_fw(struct hl_device *hdev,
195				const struct firmware **firmware_p,
196				const char *fw_name)
197{
198	size_t fw_size;
199	int rc;
200
201	rc = request_firmware(firmware_p, fw_name, hdev->dev);
202	if (rc) {
203		dev_err(hdev->dev, "Firmware file %s is not found! (error %d)\n",
204				fw_name, rc);
205		goto out;
206	}
207
208	fw_size = (*firmware_p)->size;
209	if ((fw_size % 4) != 0) {
210		dev_err(hdev->dev, "Illegal %s firmware size %zu\n",
211				fw_name, fw_size);
212		rc = -EINVAL;
213		goto release_fw;
214	}
215
216	dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);
217
218	if (fw_size > FW_FILE_MAX_SIZE) {
219		dev_err(hdev->dev,
220			"FW file size %zu exceeds maximum of %u bytes\n",
221			fw_size, FW_FILE_MAX_SIZE);
222		rc = -EINVAL;
223		goto release_fw;
224	}
225
226	return 0;
227
228release_fw:
229	release_firmware(*firmware_p);
230out:
231	return rc;
232}
233
234/**
235 * hl_release_firmware() - release FW
236 *
237 * @fw: fw descriptor
238 *
239 * note: this inline function added to serve as a comprehensive mirror for the
240 *       hl_request_fw function.
241 */
242static inline void hl_release_firmware(const struct firmware *fw)
243{
244	release_firmware(fw);
245}
246
247/**
248 * hl_fw_copy_fw_to_device() - copy FW to device
249 *
250 * @hdev: pointer to hl_device structure.
251 * @fw: fw descriptor
252 * @dst: IO memory mapped address space to copy firmware to
253 * @src_offset: offset in src FW to copy from
254 * @size: amount of bytes to copy (0 to copy the whole binary)
255 *
256 * actual copy of FW binary data to device, shared by static and dynamic loaders
257 */
258static int hl_fw_copy_fw_to_device(struct hl_device *hdev,
259				const struct firmware *fw, void __iomem *dst,
260				u32 src_offset, u32 size)
261{
262	const void *fw_data;
263
264	/* size 0 indicates to copy the whole file */
265	if (!size)
266		size = fw->size;
267
268	if (src_offset + size > fw->size) {
269		dev_err(hdev->dev,
270			"size to copy(%u) and offset(%u) are invalid\n",
271			size, src_offset);
272		return -EINVAL;
273	}
274
275	fw_data = (const void *) fw->data;
276
277	memcpy_toio(dst, fw_data + src_offset, size);
278	return 0;
279}
280
281/**
282 * hl_fw_copy_msg_to_device() - copy message to device
283 *
284 * @hdev: pointer to hl_device structure.
285 * @msg: message
286 * @dst: IO memory mapped address space to copy firmware to
287 * @src_offset: offset in src message to copy from
288 * @size: amount of bytes to copy (0 to copy the whole binary)
289 *
290 * actual copy of message data to device.
291 */
292static int hl_fw_copy_msg_to_device(struct hl_device *hdev,
293		struct lkd_msg_comms *msg, void __iomem *dst,
294		u32 src_offset, u32 size)
295{
296	void *msg_data;
297
298	/* size 0 indicates to copy the whole file */
299	if (!size)
300		size = sizeof(struct lkd_msg_comms);
301
302	if (src_offset + size > sizeof(struct lkd_msg_comms)) {
303		dev_err(hdev->dev,
304			"size to copy(%u) and offset(%u) are invalid\n",
305			size, src_offset);
306		return -EINVAL;
307	}
308
309	msg_data = (void *) msg;
310
311	memcpy_toio(dst, msg_data + src_offset, size);
312
313	return 0;
314}
315
316/**
317 * hl_fw_load_fw_to_device() - Load F/W code to device's memory.
318 *
319 * @hdev: pointer to hl_device structure.
320 * @fw_name: the firmware image name
321 * @dst: IO memory mapped address space to copy firmware to
322 * @src_offset: offset in src FW to copy from
323 * @size: amount of bytes to copy (0 to copy the whole binary)
324 *
325 * Copy fw code from firmware file to device memory.
326 *
327 * Return: 0 on success, non-zero for failure.
328 */
329int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
330				void __iomem *dst, u32 src_offset, u32 size)
331{
332	const struct firmware *fw;
333	int rc;
334
335	rc = hl_request_fw(hdev, &fw, fw_name);
336	if (rc)
337		return rc;
338
339	rc = hl_fw_copy_fw_to_device(hdev, fw, dst, src_offset, size);
340
341	hl_release_firmware(fw);
342	return rc;
343}
344
345int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value)
346{
347	struct cpucp_packet pkt = {};
348
349	pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT);
350	pkt.value = cpu_to_le64(value);
351
352	return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
353}
354
355int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
356				u16 len, u32 timeout, u64 *result)
357{
358	struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id];
359	struct asic_fixed_properties *prop = &hdev->asic_prop;
360	struct cpucp_packet *pkt;
361	dma_addr_t pkt_dma_addr;
362	struct hl_bd *sent_bd;
363	u32 tmp, expected_ack_val, pi, opcode;
364	int rc;
365
366	pkt = hl_cpu_accessible_dma_pool_alloc(hdev, len, &pkt_dma_addr);
367	if (!pkt) {
368		dev_err(hdev->dev,
369			"Failed to allocate DMA memory for packet to CPU\n");
370		return -ENOMEM;
371	}
372
373	memcpy(pkt, msg, len);
374
375	mutex_lock(&hdev->send_cpu_message_lock);
376
377	/* CPU-CP messages can be sent during soft-reset */
378	if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
379		rc = 0;
380		goto out;
381	}
382
383	if (hdev->device_cpu_disabled) {
384		rc = -EIO;
385		goto out;
386	}
387
388	/* set fence to a non valid value */
389	pkt->fence = cpu_to_le32(UINT_MAX);
390	pi = queue->pi;
391
392	/*
393	 * The CPU queue is a synchronous queue with an effective depth of
394	 * a single entry (although it is allocated with room for multiple
395	 * entries). We lock on it using 'send_cpu_message_lock' which
396	 * serializes accesses to the CPU queue.
397	 * Which means that we don't need to lock the access to the entire H/W
398	 * queues module when submitting a JOB to the CPU queue.
399	 */
400	hl_hw_queue_submit_bd(hdev, queue, hl_queue_inc_ptr(queue->pi), len, pkt_dma_addr);
401
402	if (prop->fw_app_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN)
403		expected_ack_val = queue->pi;
404	else
405		expected_ack_val = CPUCP_PACKET_FENCE_VAL;
406
407	rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp,
408				(tmp == expected_ack_val), 1000,
409				timeout, true);
410
411	hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
412
413	if (rc == -ETIMEDOUT) {
414		/* If FW performed reset just before sending it a packet, we will get a timeout.
415		 * This is expected behavior, hence no need for error message.
416		 */
417		if (!hl_device_operational(hdev, NULL) && !hdev->reset_info.in_compute_reset)
418			dev_dbg(hdev->dev, "Device CPU packet timeout (0x%x) due to FW reset\n",
419					tmp);
420		else
421			dev_err(hdev->dev, "Device CPU packet timeout (status = 0x%x)\n", tmp);
422		hdev->device_cpu_disabled = true;
423		goto out;
424	}
425
426	tmp = le32_to_cpu(pkt->ctl);
427
428	rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT;
429	if (rc) {
430		opcode = (tmp & CPUCP_PKT_CTL_OPCODE_MASK) >> CPUCP_PKT_CTL_OPCODE_SHIFT;
431
432		if (!prop->supports_advanced_cpucp_rc) {
433			dev_dbg(hdev->dev, "F/W ERROR %d for CPU packet %d\n", rc, opcode);
434			rc = -EIO;
435			goto scrub_descriptor;
436		}
437
438		switch (rc) {
439		case cpucp_packet_invalid:
440			dev_err(hdev->dev,
441				"CPU packet %d is not supported by F/W\n", opcode);
442			break;
443		case cpucp_packet_fault:
444			dev_err(hdev->dev,
445				"F/W failed processing CPU packet %d\n", opcode);
446			break;
447		case cpucp_packet_invalid_pkt:
448			dev_dbg(hdev->dev,
449				"CPU packet %d is not supported by F/W\n", opcode);
450			break;
451		case cpucp_packet_invalid_params:
452			dev_err(hdev->dev,
453				"F/W reports invalid parameters for CPU packet %d\n", opcode);
454			break;
455
456		default:
457			dev_err(hdev->dev,
458				"Unknown F/W ERROR %d for CPU packet %d\n", rc, opcode);
459		}
460
461		/* propagate the return code from the f/w to the callers who want to check it */
462		if (result)
463			*result = rc;
464
465		rc = -EIO;
466
467	} else if (result) {
468		*result = le64_to_cpu(pkt->result);
469	}
470
471scrub_descriptor:
472	/* Scrub previous buffer descriptor 'ctl' field which contains the
473	 * previous PI value written during packet submission.
474	 * We must do this or else F/W can read an old value upon queue wraparound.
475	 */
476	sent_bd = queue->kernel_address;
477	sent_bd += hl_pi_2_offset(pi);
478	sent_bd->ctl = cpu_to_le32(UINT_MAX);
479
480out:
481	mutex_unlock(&hdev->send_cpu_message_lock);
482
483	hl_cpu_accessible_dma_pool_free(hdev, len, pkt);
484
485	return rc;
486}
487
488int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type)
489{
490	struct cpucp_packet pkt;
491	u64 result;
492	int rc;
493
494	memset(&pkt, 0, sizeof(pkt));
495
496	pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
497				CPUCP_PKT_CTL_OPCODE_SHIFT);
498	pkt.value = cpu_to_le64(event_type);
499
500	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
501						0, &result);
502
503	if (rc)
504		dev_err(hdev->dev, "failed to unmask event %d", event_type);
505
506	return rc;
507}
508
509int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
510		size_t irq_arr_size)
511{
512	struct cpucp_unmask_irq_arr_packet *pkt;
513	size_t total_pkt_size;
514	u64 result;
515	int rc;
516
517	total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
518			irq_arr_size;
519
520	/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
521	total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
522
523	/* total_pkt_size is casted to u16 later on */
524	if (total_pkt_size > USHRT_MAX) {
525		dev_err(hdev->dev, "too many elements in IRQ array\n");
526		return -EINVAL;
527	}
528
529	pkt = kzalloc(total_pkt_size, GFP_KERNEL);
530	if (!pkt)
531		return -ENOMEM;
532
533	pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
534	memcpy(&pkt->irqs, irq_arr, irq_arr_size);
535
536	pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
537						CPUCP_PKT_CTL_OPCODE_SHIFT);
538
539	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
540						total_pkt_size, 0, &result);
541
542	if (rc)
543		dev_err(hdev->dev, "failed to unmask event array\n");
544
545	kfree(pkt);
546
547	return rc;
548}
549
550int hl_fw_test_cpu_queue(struct hl_device *hdev)
551{
552	struct cpucp_packet test_pkt = {};
553	u64 result;
554	int rc;
555
556	test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
557					CPUCP_PKT_CTL_OPCODE_SHIFT);
558	test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
559
560	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
561						sizeof(test_pkt), 0, &result);
562
563	if (!rc) {
564		if (result != CPUCP_PACKET_FENCE_VAL)
565			dev_err(hdev->dev,
566				"CPU queue test failed (%#08llx)\n", result);
567	} else {
568		dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
569	}
570
571	return rc;
572}
573
574void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
575						dma_addr_t *dma_handle)
576{
577	u64 kernel_addr;
578
579	kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);
580
581	*dma_handle = hdev->cpu_accessible_dma_address +
582		(kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);
583
584	return (void *) (uintptr_t) kernel_addr;
585}
586
587void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
588					void *vaddr)
589{
590	gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
591			size);
592}
593
594int hl_fw_send_soft_reset(struct hl_device *hdev)
595{
596	struct cpucp_packet pkt;
597	int rc;
598
599	memset(&pkt, 0, sizeof(pkt));
600	pkt.ctl = cpu_to_le32(CPUCP_PACKET_SOFT_RESET << CPUCP_PKT_CTL_OPCODE_SHIFT);
601	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
602	if (rc)
603		dev_err(hdev->dev, "failed to send soft-reset msg (err = %d)\n", rc);
604
605	return rc;
606}
607
608int hl_fw_send_device_activity(struct hl_device *hdev, bool open)
609{
610	struct cpucp_packet pkt;
611	int rc;
612
613	memset(&pkt, 0, sizeof(pkt));
614	pkt.ctl = cpu_to_le32(CPUCP_PACKET_ACTIVE_STATUS_SET <<	CPUCP_PKT_CTL_OPCODE_SHIFT);
615	pkt.value = cpu_to_le64(open);
616	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
617	if (rc)
618		dev_err(hdev->dev, "failed to send device activity msg(%u)\n", open);
619
620	return rc;
621}
622
623int hl_fw_send_heartbeat(struct hl_device *hdev)
624{
625	struct cpucp_packet hb_pkt;
626	u64 result;
627	int rc;
628
629	memset(&hb_pkt, 0, sizeof(hb_pkt));
630	hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
631					CPUCP_PKT_CTL_OPCODE_SHIFT);
632	hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);
633
634	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt,
635						sizeof(hb_pkt), 0, &result);
636
637	if ((rc) || (result != CPUCP_PACKET_FENCE_VAL))
638		return -EIO;
639
640	if (le32_to_cpu(hb_pkt.status_mask) &
641					CPUCP_PKT_HB_STATUS_EQ_FAULT_MASK) {
642		dev_warn(hdev->dev, "FW reported EQ fault during heartbeat\n");
643		rc = -EIO;
644	}
645
646	return rc;
647}
648
649static bool fw_report_boot_dev0(struct hl_device *hdev, u32 err_val, u32 sts_val)
650{
651	bool err_exists = false;
652
653	if (!(err_val & CPU_BOOT_ERR0_ENABLED))
654		return false;
655
656	if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL)
657		dev_err(hdev->dev, "Device boot error - DRAM initialization failed\n");
658
659	if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED)
660		dev_err(hdev->dev, "Device boot error - FIT image corrupted\n");
661
662	if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL)
663		dev_err(hdev->dev, "Device boot error - Thermal Sensor initialization failed\n");
664
665	if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) {
666		if (hdev->bmc_enable) {
667			dev_err(hdev->dev, "Device boot error - Skipped waiting for BMC\n");
668		} else {
669			dev_info(hdev->dev, "Device boot message - Skipped waiting for BMC\n");
670			/* This is an info so we don't want it to disable the
671			 * device
672			 */
673			err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED;
674		}
675	}
676
677	if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY)
678		dev_err(hdev->dev, "Device boot error - Serdes data from BMC not available\n");
679
680	if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL)
681		dev_err(hdev->dev, "Device boot error - NIC F/W initialization failed\n");
682
683	if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY)
684		dev_err(hdev->dev, "Device boot warning - security not ready\n");
685
686	if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL)
687		dev_err(hdev->dev, "Device boot error - security failure\n");
688
689	if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL)
690		dev_err(hdev->dev, "Device boot error - eFuse failure\n");
691
692	if (err_val & CPU_BOOT_ERR0_SEC_IMG_VER_FAIL)
693		dev_err(hdev->dev, "Device boot error - Failed to load preboot secondary image\n");
694
695	if (err_val & CPU_BOOT_ERR0_PLL_FAIL)
696		dev_err(hdev->dev, "Device boot error - PLL failure\n");
697
698	if (err_val & CPU_BOOT_ERR0_TMP_THRESH_INIT_FAIL)
699		dev_err(hdev->dev, "Device boot error - Failed to set threshold for temperature sensor\n");
700
701	if (err_val & CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL) {
702		/* Ignore this bit, don't prevent driver loading */
703		dev_dbg(hdev->dev, "device unusable status is set\n");
704		err_val &= ~CPU_BOOT_ERR0_DEVICE_UNUSABLE_FAIL;
705	}
706
707	if (err_val & CPU_BOOT_ERR0_BINNING_FAIL)
708		dev_err(hdev->dev, "Device boot error - binning failure\n");
709
710	if (sts_val & CPU_BOOT_DEV_STS0_ENABLED)
711		dev_dbg(hdev->dev, "Device status0 %#x\n", sts_val);
712
713	if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED)
714		dev_err(hdev->dev, "Device boot warning - Skipped DRAM initialization\n");
715
716	if (err_val & CPU_BOOT_ERR_ENG_ARC_MEM_SCRUB_FAIL)
717		dev_err(hdev->dev, "Device boot error - ARC memory scrub failed\n");
718
719	/* All warnings should go here in order not to reach the unknown error validation */
720	if (err_val & CPU_BOOT_ERR0_EEPROM_FAIL) {
721		dev_err(hdev->dev, "Device boot error - EEPROM failure detected\n");
722		err_exists = true;
723	}
724
725	if (err_val & CPU_BOOT_ERR0_PRI_IMG_VER_FAIL)
726		dev_warn(hdev->dev, "Device boot warning - Failed to load preboot primary image\n");
727
728	if (err_val & CPU_BOOT_ERR0_TPM_FAIL)
729		dev_warn(hdev->dev, "Device boot warning - TPM failure\n");
730
731	if (err_val & CPU_BOOT_ERR_FATAL_MASK)
732		err_exists = true;
733
734	/* return error only if it's in the predefined mask */
735	if (err_exists && ((err_val & ~CPU_BOOT_ERR0_ENABLED) &
736				lower_32_bits(hdev->boot_error_status_mask)))
737		return true;
738
739	return false;
740}
741
742/* placeholder for ERR1 as no errors defined there yet */
743static bool fw_report_boot_dev1(struct hl_device *hdev, u32 err_val,
744								u32 sts_val)
745{
746	/*
747	 * keep this variable to preserve the logic of the function.
748	 * this way it would require less modifications when error will be
749	 * added to DEV_ERR1
750	 */
751	bool err_exists = false;
752
753	if (!(err_val & CPU_BOOT_ERR1_ENABLED))
754		return false;
755
756	if (sts_val & CPU_BOOT_DEV_STS1_ENABLED)
757		dev_dbg(hdev->dev, "Device status1 %#x\n", sts_val);
758
759	if (!err_exists && (err_val & ~CPU_BOOT_ERR1_ENABLED)) {
760		dev_err(hdev->dev,
761			"Device boot error - unknown ERR1 error 0x%08x\n",
762								err_val);
763		err_exists = true;
764	}
765
766	/* return error only if it's in the predefined mask */
767	if (err_exists && ((err_val & ~CPU_BOOT_ERR1_ENABLED) &
768				upper_32_bits(hdev->boot_error_status_mask)))
769		return true;
770
771	return false;
772}
773
774static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg,
775				u32 boot_err1_reg, u32 cpu_boot_dev_status0_reg,
776				u32 cpu_boot_dev_status1_reg)
777{
778	u32 err_val, status_val;
779	bool err_exists = false;
780
781	/* Some of the firmware status codes are deprecated in newer f/w
782	 * versions. In those versions, the errors are reported
783	 * in different registers. Therefore, we need to check those
784	 * registers and print the exact errors. Moreover, there
785	 * may be multiple errors, so we need to report on each error
786	 * separately. Some of the error codes might indicate a state
787	 * that is not an error per-se, but it is an error in production
788	 * environment
789	 */
790	err_val = RREG32(boot_err0_reg);
791	status_val = RREG32(cpu_boot_dev_status0_reg);
792	err_exists = fw_report_boot_dev0(hdev, err_val, status_val);
793
794	err_val = RREG32(boot_err1_reg);
795	status_val = RREG32(cpu_boot_dev_status1_reg);
796	err_exists |= fw_report_boot_dev1(hdev, err_val, status_val);
797
798	if (err_exists)
799		return -EIO;
800
801	return 0;
802}
803
804int hl_fw_cpucp_info_get(struct hl_device *hdev,
805				u32 sts_boot_dev_sts0_reg,
806				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
807				u32 boot_err1_reg)
808{
809	struct asic_fixed_properties *prop = &hdev->asic_prop;
810	struct cpucp_packet pkt = {};
811	dma_addr_t cpucp_info_dma_addr;
812	void *cpucp_info_cpu_addr;
813	char *kernel_ver;
814	u64 result;
815	int rc;
816
817	cpucp_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, sizeof(struct cpucp_info),
818								&cpucp_info_dma_addr);
819	if (!cpucp_info_cpu_addr) {
820		dev_err(hdev->dev,
821			"Failed to allocate DMA memory for CPU-CP info packet\n");
822		return -ENOMEM;
823	}
824
825	memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info));
826
827	pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET <<
828				CPUCP_PKT_CTL_OPCODE_SHIFT);
829	pkt.addr = cpu_to_le64(cpucp_info_dma_addr);
830	pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info));
831
832	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
833					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
834	if (rc) {
835		dev_err(hdev->dev,
836			"Failed to handle CPU-CP info pkt, error %d\n", rc);
837		goto out;
838	}
839
840	rc = fw_read_errors(hdev, boot_err0_reg, boot_err1_reg,
841				sts_boot_dev_sts0_reg, sts_boot_dev_sts1_reg);
842	if (rc) {
843		dev_err(hdev->dev, "Errors in device boot\n");
844		goto out;
845	}
846
847	memcpy(&prop->cpucp_info, cpucp_info_cpu_addr,
848			sizeof(prop->cpucp_info));
849
850	rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors);
851	if (rc) {
852		dev_err(hdev->dev,
853			"Failed to build hwmon channel info, error %d\n", rc);
854		rc = -EFAULT;
855		goto out;
856	}
857
858	kernel_ver = extract_fw_ver_from_str(prop->cpucp_info.kernel_version);
859	if (kernel_ver) {
860		dev_info(hdev->dev, "Linux version %s", kernel_ver);
861		kfree(kernel_ver);
862	}
863
864	/* assume EQ code doesn't need to check eqe index */
865	hdev->event_queue.check_eqe_index = false;
866
867	/* Read FW application security bits again */
868	if (prop->fw_cpu_boot_dev_sts0_valid) {
869		prop->fw_app_cpu_boot_dev_sts0 = RREG32(sts_boot_dev_sts0_reg);
870		if (prop->fw_app_cpu_boot_dev_sts0 &
871				CPU_BOOT_DEV_STS0_EQ_INDEX_EN)
872			hdev->event_queue.check_eqe_index = true;
873	}
874
875	if (prop->fw_cpu_boot_dev_sts1_valid)
876		prop->fw_app_cpu_boot_dev_sts1 = RREG32(sts_boot_dev_sts1_reg);
877
878out:
879	hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_info), cpucp_info_cpu_addr);
880
881	return rc;
882}
883
884static int hl_fw_send_msi_info_msg(struct hl_device *hdev)
885{
886	struct cpucp_array_data_packet *pkt;
887	size_t total_pkt_size, data_size;
888	u64 result;
889	int rc;
890
891	/* skip sending this info for unsupported ASICs */
892	if (!hdev->asic_funcs->get_msi_info)
893		return 0;
894
895	data_size = CPUCP_NUM_OF_MSI_TYPES * sizeof(u32);
896	total_pkt_size = sizeof(struct cpucp_array_data_packet) + data_size;
897
898	/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
899	total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
900
901	/* total_pkt_size is casted to u16 later on */
902	if (total_pkt_size > USHRT_MAX) {
903		dev_err(hdev->dev, "CPUCP array data is too big\n");
904		return -EINVAL;
905	}
906
907	pkt = kzalloc(total_pkt_size, GFP_KERNEL);
908	if (!pkt)
909		return -ENOMEM;
910
911	pkt->length = cpu_to_le32(CPUCP_NUM_OF_MSI_TYPES);
912
913	memset((void *) &pkt->data, 0xFF, data_size);
914	hdev->asic_funcs->get_msi_info(pkt->data);
915
916	pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_MSI_INFO_SET <<
917						CPUCP_PKT_CTL_OPCODE_SHIFT);
918
919	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)pkt,
920						total_pkt_size, 0, &result);
921
922	/*
923	 * in case packet result is invalid it means that FW does not support
924	 * this feature and will use default/hard coded MSI values. no reason
925	 * to stop the boot
926	 */
927	if (rc && result == cpucp_packet_invalid)
928		rc = 0;
929
930	if (rc)
931		dev_err(hdev->dev, "failed to send CPUCP array data\n");
932
933	kfree(pkt);
934
935	return rc;
936}
937
938int hl_fw_cpucp_handshake(struct hl_device *hdev,
939				u32 sts_boot_dev_sts0_reg,
940				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
941				u32 boot_err1_reg)
942{
943	int rc;
944
945	rc = hl_fw_cpucp_info_get(hdev, sts_boot_dev_sts0_reg,
946					sts_boot_dev_sts1_reg, boot_err0_reg,
947					boot_err1_reg);
948	if (rc)
949		return rc;
950
951	return hl_fw_send_msi_info_msg(hdev);
952}
953
954int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
955{
956	struct cpucp_packet pkt = {};
957	void *eeprom_info_cpu_addr;
958	dma_addr_t eeprom_info_dma_addr;
959	u64 result;
960	int rc;
961
962	eeprom_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, max_size,
963									&eeprom_info_dma_addr);
964	if (!eeprom_info_cpu_addr) {
965		dev_err(hdev->dev,
966			"Failed to allocate DMA memory for CPU-CP EEPROM packet\n");
967		return -ENOMEM;
968	}
969
970	memset(eeprom_info_cpu_addr, 0, max_size);
971
972	pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET <<
973				CPUCP_PKT_CTL_OPCODE_SHIFT);
974	pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
975	pkt.data_max_size = cpu_to_le32(max_size);
976
977	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
978			HL_CPUCP_EEPROM_TIMEOUT_USEC, &result);
979
980	if (rc) {
981		dev_err(hdev->dev,
982			"Failed to handle CPU-CP EEPROM packet, error %d\n",
983			rc);
984		goto out;
985	}
986
987	/* result contains the actual size */
988	memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));
989
990out:
991	hl_cpu_accessible_dma_pool_free(hdev, max_size, eeprom_info_cpu_addr);
992
993	return rc;
994}
995
996int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data)
997{
998	struct cpucp_monitor_dump *mon_dump_cpu_addr;
999	dma_addr_t mon_dump_dma_addr;
1000	struct cpucp_packet pkt = {};
1001	size_t data_size;
1002	__le32 *src_ptr;
1003	u32 *dst_ptr;
1004	u64 result;
1005	int i, rc;
1006
1007	data_size = sizeof(struct cpucp_monitor_dump);
1008	mon_dump_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, data_size, &mon_dump_dma_addr);
1009	if (!mon_dump_cpu_addr) {
1010		dev_err(hdev->dev,
1011			"Failed to allocate DMA memory for CPU-CP monitor-dump packet\n");
1012		return -ENOMEM;
1013	}
1014
1015	memset(mon_dump_cpu_addr, 0, data_size);
1016
1017	pkt.ctl = cpu_to_le32(CPUCP_PACKET_MONITOR_DUMP_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
1018	pkt.addr = cpu_to_le64(mon_dump_dma_addr);
1019	pkt.data_max_size = cpu_to_le32(data_size);
1020
1021	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1022							HL_CPUCP_MON_DUMP_TIMEOUT_USEC, &result);
1023	if (rc) {
1024		dev_err(hdev->dev, "Failed to handle CPU-CP monitor-dump packet, error %d\n", rc);
1025		goto out;
1026	}
1027
1028	/* result contains the actual size */
1029	src_ptr = (__le32 *) mon_dump_cpu_addr;
1030	dst_ptr = data;
1031	for (i = 0; i < (data_size / sizeof(u32)); i++) {
1032		*dst_ptr = le32_to_cpu(*src_ptr);
1033		src_ptr++;
1034		dst_ptr++;
1035	}
1036
1037out:
1038	hl_cpu_accessible_dma_pool_free(hdev, data_size, mon_dump_cpu_addr);
1039
1040	return rc;
1041}
1042
1043int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
1044		struct hl_info_pci_counters *counters)
1045{
1046	struct cpucp_packet pkt = {};
1047	u64 result;
1048	int rc;
1049
1050	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
1051			CPUCP_PKT_CTL_OPCODE_SHIFT);
1052
1053	/* Fetch PCI rx counter */
1054	pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx);
1055	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1056					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1057	if (rc) {
1058		dev_err(hdev->dev,
1059			"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
1060		return rc;
1061	}
1062	counters->rx_throughput = result;
1063
1064	memset(&pkt, 0, sizeof(pkt));
1065	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
1066			CPUCP_PKT_CTL_OPCODE_SHIFT);
1067
1068	/* Fetch PCI tx counter */
1069	pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx);
1070	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1071					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1072	if (rc) {
1073		dev_err(hdev->dev,
1074			"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
1075		return rc;
1076	}
1077	counters->tx_throughput = result;
1078
1079	/* Fetch PCI replay counter */
1080	memset(&pkt, 0, sizeof(pkt));
1081	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET <<
1082			CPUCP_PKT_CTL_OPCODE_SHIFT);
1083
1084	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1085			HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1086	if (rc) {
1087		dev_err(hdev->dev,
1088			"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
1089		return rc;
1090	}
1091	counters->replay_cnt = (u32) result;
1092
1093	return rc;
1094}
1095
1096int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy)
1097{
1098	struct cpucp_packet pkt = {};
1099	u64 result;
1100	int rc;
1101
1102	pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET <<
1103				CPUCP_PKT_CTL_OPCODE_SHIFT);
1104
1105	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1106					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1107	if (rc) {
1108		dev_err(hdev->dev,
1109			"Failed to handle CpuCP total energy pkt, error %d\n",
1110				rc);
1111		return rc;
1112	}
1113
1114	*total_energy = result;
1115
1116	return rc;
1117}
1118
1119int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
1120						enum pll_index *pll_index)
1121{
1122	struct asic_fixed_properties *prop = &hdev->asic_prop;
1123	u8 pll_byte, pll_bit_off;
1124	bool dynamic_pll;
1125	int fw_pll_idx;
1126
1127	dynamic_pll = !!(prop->fw_app_cpu_boot_dev_sts0 &
1128						CPU_BOOT_DEV_STS0_DYN_PLL_EN);
1129
1130	if (!dynamic_pll) {
1131		/*
1132		 * in case we are working with legacy FW (each asic has unique
1133		 * PLL numbering) use the driver based index as they are
1134		 * aligned with fw legacy numbering
1135		 */
1136		*pll_index = input_pll_index;
1137		return 0;
1138	}
1139
1140	/* retrieve a FW compatible PLL index based on
1141	 * ASIC specific user request
1142	 */
1143	fw_pll_idx = hdev->asic_funcs->map_pll_idx_to_fw_idx(input_pll_index);
1144	if (fw_pll_idx < 0) {
1145		dev_err(hdev->dev, "Invalid PLL index (%u) error %d\n",
1146			input_pll_index, fw_pll_idx);
1147		return -EINVAL;
1148	}
1149
1150	/* PLL map is a u8 array */
1151	pll_byte = prop->cpucp_info.pll_map[fw_pll_idx >> 3];
1152	pll_bit_off = fw_pll_idx & 0x7;
1153
1154	if (!(pll_byte & BIT(pll_bit_off))) {
1155		dev_err(hdev->dev, "PLL index %d is not supported\n",
1156			fw_pll_idx);
1157		return -EINVAL;
1158	}
1159
1160	*pll_index = fw_pll_idx;
1161
1162	return 0;
1163}
1164
1165int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
1166		u16 *pll_freq_arr)
1167{
1168	struct cpucp_packet pkt;
1169	enum pll_index used_pll_idx;
1170	u64 result;
1171	int rc;
1172
1173	rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
1174	if (rc)
1175		return rc;
1176
1177	memset(&pkt, 0, sizeof(pkt));
1178
1179	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET <<
1180				CPUCP_PKT_CTL_OPCODE_SHIFT);
1181	pkt.pll_type = __cpu_to_le16((u16)used_pll_idx);
1182
1183	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1184			HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1185	if (rc) {
1186		dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc);
1187		return rc;
1188	}
1189
1190	pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result);
1191	pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result);
1192	pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result);
1193	pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result);
1194
1195	return 0;
1196}
1197
1198int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power)
1199{
1200	struct cpucp_packet pkt;
1201	u64 result;
1202	int rc;
1203
1204	memset(&pkt, 0, sizeof(pkt));
1205
1206	pkt.ctl = cpu_to_le32(CPUCP_PACKET_POWER_GET <<
1207				CPUCP_PKT_CTL_OPCODE_SHIFT);
1208	pkt.type = cpu_to_le16(CPUCP_POWER_INPUT);
1209
1210	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1211			HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1212	if (rc) {
1213		dev_err(hdev->dev, "Failed to read power, error %d\n", rc);
1214		return rc;
1215	}
1216
1217	*power = result;
1218
1219	return rc;
1220}
1221
1222int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
1223				struct cpucp_hbm_row_info *info)
1224{
1225	struct cpucp_hbm_row_info *cpucp_repl_rows_info_cpu_addr;
1226	dma_addr_t cpucp_repl_rows_info_dma_addr;
1227	struct cpucp_packet pkt = {};
1228	u64 result;
1229	int rc;
1230
1231	cpucp_repl_rows_info_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev,
1232							sizeof(struct cpucp_hbm_row_info),
1233							&cpucp_repl_rows_info_dma_addr);
1234	if (!cpucp_repl_rows_info_cpu_addr) {
1235		dev_err(hdev->dev,
1236			"Failed to allocate DMA memory for CPU-CP replaced rows info packet\n");
1237		return -ENOMEM;
1238	}
1239
1240	memset(cpucp_repl_rows_info_cpu_addr, 0, sizeof(struct cpucp_hbm_row_info));
1241
1242	pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_REPLACED_ROWS_INFO_GET <<
1243					CPUCP_PKT_CTL_OPCODE_SHIFT);
1244	pkt.addr = cpu_to_le64(cpucp_repl_rows_info_dma_addr);
1245	pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_hbm_row_info));
1246
1247	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1248					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
1249	if (rc) {
1250		dev_err(hdev->dev,
1251			"Failed to handle CPU-CP replaced rows info pkt, error %d\n", rc);
1252		goto out;
1253	}
1254
1255	memcpy(info, cpucp_repl_rows_info_cpu_addr, sizeof(*info));
1256
1257out:
1258	hl_cpu_accessible_dma_pool_free(hdev, sizeof(struct cpucp_hbm_row_info),
1259						cpucp_repl_rows_info_cpu_addr);
1260
1261	return rc;
1262}
1263
1264int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num)
1265{
1266	struct cpucp_packet pkt;
1267	u64 result;
1268	int rc;
1269
1270	memset(&pkt, 0, sizeof(pkt));
1271
1272	pkt.ctl = cpu_to_le32(CPUCP_PACKET_HBM_PENDING_ROWS_STATUS << CPUCP_PKT_CTL_OPCODE_SHIFT);
1273
1274	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
1275	if (rc) {
1276		dev_err(hdev->dev,
1277				"Failed to handle CPU-CP pending rows info pkt, error %d\n", rc);
1278		goto out;
1279	}
1280
1281	*pend_rows_num = (u32) result;
1282out:
1283	return rc;
1284}
1285
1286int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid)
1287{
1288	struct cpucp_packet pkt;
1289	int rc;
1290
1291	memset(&pkt, 0, sizeof(pkt));
1292
1293	pkt.ctl = cpu_to_le32(CPUCP_PACKET_ENGINE_CORE_ASID_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
1294	pkt.value = cpu_to_le64(asid);
1295
1296	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
1297						HL_CPUCP_INFO_TIMEOUT_USEC, NULL);
1298	if (rc)
1299		dev_err(hdev->dev,
1300			"Failed on ASID configuration request for engine core, error %d\n",
1301			rc);
1302
1303	return rc;
1304}
1305
1306void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev)
1307{
1308	struct static_fw_load_mgr *static_loader =
1309			&hdev->fw_loader.static_loader;
1310	int rc;
1311
1312	if (hdev->asic_prop.dynamic_fw_load) {
1313		rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
1314				COMMS_RST_DEV, 0, false,
1315				hdev->fw_loader.cpu_timeout);
1316		if (rc)
1317			dev_err(hdev->dev, "Failed sending COMMS_RST_DEV\n");
1318	} else {
1319		WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_RST_DEV);
1320	}
1321}
1322
1323void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev)
1324{
1325	struct fw_load_mgr *fw_loader = &hdev->fw_loader;
1326	u32 status, cpu_boot_status_reg, cpu_timeout;
1327	struct static_fw_load_mgr *static_loader;
1328	struct pre_fw_load_props *pre_fw_load;
1329	int rc;
1330
1331	if (hdev->device_cpu_is_halted)
1332		return;
1333
1334	/* Stop device CPU to make sure nothing bad happens */
1335	if (hdev->asic_prop.dynamic_fw_load) {
1336		pre_fw_load = &fw_loader->pre_fw_load;
1337		cpu_timeout = fw_loader->cpu_timeout;
1338		cpu_boot_status_reg = pre_fw_load->cpu_boot_status_reg;
1339
1340		rc = hl_fw_dynamic_send_protocol_cmd(hdev, &hdev->fw_loader,
1341				COMMS_GOTO_WFE, 0, false, cpu_timeout);
1342		if (rc) {
1343			dev_err(hdev->dev, "Failed sending COMMS_GOTO_WFE\n");
1344		} else {
1345			rc = hl_poll_timeout(
1346				hdev,
1347				cpu_boot_status_reg,
1348				status,
1349				status == CPU_BOOT_STATUS_IN_WFE,
1350				hdev->fw_poll_interval_usec,
1351				cpu_timeout);
1352			if (rc)
1353				dev_err(hdev->dev, "Current status=%u. Timed-out updating to WFE\n",
1354						status);
1355		}
1356	} else {
1357		static_loader = &hdev->fw_loader.static_loader;
1358		WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_GOTO_WFE);
1359		msleep(static_loader->cpu_reset_wait_msec);
1360
1361		/* Must clear this register in order to prevent preboot
1362		 * from reading WFE after reboot
1363		 */
1364		WREG32(static_loader->kmd_msg_to_cpu_reg, KMD_MSG_NA);
1365	}
1366
1367	hdev->device_cpu_is_halted = true;
1368}
1369
1370static void detect_cpu_boot_status(struct hl_device *hdev, u32 status)
1371{
1372	/* Some of the status codes below are deprecated in newer f/w
1373	 * versions but we keep them here for backward compatibility
1374	 */
1375	switch (status) {
1376	case CPU_BOOT_STATUS_NA:
1377		dev_err(hdev->dev,
1378			"Device boot progress - BTL/ROM did NOT run\n");
1379		break;
1380	case CPU_BOOT_STATUS_IN_WFE:
1381		dev_err(hdev->dev,
1382			"Device boot progress - Stuck inside WFE loop\n");
1383		break;
1384	case CPU_BOOT_STATUS_IN_BTL:
1385		dev_err(hdev->dev,
1386			"Device boot progress - Stuck in BTL\n");
1387		break;
1388	case CPU_BOOT_STATUS_IN_PREBOOT:
1389		dev_err(hdev->dev,
1390			"Device boot progress - Stuck in Preboot\n");
1391		break;
1392	case CPU_BOOT_STATUS_IN_SPL:
1393		dev_err(hdev->dev,
1394			"Device boot progress - Stuck in SPL\n");
1395		break;
1396	case CPU_BOOT_STATUS_IN_UBOOT:
1397		dev_err(hdev->dev,
1398			"Device boot progress - Stuck in u-boot\n");
1399		break;
1400	case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
1401		dev_err(hdev->dev,
1402			"Device boot progress - DRAM initialization failed\n");
1403		break;
1404	case CPU_BOOT_STATUS_UBOOT_NOT_READY:
1405		dev_err(hdev->dev,
1406			"Device boot progress - Cannot boot\n");
1407		break;
1408	case CPU_BOOT_STATUS_TS_INIT_FAIL:
1409		dev_err(hdev->dev,
1410			"Device boot progress - Thermal Sensor initialization failed\n");
1411		break;
1412	case CPU_BOOT_STATUS_SECURITY_READY:
1413		dev_err(hdev->dev,
1414			"Device boot progress - Stuck in preboot after security initialization\n");
1415		break;
1416	case CPU_BOOT_STATUS_FW_SHUTDOWN_PREP:
1417		dev_err(hdev->dev,
1418			"Device boot progress - Stuck in preparation for shutdown\n");
1419		break;
1420	default:
1421		dev_err(hdev->dev,
1422			"Device boot progress - Invalid or unexpected status code %d\n", status);
1423		break;
1424	}
1425}
1426
1427int hl_fw_wait_preboot_ready(struct hl_device *hdev)
1428{
1429	struct pre_fw_load_props *pre_fw_load = &hdev->fw_loader.pre_fw_load;
1430	u32 status = 0, timeout;
1431	int rc, tries = 1;
1432	bool preboot_still_runs;
1433
1434	/* Need to check two possible scenarios:
1435	 *
1436	 * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where
1437	 * the preboot is waiting for the boot fit
1438	 *
1439	 * All other status values - for older firmwares where the uboot was
1440	 * loaded from the FLASH
1441	 */
1442	timeout = pre_fw_load->wait_for_preboot_timeout;
1443retry:
1444	rc = hl_poll_timeout(
1445		hdev,
1446		pre_fw_load->cpu_boot_status_reg,
1447		status,
1448		(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
1449		(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
1450		(status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT),
1451		hdev->fw_poll_interval_usec,
1452		timeout);
1453	/*
1454	 * if F/W reports "security-ready" it means preboot might take longer.
1455	 * If the field 'wait_for_preboot_extended_timeout' is non 0 we wait again
1456	 * with that timeout
1457	 */
1458	preboot_still_runs = (status == CPU_BOOT_STATUS_SECURITY_READY ||
1459				status == CPU_BOOT_STATUS_IN_PREBOOT ||
1460				status == CPU_BOOT_STATUS_FW_SHUTDOWN_PREP ||
1461				status == CPU_BOOT_STATUS_DRAM_RDY);
1462
1463	if (rc && tries && preboot_still_runs) {
1464		tries--;
1465		if (pre_fw_load->wait_for_preboot_extended_timeout) {
1466			timeout = pre_fw_load->wait_for_preboot_extended_timeout;
1467			goto retry;
1468		}
1469	}
1470
1471	if (rc) {
1472		detect_cpu_boot_status(hdev, status);
1473		dev_err(hdev->dev, "CPU boot ready timeout (status = %d)\n", status);
1474
1475		/* If we read all FF, then something is totally wrong, no point
1476		 * of reading specific errors
1477		 */
1478		if (status != -1)
1479			fw_read_errors(hdev, pre_fw_load->boot_err0_reg,
1480						pre_fw_load->boot_err1_reg,
1481						pre_fw_load->sts_boot_dev_sts0_reg,
1482						pre_fw_load->sts_boot_dev_sts1_reg);
1483		return -EIO;
1484	}
1485
1486	hdev->fw_loader.fw_comp_loaded |= FW_TYPE_PREBOOT_CPU;
1487
1488	return 0;
1489}
1490
1491static int hl_fw_read_preboot_caps(struct hl_device *hdev)
1492{
1493	struct pre_fw_load_props *pre_fw_load;
1494	struct asic_fixed_properties *prop;
1495	u32 reg_val;
1496	int rc;
1497
1498	prop = &hdev->asic_prop;
1499	pre_fw_load = &hdev->fw_loader.pre_fw_load;
1500
1501	rc = hl_fw_wait_preboot_ready(hdev);
1502	if (rc)
1503		return rc;
1504
1505	/*
1506	 * the registers DEV_STS* contain FW capabilities/features.
1507	 * We can rely on this registers only if bit CPU_BOOT_DEV_STS*_ENABLED
1508	 * is set.
1509	 * In the first read of this register we store the value of this
1510	 * register ONLY if the register is enabled (which will be propagated
1511	 * to next stages) and also mark the register as valid.
1512	 * In case it is not enabled the stored value will be left 0- all
1513	 * caps/features are off
1514	 */
1515	reg_val = RREG32(pre_fw_load->sts_boot_dev_sts0_reg);
1516	if (reg_val & CPU_BOOT_DEV_STS0_ENABLED) {
1517		prop->fw_cpu_boot_dev_sts0_valid = true;
1518		prop->fw_preboot_cpu_boot_dev_sts0 = reg_val;
1519	}
1520
1521	reg_val = RREG32(pre_fw_load->sts_boot_dev_sts1_reg);
1522	if (reg_val & CPU_BOOT_DEV_STS1_ENABLED) {
1523		prop->fw_cpu_boot_dev_sts1_valid = true;
1524		prop->fw_preboot_cpu_boot_dev_sts1 = reg_val;
1525	}
1526
1527	prop->dynamic_fw_load = !!(prop->fw_preboot_cpu_boot_dev_sts0 &
1528						CPU_BOOT_DEV_STS0_FW_LD_COM_EN);
1529
1530	/* initialize FW loader once we know what load protocol is used */
1531	hdev->asic_funcs->init_firmware_loader(hdev);
1532
1533	dev_dbg(hdev->dev, "Attempting %s FW load\n",
1534			prop->dynamic_fw_load ? "dynamic" : "legacy");
1535	return 0;
1536}
1537
1538static int hl_fw_static_read_device_fw_version(struct hl_device *hdev,
1539					enum hl_fw_component fwc)
1540{
1541	struct asic_fixed_properties *prop = &hdev->asic_prop;
1542	struct fw_load_mgr *fw_loader = &hdev->fw_loader;
1543	struct static_fw_load_mgr *static_loader;
1544	char *dest, *boot_ver, *preboot_ver;
1545	u32 ver_off, limit;
1546	const char *name;
1547	char btl_ver[32];
1548
1549	static_loader = &hdev->fw_loader.static_loader;
1550
1551	switch (fwc) {
1552	case FW_COMP_BOOT_FIT:
1553		ver_off = RREG32(static_loader->boot_fit_version_offset_reg);
1554		dest = prop->uboot_ver;
1555		name = "Boot-fit";
1556		limit = static_loader->boot_fit_version_max_off;
1557		break;
1558	case FW_COMP_PREBOOT:
1559		ver_off = RREG32(static_loader->preboot_version_offset_reg);
1560		dest = prop->preboot_ver;
1561		name = "Preboot";
1562		limit = static_loader->preboot_version_max_off;
1563		break;
1564	default:
1565		dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
1566		return -EIO;
1567	}
1568
1569	ver_off &= static_loader->sram_offset_mask;
1570
1571	if (ver_off < limit) {
1572		memcpy_fromio(dest,
1573			hdev->pcie_bar[fw_loader->sram_bar_id] + ver_off,
1574			VERSION_MAX_LEN);
1575	} else {
1576		dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
1577								name, ver_off);
1578		strscpy(dest, "unavailable", VERSION_MAX_LEN);
1579		return -EIO;
1580	}
1581
1582	if (fwc == FW_COMP_BOOT_FIT) {
1583		boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
1584		if (boot_ver) {
1585			dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
1586			kfree(boot_ver);
1587		}
1588	} else if (fwc == FW_COMP_PREBOOT) {
1589		preboot_ver = strnstr(prop->preboot_ver, "Preboot",
1590						VERSION_MAX_LEN);
1591		if (preboot_ver && preboot_ver != prop->preboot_ver) {
1592			strscpy(btl_ver, prop->preboot_ver,
1593				min((int) (preboot_ver - prop->preboot_ver),
1594									31));
1595			dev_info(hdev->dev, "%s\n", btl_ver);
1596		}
1597
1598		preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
1599		if (preboot_ver) {
1600			dev_info(hdev->dev, "preboot version %s\n",
1601								preboot_ver);
1602			kfree(preboot_ver);
1603		}
1604	}
1605
1606	return 0;
1607}
1608
1609/**
1610 * hl_fw_preboot_update_state - update internal data structures during
1611 *                              handshake with preboot
1612 *
1613 *
1614 * @hdev: pointer to the habanalabs device structure
1615 *
1616 * @return 0 on success, otherwise non-zero error code
1617 */
1618static void hl_fw_preboot_update_state(struct hl_device *hdev)
1619{
1620	struct asic_fixed_properties *prop = &hdev->asic_prop;
1621	u32 cpu_boot_dev_sts0, cpu_boot_dev_sts1;
1622
1623	cpu_boot_dev_sts0 = prop->fw_preboot_cpu_boot_dev_sts0;
1624	cpu_boot_dev_sts1 = prop->fw_preboot_cpu_boot_dev_sts1;
1625
1626	/* We read boot_dev_sts registers multiple times during boot:
1627	 * 1. preboot - a. Check whether the security status bits are valid
1628	 *              b. Check whether fw security is enabled
1629	 *              c. Check whether hard reset is done by preboot
1630	 * 2. boot cpu - a. Fetch boot cpu security status
1631	 *               b. Check whether hard reset is done by boot cpu
1632	 * 3. FW application - a. Fetch fw application security status
1633	 *                     b. Check whether hard reset is done by fw app
1634	 */
1635	prop->hard_reset_done_by_fw = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
1636
1637	prop->fw_security_enabled = !!(cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_SECURITY_EN);
1638
1639	dev_dbg(hdev->dev, "Firmware preboot boot device status0 %#x\n",
1640							cpu_boot_dev_sts0);
1641
1642	dev_dbg(hdev->dev, "Firmware preboot boot device status1 %#x\n",
1643							cpu_boot_dev_sts1);
1644
1645	dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n",
1646			prop->hard_reset_done_by_fw ? "enabled" : "disabled");
1647
1648	dev_dbg(hdev->dev, "firmware-level security is %s\n",
1649			prop->fw_security_enabled ? "enabled" : "disabled");
1650
1651	dev_dbg(hdev->dev, "GIC controller is %s\n",
1652			prop->gic_interrupts_enable ? "enabled" : "disabled");
1653}
1654
1655static int hl_fw_static_read_preboot_status(struct hl_device *hdev)
1656{
1657	int rc;
1658
1659	rc = hl_fw_static_read_device_fw_version(hdev, FW_COMP_PREBOOT);
1660	if (rc)
1661		return rc;
1662
1663	return 0;
1664}
1665
1666int hl_fw_read_preboot_status(struct hl_device *hdev)
1667{
1668	int rc;
1669
1670	if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU))
1671		return 0;
1672
1673	/* get FW pre-load parameters  */
1674	hdev->asic_funcs->init_firmware_preload_params(hdev);
1675
1676	/*
1677	 * In order to determine boot method (static VS dynamic) we need to
1678	 * read the boot caps register
1679	 */
1680	rc = hl_fw_read_preboot_caps(hdev);
1681	if (rc)
1682		return rc;
1683
1684	hl_fw_preboot_update_state(hdev);
1685
1686	/* no need to read preboot status in dynamic load */
1687	if (hdev->asic_prop.dynamic_fw_load)
1688		return 0;
1689
1690	return hl_fw_static_read_preboot_status(hdev);
1691}
1692
1693/* associate string with COMM status */
1694static char *hl_dynamic_fw_status_str[COMMS_STS_INVLD_LAST] = {
1695	[COMMS_STS_NOOP] = "NOOP",
1696	[COMMS_STS_ACK] = "ACK",
1697	[COMMS_STS_OK] = "OK",
1698	[COMMS_STS_ERR] = "ERR",
1699	[COMMS_STS_VALID_ERR] = "VALID_ERR",
1700	[COMMS_STS_TIMEOUT_ERR] = "TIMEOUT_ERR",
1701};
1702
1703/**
1704 * hl_fw_dynamic_report_error_status - report error status
1705 *
1706 * @hdev: pointer to the habanalabs device structure
1707 * @status: value of FW status register
1708 * @expected_status: the expected status
1709 */
1710static void hl_fw_dynamic_report_error_status(struct hl_device *hdev,
1711						u32 status,
1712						enum comms_sts expected_status)
1713{
1714	enum comms_sts comm_status =
1715				FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
1716
1717	if (comm_status < COMMS_STS_INVLD_LAST)
1718		dev_err(hdev->dev, "Device status %s, expected status: %s\n",
1719				hl_dynamic_fw_status_str[comm_status],
1720				hl_dynamic_fw_status_str[expected_status]);
1721	else
1722		dev_err(hdev->dev, "Device status unknown %d, expected status: %s\n",
1723				comm_status,
1724				hl_dynamic_fw_status_str[expected_status]);
1725}
1726
1727/**
1728 * hl_fw_dynamic_send_cmd - send LKD to FW cmd
1729 *
1730 * @hdev: pointer to the habanalabs device structure
1731 * @fw_loader: managing structure for loading device's FW
1732 * @cmd: LKD to FW cmd code
1733 * @size: size of next FW component to be loaded (0 if not necessary)
1734 *
1735 * LDK to FW exact command layout is defined at struct comms_command.
1736 * note: the size argument is used only when the next FW component should be
1737 *       loaded, otherwise it shall be 0. the size is used by the FW in later
1738 *       protocol stages and when sending only indicating the amount of memory
1739 *       to be allocated by the FW to receive the next boot component.
1740 */
1741static void hl_fw_dynamic_send_cmd(struct hl_device *hdev,
1742				struct fw_load_mgr *fw_loader,
1743				enum comms_cmd cmd, unsigned int size)
1744{
1745	struct cpu_dyn_regs *dyn_regs;
1746	u32 val;
1747
1748	dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
1749
1750	val = FIELD_PREP(COMMS_COMMAND_CMD_MASK, cmd);
1751	val |= FIELD_PREP(COMMS_COMMAND_SIZE_MASK, size);
1752
1753	trace_habanalabs_comms_send_cmd(hdev->dev, comms_cmd_str_arr[cmd]);
1754	WREG32(le32_to_cpu(dyn_regs->kmd_msg_to_cpu), val);
1755}
1756
1757/**
1758 * hl_fw_dynamic_extract_fw_response - update the FW response
1759 *
1760 * @hdev: pointer to the habanalabs device structure
1761 * @fw_loader: managing structure for loading device's FW
1762 * @response: FW response
1763 * @status: the status read from CPU status register
1764 *
1765 * @return 0 on success, otherwise non-zero error code
1766 */
1767static int hl_fw_dynamic_extract_fw_response(struct hl_device *hdev,
1768						struct fw_load_mgr *fw_loader,
1769						struct fw_response *response,
1770						u32 status)
1771{
1772	response->status = FIELD_GET(COMMS_STATUS_STATUS_MASK, status);
1773	response->ram_offset = FIELD_GET(COMMS_STATUS_OFFSET_MASK, status) <<
1774						COMMS_STATUS_OFFSET_ALIGN_SHIFT;
1775	response->ram_type = FIELD_GET(COMMS_STATUS_RAM_TYPE_MASK, status);
1776
1777	if ((response->ram_type != COMMS_SRAM) &&
1778					(response->ram_type != COMMS_DRAM)) {
1779		dev_err(hdev->dev, "FW status: invalid RAM type %u\n",
1780							response->ram_type);
1781		return -EIO;
1782	}
1783
1784	return 0;
1785}
1786
1787/**
1788 * hl_fw_dynamic_wait_for_status - wait for status in dynamic FW load
1789 *
1790 * @hdev: pointer to the habanalabs device structure
1791 * @fw_loader: managing structure for loading device's FW
1792 * @expected_status: expected status to wait for
1793 * @timeout: timeout for status wait
1794 *
1795 * @return 0 on success, otherwise non-zero error code
1796 *
1797 * waiting for status from FW include polling the FW status register until
1798 * expected status is received or timeout occurs (whatever occurs first).
1799 */
1800static int hl_fw_dynamic_wait_for_status(struct hl_device *hdev,
1801						struct fw_load_mgr *fw_loader,
1802						enum comms_sts expected_status,
1803						u32 timeout)
1804{
1805	struct cpu_dyn_regs *dyn_regs;
1806	u32 status;
1807	int rc;
1808
1809	dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
1810
1811	trace_habanalabs_comms_wait_status(hdev->dev, comms_sts_str_arr[expected_status]);
1812
1813	/* Wait for expected status */
1814	rc = hl_poll_timeout(
1815		hdev,
1816		le32_to_cpu(dyn_regs->cpu_cmd_status_to_host),
1817		status,
1818		FIELD_GET(COMMS_STATUS_STATUS_MASK, status) == expected_status,
1819		hdev->fw_comms_poll_interval_usec,
1820		timeout);
1821
1822	if (rc) {
1823		hl_fw_dynamic_report_error_status(hdev, status,
1824							expected_status);
1825		return -EIO;
1826	}
1827
1828	trace_habanalabs_comms_wait_status_done(hdev->dev, comms_sts_str_arr[expected_status]);
1829
1830	/*
1831	 * skip storing FW response for NOOP to preserve the actual desired
1832	 * FW status
1833	 */
1834	if (expected_status == COMMS_STS_NOOP)
1835		return 0;
1836
1837	rc = hl_fw_dynamic_extract_fw_response(hdev, fw_loader,
1838					&fw_loader->dynamic_loader.response,
1839					status);
1840	return rc;
1841}
1842
1843/**
1844 * hl_fw_dynamic_send_clear_cmd - send clear command to FW
1845 *
1846 * @hdev: pointer to the habanalabs device structure
1847 * @fw_loader: managing structure for loading device's FW
1848 *
1849 * @return 0 on success, otherwise non-zero error code
1850 *
1851 * after command cycle between LKD to FW CPU (i.e. LKD got an expected status
1852 * from FW) we need to clear the CPU status register in order to avoid garbage
1853 * between command cycles.
1854 * This is done by sending clear command and polling the CPU to LKD status
1855 * register to hold the status NOOP
1856 */
1857static int hl_fw_dynamic_send_clear_cmd(struct hl_device *hdev,
1858						struct fw_load_mgr *fw_loader)
1859{
1860	hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_CLR_STS, 0);
1861
1862	return hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_NOOP,
1863							fw_loader->cpu_timeout);
1864}
1865
1866/**
1867 * hl_fw_dynamic_send_protocol_cmd - send LKD to FW cmd and wait for ACK
1868 *
1869 * @hdev: pointer to the habanalabs device structure
1870 * @fw_loader: managing structure for loading device's FW
1871 * @cmd: LKD to FW cmd code
1872 * @size: size of next FW component to be loaded (0 if not necessary)
1873 * @wait_ok: if true also wait for OK response from FW
1874 * @timeout: timeout for status wait
1875 *
1876 * @return 0 on success, otherwise non-zero error code
1877 *
1878 * brief:
1879 * when sending protocol command we have the following steps:
1880 * - send clear (clear command and verify clear status register)
1881 * - send the actual protocol command
1882 * - wait for ACK on the protocol command
1883 * - send clear
1884 * - send NOOP
1885 * if, in addition, the specific protocol command should wait for OK then:
1886 * - wait for OK
1887 * - send clear
1888 * - send NOOP
1889 *
1890 * NOTES:
1891 * send clear: this is necessary in order to clear the status register to avoid
1892 *             leftovers between command
1893 * NOOP command: necessary to avoid loop on the clear command by the FW
1894 */
1895int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
1896				struct fw_load_mgr *fw_loader,
1897				enum comms_cmd cmd, unsigned int size,
1898				bool wait_ok, u32 timeout)
1899{
1900	int rc;
1901
1902	trace_habanalabs_comms_protocol_cmd(hdev->dev, comms_cmd_str_arr[cmd]);
1903
1904	/* first send clear command to clean former commands */
1905	rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
1906	if (rc)
1907		return rc;
1908
1909	/* send the actual command */
1910	hl_fw_dynamic_send_cmd(hdev, fw_loader, cmd, size);
1911
1912	/* wait for ACK for the command */
1913	rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_ACK,
1914								timeout);
1915	if (rc)
1916		return rc;
1917
1918	/* clear command to prepare for NOOP command */
1919	rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
1920	if (rc)
1921		return rc;
1922
1923	/* send the actual NOOP command */
1924	hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
1925
1926	if (!wait_ok)
1927		return 0;
1928
1929	rc = hl_fw_dynamic_wait_for_status(hdev, fw_loader, COMMS_STS_OK,
1930								timeout);
1931	if (rc)
1932		return rc;
1933
1934	/* clear command to prepare for NOOP command */
1935	rc = hl_fw_dynamic_send_clear_cmd(hdev, fw_loader);
1936	if (rc)
1937		return rc;
1938
1939	/* send the actual NOOP command */
1940	hl_fw_dynamic_send_cmd(hdev, fw_loader, COMMS_NOOP, 0);
1941
1942	return 0;
1943}
1944
1945/**
1946 * hl_fw_compat_crc32 - CRC compatible with FW
1947 *
1948 * @data: pointer to the data
1949 * @size: size of the data
1950 *
1951 * @return the CRC32 result
1952 *
1953 * NOTE: kernel's CRC32 differs from standard CRC32 calculation.
1954 *       in order to be aligned we need to flip the bits of both the input
1955 *       initial CRC and kernel's CRC32 result.
1956 *       in addition both sides use initial CRC of 0,
1957 */
1958static u32 hl_fw_compat_crc32(u8 *data, size_t size)
1959{
1960	return ~crc32_le(~((u32)0), data, size);
1961}
1962
1963/**
1964 * hl_fw_dynamic_validate_memory_bound - validate memory bounds for memory
1965 *                                        transfer (image or descriptor) between
1966 *                                        host and FW
1967 *
1968 * @hdev: pointer to the habanalabs device structure
1969 * @addr: device address of memory transfer
1970 * @size: memory transfer size
1971 * @region: PCI memory region
1972 *
1973 * @return 0 on success, otherwise non-zero error code
1974 */
1975static int hl_fw_dynamic_validate_memory_bound(struct hl_device *hdev,
1976						u64 addr, size_t size,
1977						struct pci_mem_region *region)
1978{
1979	u64 end_addr;
1980
1981	/* now make sure that the memory transfer is within region's bounds */
1982	end_addr = addr + size;
1983	if (end_addr >= region->region_base + region->region_size) {
1984		dev_err(hdev->dev,
1985			"dynamic FW load: memory transfer end address out of memory region bounds. addr: %llx\n",
1986							end_addr);
1987		return -EIO;
1988	}
1989
1990	/*
1991	 * now make sure memory transfer is within predefined BAR bounds.
1992	 * this is to make sure we do not need to set the bar (e.g. for DRAM
1993	 * memory transfers)
1994	 */
1995	if (end_addr >= region->region_base - region->offset_in_bar +
1996							region->bar_size) {
1997		dev_err(hdev->dev,
1998			"FW image beyond PCI BAR bounds\n");
1999		return -EIO;
2000	}
2001
2002	return 0;
2003}
2004
2005/**
2006 * hl_fw_dynamic_validate_descriptor - validate FW descriptor
2007 *
2008 * @hdev: pointer to the habanalabs device structure
2009 * @fw_loader: managing structure for loading device's FW
2010 * @fw_desc: the descriptor from FW
2011 *
2012 * @return 0 on success, otherwise non-zero error code
2013 */
2014static int hl_fw_dynamic_validate_descriptor(struct hl_device *hdev,
2015					struct fw_load_mgr *fw_loader,
2016					struct lkd_fw_comms_desc *fw_desc)
2017{
2018	struct pci_mem_region *region;
2019	enum pci_region region_id;
2020	size_t data_size;
2021	u32 data_crc32;
2022	u8 *data_ptr;
2023	u64 addr;
2024	int rc;
2025
2026	if (le32_to_cpu(fw_desc->header.magic) != HL_COMMS_DESC_MAGIC)
2027		dev_dbg(hdev->dev, "Invalid magic for dynamic FW descriptor (%x)\n",
2028				fw_desc->header.magic);
2029
2030	if (fw_desc->header.version != HL_COMMS_DESC_VER)
2031		dev_dbg(hdev->dev, "Invalid version for dynamic FW descriptor (%x)\n",
2032				fw_desc->header.version);
2033
2034	/*
2035	 * Calc CRC32 of data without header. use the size of the descriptor
2036	 * reported by firmware, without calculating it ourself, to allow adding
2037	 * more fields to the lkd_fw_comms_desc structure.
2038	 * note that no alignment/stride address issues here as all structures
2039	 * are 64 bit padded.
2040	 */
2041	data_ptr = (u8 *)fw_desc + sizeof(struct comms_desc_header);
2042	data_size = le16_to_cpu(fw_desc->header.size);
2043
2044	data_crc32 = hl_fw_compat_crc32(data_ptr, data_size);
2045	if (data_crc32 != le32_to_cpu(fw_desc->header.crc32)) {
2046		dev_err(hdev->dev, "CRC32 mismatch for dynamic FW descriptor (%x:%x)\n",
2047			data_crc32, fw_desc->header.crc32);
2048		return -EIO;
2049	}
2050
2051	/* find memory region to which to copy the image */
2052	addr = le64_to_cpu(fw_desc->img_addr);
2053	region_id = hl_get_pci_memory_region(hdev, addr);
2054	if ((region_id != PCI_REGION_SRAM) && ((region_id != PCI_REGION_DRAM))) {
2055		dev_err(hdev->dev, "Invalid region to copy FW image address=%llx\n", addr);
2056		return -EIO;
2057	}
2058
2059	region = &hdev->pci_mem_region[region_id];
2060
2061	/* store the region for the copy stage */
2062	fw_loader->dynamic_loader.image_region = region;
2063
2064	/*
2065	 * here we know that the start address is valid, now make sure that the
2066	 * image is within region's bounds
2067	 */
2068	rc = hl_fw_dynamic_validate_memory_bound(hdev, addr,
2069					fw_loader->dynamic_loader.fw_image_size,
2070					region);
2071	if (rc) {
2072		dev_err(hdev->dev, "invalid mem transfer request for FW image\n");
2073		return rc;
2074	}
2075
2076	/* here we can mark the descriptor as valid as the content has been validated */
2077	fw_loader->dynamic_loader.fw_desc_valid = true;
2078
2079	return 0;
2080}
2081
2082static int hl_fw_dynamic_validate_response(struct hl_device *hdev,
2083						struct fw_response *response,
2084						struct pci_mem_region *region)
2085{
2086	u64 device_addr;
2087	int rc;
2088
2089	device_addr = region->region_base + response->ram_offset;
2090
2091	/*
2092	 * validate that the descriptor is within region's bounds
2093	 * Note that as the start address was supplied according to the RAM
2094	 * type- testing only the end address is enough
2095	 */
2096	rc = hl_fw_dynamic_validate_memory_bound(hdev, device_addr,
2097					sizeof(struct lkd_fw_comms_desc),
2098					region);
2099	return rc;
2100}
2101
2102/*
2103 * hl_fw_dynamic_read_descriptor_msg - read and show the ascii msg that sent by fw
2104 *
2105 * @hdev: pointer to the habanalabs device structure
2106 * @fw_desc: the descriptor from FW
2107 */
2108static void hl_fw_dynamic_read_descriptor_msg(struct hl_device *hdev,
2109					struct lkd_fw_comms_desc *fw_desc)
2110{
2111	int i;
2112	char *msg;
2113
2114	for (i = 0 ; i < LKD_FW_ASCII_MSG_MAX ; i++) {
2115		if (!fw_desc->ascii_msg[i].valid)
2116			return;
2117
2118		/* force NULL termination */
2119		msg = fw_desc->ascii_msg[i].msg;
2120		msg[LKD_FW_ASCII_MSG_MAX_LEN - 1] = '\0';
2121
2122		switch (fw_desc->ascii_msg[i].msg_lvl) {
2123		case LKD_FW_ASCII_MSG_ERR:
2124			dev_err(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
2125			break;
2126		case LKD_FW_ASCII_MSG_WRN:
2127			dev_warn(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
2128			break;
2129		case LKD_FW_ASCII_MSG_INF:
2130			dev_info(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
2131			break;
2132		default:
2133			dev_dbg(hdev->dev, "fw: %s", fw_desc->ascii_msg[i].msg);
2134			break;
2135		}
2136	}
2137}
2138
2139/**
2140 * hl_fw_dynamic_read_and_validate_descriptor - read and validate FW descriptor
2141 *
2142 * @hdev: pointer to the habanalabs device structure
2143 * @fw_loader: managing structure for loading device's FW
2144 *
2145 * @return 0 on success, otherwise non-zero error code
2146 */
2147static int hl_fw_dynamic_read_and_validate_descriptor(struct hl_device *hdev,
2148						struct fw_load_mgr *fw_loader)
2149{
2150	struct lkd_fw_comms_desc *fw_desc;
2151	struct pci_mem_region *region;
2152	struct fw_response *response;
2153	void *temp_fw_desc;
2154	void __iomem *src;
2155	u16 fw_data_size;
2156	enum pci_region region_id;
2157	int rc;
2158
2159	fw_desc = &fw_loader->dynamic_loader.comm_desc;
2160	response = &fw_loader->dynamic_loader.response;
2161
2162	region_id = (response->ram_type == COMMS_SRAM) ?
2163					PCI_REGION_SRAM : PCI_REGION_DRAM;
2164
2165	region = &hdev->pci_mem_region[region_id];
2166
2167	rc = hl_fw_dynamic_validate_response(hdev, response, region);
2168	if (rc) {
2169		dev_err(hdev->dev,
2170			"invalid mem transfer request for FW descriptor\n");
2171		return rc;
2172	}
2173
2174	/*
2175	 * extract address to copy the descriptor from
2176	 * in addition, as the descriptor value is going to be over-ridden by new data- we mark it
2177	 * as invalid.
2178	 * it will be marked again as valid once validated
2179	 */
2180	fw_loader->dynamic_loader.fw_desc_valid = false;
2181	src = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
2182							response->ram_offset;
2183
2184	/*
2185	 * We do the copy of the fw descriptor in 2 phases:
2186	 * 1. copy the header + data info according to our lkd_fw_comms_desc definition.
2187	 *    then we're able to read the actual data size provided by fw.
2188	 *    this is needed for cases where data in descriptor was changed(add/remove)
2189	 *    in embedded specs header file before updating lkd copy of the header file
2190	 * 2. copy descriptor to temporary buffer with aligned size and send it to validation
2191	 */
2192	memcpy_fromio(fw_desc, src, sizeof(struct lkd_fw_comms_desc));
2193	fw_data_size = le16_to_cpu(fw_desc->header.size);
2194
2195	temp_fw_desc = vzalloc(sizeof(struct comms_desc_header) + fw_data_size);
2196	if (!temp_fw_desc)
2197		return -ENOMEM;
2198
2199	memcpy_fromio(temp_fw_desc, src, sizeof(struct comms_desc_header) + fw_data_size);
2200
2201	rc = hl_fw_dynamic_validate_descriptor(hdev, fw_loader,
2202					(struct lkd_fw_comms_desc *) temp_fw_desc);
2203
2204	if (!rc)
2205		hl_fw_dynamic_read_descriptor_msg(hdev, temp_fw_desc);
2206
2207	vfree(temp_fw_desc);
2208
2209	return rc;
2210}
2211
2212/**
2213 * hl_fw_dynamic_request_descriptor - handshake with CPU to get FW descriptor
2214 *
2215 * @hdev: pointer to the habanalabs device structure
2216 * @fw_loader: managing structure for loading device's FW
2217 * @next_image_size: size to allocate for next FW component
2218 *
2219 * @return 0 on success, otherwise non-zero error code
2220 */
2221static int hl_fw_dynamic_request_descriptor(struct hl_device *hdev,
2222						struct fw_load_mgr *fw_loader,
2223						size_t next_image_size)
2224{
2225	int rc;
2226
2227	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_PREP_DESC,
2228						next_image_size, true,
2229						fw_loader->cpu_timeout);
2230	if (rc)
2231		return rc;
2232
2233	return hl_fw_dynamic_read_and_validate_descriptor(hdev, fw_loader);
2234}
2235
2236/**
2237 * hl_fw_dynamic_read_device_fw_version - read FW version to exposed properties
2238 *
2239 * @hdev: pointer to the habanalabs device structure
2240 * @fwc: the firmware component
2241 * @fw_version: fw component's version string
2242 */
2243static int hl_fw_dynamic_read_device_fw_version(struct hl_device *hdev,
2244					enum hl_fw_component fwc,
2245					const char *fw_version)
2246{
2247	struct asic_fixed_properties *prop = &hdev->asic_prop;
2248	char *preboot_ver, *boot_ver;
2249	char btl_ver[32];
2250	int rc;
2251
2252	switch (fwc) {
2253	case FW_COMP_BOOT_FIT:
2254		strscpy(prop->uboot_ver, fw_version, VERSION_MAX_LEN);
2255		boot_ver = extract_fw_ver_from_str(prop->uboot_ver);
2256		if (boot_ver) {
2257			dev_info(hdev->dev, "boot-fit version %s\n", boot_ver);
2258			kfree(boot_ver);
2259		}
2260
2261		break;
2262	case FW_COMP_PREBOOT:
2263		strscpy(prop->preboot_ver, fw_version, VERSION_MAX_LEN);
2264		preboot_ver = strnstr(prop->preboot_ver, "Preboot", VERSION_MAX_LEN);
2265		dev_info(hdev->dev, "preboot full version: '%s'\n", preboot_ver);
2266
2267		if (preboot_ver && preboot_ver != prop->preboot_ver) {
2268			strscpy(btl_ver, prop->preboot_ver,
2269				min((int) (preboot_ver - prop->preboot_ver), 31));
2270			dev_info(hdev->dev, "%s\n", btl_ver);
2271		}
2272
2273		rc = hl_get_sw_major_minor_subminor(hdev, preboot_ver);
2274		if (rc)
2275			return rc;
2276		preboot_ver = extract_fw_ver_from_str(prop->preboot_ver);
2277		if (preboot_ver) {
2278			rc = hl_get_preboot_major_minor(hdev, preboot_ver);
2279			kfree(preboot_ver);
2280			if (rc)
2281				return rc;
2282		}
2283
2284		break;
2285	default:
2286		dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
2287		return -EINVAL;
2288	}
2289
2290	return 0;
2291}
2292
2293/**
2294 * hl_fw_dynamic_copy_image - copy image to memory allocated by the FW
2295 *
2296 * @hdev: pointer to the habanalabs device structure
2297 * @fw: fw descriptor
2298 * @fw_loader: managing structure for loading device's FW
2299 */
2300static int hl_fw_dynamic_copy_image(struct hl_device *hdev,
2301						const struct firmware *fw,
2302						struct fw_load_mgr *fw_loader)
2303{
2304	struct lkd_fw_comms_desc *fw_desc;
2305	struct pci_mem_region *region;
2306	void __iomem *dest;
2307	u64 addr;
2308	int rc;
2309
2310	fw_desc = &fw_loader->dynamic_loader.comm_desc;
2311	addr = le64_to_cpu(fw_desc->img_addr);
2312
2313	/* find memory region to which to copy the image */
2314	region = fw_loader->dynamic_loader.image_region;
2315
2316	dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
2317					(addr - region->region_base);
2318
2319	rc = hl_fw_copy_fw_to_device(hdev, fw, dest,
2320					fw_loader->boot_fit_img.src_off,
2321					fw_loader->boot_fit_img.copy_size);
2322
2323	return rc;
2324}
2325
2326/**
2327 * hl_fw_dynamic_copy_msg - copy msg to memory allocated by the FW
2328 *
2329 * @hdev: pointer to the habanalabs device structure
2330 * @msg: message
2331 * @fw_loader: managing structure for loading device's FW
2332 */
2333static int hl_fw_dynamic_copy_msg(struct hl_device *hdev,
2334		struct lkd_msg_comms *msg, struct fw_load_mgr *fw_loader)
2335{
2336	struct lkd_fw_comms_desc *fw_desc;
2337	struct pci_mem_region *region;
2338	void __iomem *dest;
2339	u64 addr;
2340	int rc;
2341
2342	fw_desc = &fw_loader->dynamic_loader.comm_desc;
2343	addr = le64_to_cpu(fw_desc->img_addr);
2344
2345	/* find memory region to which to copy the image */
2346	region = fw_loader->dynamic_loader.image_region;
2347
2348	dest = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
2349					(addr - region->region_base);
2350
2351	rc = hl_fw_copy_msg_to_device(hdev, msg, dest, 0, 0);
2352
2353	return rc;
2354}
2355
2356/**
2357 * hl_fw_boot_fit_update_state - update internal data structures after boot-fit
2358 *                               is loaded
2359 *
2360 * @hdev: pointer to the habanalabs device structure
2361 * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
2362 * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
2363 *
2364 * @return 0 on success, otherwise non-zero error code
2365 */
2366static void hl_fw_boot_fit_update_state(struct hl_device *hdev,
2367						u32 cpu_boot_dev_sts0_reg,
2368						u32 cpu_boot_dev_sts1_reg)
2369{
2370	struct asic_fixed_properties *prop = &hdev->asic_prop;
2371
2372	hdev->fw_loader.fw_comp_loaded |= FW_TYPE_BOOT_CPU;
2373
2374	/* Read boot_cpu status bits */
2375	if (prop->fw_preboot_cpu_boot_dev_sts0 & CPU_BOOT_DEV_STS0_ENABLED) {
2376		prop->fw_bootfit_cpu_boot_dev_sts0 =
2377				RREG32(cpu_boot_dev_sts0_reg);
2378
2379		prop->hard_reset_done_by_fw = !!(prop->fw_bootfit_cpu_boot_dev_sts0 &
2380							CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
2381
2382		dev_dbg(hdev->dev, "Firmware boot CPU status0 %#x\n",
2383					prop->fw_bootfit_cpu_boot_dev_sts0);
2384	}
2385
2386	if (prop->fw_cpu_boot_dev_sts1_valid) {
2387		prop->fw_bootfit_cpu_boot_dev_sts1 =
2388				RREG32(cpu_boot_dev_sts1_reg);
2389
2390		dev_dbg(hdev->dev, "Firmware boot CPU status1 %#x\n",
2391					prop->fw_bootfit_cpu_boot_dev_sts1);
2392	}
2393
2394	dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n",
2395			prop->hard_reset_done_by_fw ? "enabled" : "disabled");
2396}
2397
2398static void hl_fw_dynamic_update_linux_interrupt_if(struct hl_device *hdev)
2399{
2400	struct cpu_dyn_regs *dyn_regs =
2401			&hdev->fw_loader.dynamic_loader.comm_desc.cpu_dyn_regs;
2402
2403	/* Check whether all 3 interrupt interfaces are set, if not use a
2404	 * single interface
2405	 */
2406	if (!hdev->asic_prop.gic_interrupts_enable &&
2407			!(hdev->asic_prop.fw_app_cpu_boot_dev_sts0 &
2408				CPU_BOOT_DEV_STS0_MULTI_IRQ_POLL_EN)) {
2409		dyn_regs->gic_host_halt_irq = dyn_regs->gic_host_pi_upd_irq;
2410		dyn_regs->gic_host_ints_irq = dyn_regs->gic_host_pi_upd_irq;
2411
2412		dev_warn(hdev->dev,
2413			"Using a single interrupt interface towards cpucp");
2414	}
2415}
2416/**
2417 * hl_fw_dynamic_load_image - load FW image using dynamic protocol
2418 *
2419 * @hdev: pointer to the habanalabs device structure
2420 * @fw_loader: managing structure for loading device's FW
2421 * @load_fwc: the FW component to be loaded
2422 * @img_ld_timeout: image load timeout
2423 *
2424 * @return 0 on success, otherwise non-zero error code
2425 */
2426static int hl_fw_dynamic_load_image(struct hl_device *hdev,
2427						struct fw_load_mgr *fw_loader,
2428						enum hl_fw_component load_fwc,
2429						u32 img_ld_timeout)
2430{
2431	enum hl_fw_component cur_fwc;
2432	const struct firmware *fw;
2433	char *fw_name;
2434	int rc = 0;
2435
2436	/*
2437	 * when loading image we have one of 2 scenarios:
2438	 * 1. current FW component is preboot and we want to load boot-fit
2439	 * 2. current FW component is boot-fit and we want to load linux
2440	 */
2441	if (load_fwc == FW_COMP_BOOT_FIT) {
2442		cur_fwc = FW_COMP_PREBOOT;
2443		fw_name = fw_loader->boot_fit_img.image_name;
2444	} else {
2445		cur_fwc = FW_COMP_BOOT_FIT;
2446		fw_name = fw_loader->linux_img.image_name;
2447	}
2448
2449	/* request FW in order to communicate to FW the size to be allocated */
2450	rc = hl_request_fw(hdev, &fw, fw_name);
2451	if (rc)
2452		return rc;
2453
2454	/* store the image size for future validation */
2455	fw_loader->dynamic_loader.fw_image_size = fw->size;
2456
2457	rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, fw->size);
2458	if (rc)
2459		goto release_fw;
2460
2461	/* read preboot version */
2462	rc = hl_fw_dynamic_read_device_fw_version(hdev, cur_fwc,
2463				fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
2464	if (rc)
2465		goto release_fw;
2466
2467	/* copy boot fit to space allocated by FW */
2468	rc = hl_fw_dynamic_copy_image(hdev, fw, fw_loader);
2469	if (rc)
2470		goto release_fw;
2471
2472	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
2473						0, true,
2474						fw_loader->cpu_timeout);
2475	if (rc)
2476		goto release_fw;
2477
2478	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
2479						0, false,
2480						img_ld_timeout);
2481
2482release_fw:
2483	hl_release_firmware(fw);
2484	return rc;
2485}
2486
2487static int hl_fw_dynamic_wait_for_boot_fit_active(struct hl_device *hdev,
2488					struct fw_load_mgr *fw_loader)
2489{
2490	struct dynamic_fw_load_mgr *dyn_loader;
2491	u32 status;
2492	int rc;
2493
2494	dyn_loader = &fw_loader->dynamic_loader;
2495
2496	/*
2497	 * Make sure CPU boot-loader is running
2498	 * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
2499	 * yet there is a debug scenario in which we loading uboot (without Linux)
2500	 * which at later stage is relocated to DRAM. In this case we expect
2501	 * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
2502	 * poll flags
2503	 */
2504	rc = hl_poll_timeout(
2505		hdev,
2506		le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
2507		status,
2508		(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
2509		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
2510		hdev->fw_poll_interval_usec,
2511		dyn_loader->wait_for_bl_timeout);
2512	if (rc) {
2513		dev_err(hdev->dev, "failed to wait for boot (status = %d)\n", status);
2514		return rc;
2515	}
2516
2517	dev_dbg(hdev->dev, "uboot status = %d\n", status);
2518	return 0;
2519}
2520
2521static int hl_fw_dynamic_wait_for_linux_active(struct hl_device *hdev,
2522						struct fw_load_mgr *fw_loader)
2523{
2524	struct dynamic_fw_load_mgr *dyn_loader;
2525	u32 status;
2526	int rc;
2527
2528	dyn_loader = &fw_loader->dynamic_loader;
2529
2530	/* Make sure CPU linux is running */
2531
2532	rc = hl_poll_timeout(
2533		hdev,
2534		le32_to_cpu(dyn_loader->comm_desc.cpu_dyn_regs.cpu_boot_status),
2535		status,
2536		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
2537		hdev->fw_poll_interval_usec,
2538		fw_loader->cpu_timeout);
2539	if (rc) {
2540		dev_err(hdev->dev, "failed to wait for Linux (status = %d)\n", status);
2541		return rc;
2542	}
2543
2544	dev_dbg(hdev->dev, "Boot status = %d\n", status);
2545	return 0;
2546}
2547
2548/**
2549 * hl_fw_linux_update_state -	update internal data structures after Linux
2550 *				is loaded.
2551 *				Note: Linux initialization is comprised mainly
2552 *				of two stages - loading kernel (SRAM_AVAIL)
2553 *				& loading ARMCP.
2554 *				Therefore reading boot device status in any of
2555 *				these stages might result in different values.
2556 *
2557 * @hdev: pointer to the habanalabs device structure
2558 * @cpu_boot_dev_sts0_reg: register holding CPU boot dev status 0
2559 * @cpu_boot_dev_sts1_reg: register holding CPU boot dev status 1
2560 *
2561 * @return 0 on success, otherwise non-zero error code
2562 */
2563static void hl_fw_linux_update_state(struct hl_device *hdev,
2564						u32 cpu_boot_dev_sts0_reg,
2565						u32 cpu_boot_dev_sts1_reg)
2566{
2567	struct asic_fixed_properties *prop = &hdev->asic_prop;
2568
2569	hdev->fw_loader.fw_comp_loaded |= FW_TYPE_LINUX;
2570
2571	/* Read FW application security bits */
2572	if (prop->fw_cpu_boot_dev_sts0_valid) {
2573		prop->fw_app_cpu_boot_dev_sts0 = RREG32(cpu_boot_dev_sts0_reg);
2574
2575		prop->hard_reset_done_by_fw = !!(prop->fw_app_cpu_boot_dev_sts0 &
2576							CPU_BOOT_DEV_STS0_FW_HARD_RST_EN);
2577
2578		if (prop->fw_app_cpu_boot_dev_sts0 &
2579				CPU_BOOT_DEV_STS0_GIC_PRIVILEGED_EN)
2580			prop->gic_interrupts_enable = false;
2581
2582		dev_dbg(hdev->dev,
2583			"Firmware application CPU status0 %#x\n",
2584			prop->fw_app_cpu_boot_dev_sts0);
2585
2586		dev_dbg(hdev->dev, "GIC controller is %s\n",
2587				prop->gic_interrupts_enable ?
2588						"enabled" : "disabled");
2589	}
2590
2591	if (prop->fw_cpu_boot_dev_sts1_valid) {
2592		prop->fw_app_cpu_boot_dev_sts1 = RREG32(cpu_boot_dev_sts1_reg);
2593
2594		dev_dbg(hdev->dev,
2595			"Firmware application CPU status1 %#x\n",
2596			prop->fw_app_cpu_boot_dev_sts1);
2597	}
2598
2599	dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n",
2600			prop->hard_reset_done_by_fw ? "enabled" : "disabled");
2601
2602	dev_info(hdev->dev, "Successfully loaded firmware to device\n");
2603}
2604
2605/**
2606 * hl_fw_dynamic_send_msg - send a COMMS message with attached data
2607 *
2608 * @hdev: pointer to the habanalabs device structure
2609 * @fw_loader: managing structure for loading device's FW
2610 * @msg_type: message type
2611 * @data: data to be sent
2612 *
2613 * @return 0 on success, otherwise non-zero error code
2614 */
2615static int hl_fw_dynamic_send_msg(struct hl_device *hdev,
2616		struct fw_load_mgr *fw_loader, u8 msg_type, void *data)
2617{
2618	struct lkd_msg_comms *msg;
2619	int rc;
2620
2621	msg = kzalloc(sizeof(*msg), GFP_KERNEL);
2622	if (!msg)
2623		return -ENOMEM;
2624
2625	/* create message to be sent */
2626	msg->header.type = msg_type;
2627	msg->header.size = cpu_to_le16(sizeof(struct comms_msg_header));
2628	msg->header.magic = cpu_to_le32(HL_COMMS_MSG_MAGIC);
2629
2630	switch (msg_type) {
2631	case HL_COMMS_RESET_CAUSE_TYPE:
2632		msg->reset_cause = *(__u8 *) data;
2633		break;
2634
2635	default:
2636		dev_err(hdev->dev,
2637			"Send COMMS message - invalid message type %u\n",
2638			msg_type);
2639		rc = -EINVAL;
2640		goto out;
2641	}
2642
2643	rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader,
2644			sizeof(struct lkd_msg_comms));
2645	if (rc)
2646		goto out;
2647
2648	/* copy message to space allocated by FW */
2649	rc = hl_fw_dynamic_copy_msg(hdev, msg, fw_loader);
2650	if (rc)
2651		goto out;
2652
2653	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_DATA_RDY,
2654						0, true,
2655						fw_loader->cpu_timeout);
2656	if (rc)
2657		goto out;
2658
2659	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_EXEC,
2660						0, true,
2661						fw_loader->cpu_timeout);
2662
2663out:
2664	kfree(msg);
2665	return rc;
2666}
2667
2668/**
2669 * hl_fw_dynamic_init_cpu - initialize the device CPU using dynamic protocol
2670 *
2671 * @hdev: pointer to the habanalabs device structure
2672 * @fw_loader: managing structure for loading device's FW
2673 *
2674 * @return 0 on success, otherwise non-zero error code
2675 *
2676 * brief: the dynamic protocol is master (LKD) slave (FW CPU) protocol.
2677 * the communication is done using registers:
2678 * - LKD command register
2679 * - FW status register
2680 * the protocol is race free. this goal is achieved by splitting the requests
2681 * and response to known synchronization points between the LKD and the FW.
2682 * each response to LKD request is known and bound to a predefined timeout.
2683 * in case of timeout expiration without the desired status from FW- the
2684 * protocol (and hence the boot) will fail.
2685 */
2686static int hl_fw_dynamic_init_cpu(struct hl_device *hdev,
2687					struct fw_load_mgr *fw_loader)
2688{
2689	struct cpu_dyn_regs *dyn_regs;
2690	int rc, fw_error_rc;
2691
2692	dev_info(hdev->dev,
2693		"Loading %sfirmware to device, may take some time...\n",
2694		hdev->asic_prop.fw_security_enabled ? "secured " : "");
2695
2696	/* initialize FW descriptor as invalid */
2697	fw_loader->dynamic_loader.fw_desc_valid = false;
2698
2699	/*
2700	 * In this stage, "cpu_dyn_regs" contains only LKD's hard coded values!
2701	 * It will be updated from FW after hl_fw_dynamic_request_descriptor().
2702	 */
2703	dyn_regs = &fw_loader->dynamic_loader.comm_desc.cpu_dyn_regs;
2704
2705	rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader, COMMS_RST_STATE,
2706						0, true,
2707						fw_loader->cpu_timeout);
2708	if (rc)
2709		goto protocol_err;
2710
2711	if (hdev->reset_info.curr_reset_cause) {
2712		rc = hl_fw_dynamic_send_msg(hdev, fw_loader,
2713				HL_COMMS_RESET_CAUSE_TYPE, &hdev->reset_info.curr_reset_cause);
2714		if (rc)
2715			goto protocol_err;
2716
2717		/* Clear current reset cause */
2718		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
2719	}
2720
2721	rc = hl_fw_dynamic_request_descriptor(hdev, fw_loader, sizeof(struct lkd_msg_comms));
2722	if (rc)
2723		goto protocol_err;
2724
2725	if (hdev->asic_prop.support_dynamic_resereved_fw_size)
2726		hdev->asic_prop.reserved_fw_mem_size =
2727			le32_to_cpu(fw_loader->dynamic_loader.comm_desc.rsvd_mem_size_mb) * SZ_1M;
2728
2729	if (!(hdev->fw_components & FW_TYPE_BOOT_CPU)) {
2730		struct lkd_fw_binning_info *binning_info;
2731
2732		/* read preboot version */
2733		rc = hl_fw_dynamic_read_device_fw_version(hdev, FW_COMP_PREBOOT,
2734				fw_loader->dynamic_loader.comm_desc.cur_fw_ver);
2735		if (rc)
2736			return rc;
2737
2738		/* read binning info from preboot */
2739		if (hdev->support_preboot_binning) {
2740			binning_info = &fw_loader->dynamic_loader.comm_desc.binning_info;
2741			hdev->tpc_binning = le64_to_cpu(binning_info->tpc_mask_l);
2742			hdev->dram_binning = le32_to_cpu(binning_info->dram_mask);
2743			hdev->edma_binning = le32_to_cpu(binning_info->edma_mask);
2744			hdev->decoder_binning = le32_to_cpu(binning_info->dec_mask);
2745			hdev->rotator_binning = le32_to_cpu(binning_info->rot_mask);
2746
2747			rc = hdev->asic_funcs->set_dram_properties(hdev);
2748			if (rc)
2749				return rc;
2750
2751			rc = hdev->asic_funcs->set_binning_masks(hdev);
2752			if (rc)
2753				return rc;
2754
2755			dev_dbg(hdev->dev,
2756				"Read binning masks: tpc: 0x%llx, dram: 0x%llx, edma: 0x%x, dec: 0x%x, rot:0x%x\n",
2757				hdev->tpc_binning, hdev->dram_binning, hdev->edma_binning,
2758				hdev->decoder_binning, hdev->rotator_binning);
2759		}
2760
2761		return 0;
2762	}
2763
2764	/* load boot fit to FW */
2765	rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_BOOT_FIT,
2766						fw_loader->boot_fit_timeout);
2767	if (rc) {
2768		dev_err(hdev->dev, "failed to load boot fit\n");
2769		goto protocol_err;
2770	}
2771
2772	rc = hl_fw_dynamic_wait_for_boot_fit_active(hdev, fw_loader);
2773	if (rc)
2774		goto protocol_err;
2775
2776	hl_fw_boot_fit_update_state(hdev,
2777			le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
2778			le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
2779
2780	/*
2781	 * when testing FW load (without Linux) on PLDM we don't want to
2782	 * wait until boot fit is active as it may take several hours.
2783	 * instead, we load the bootfit and let it do all initialization in
2784	 * the background.
2785	 */
2786	if (hdev->pldm && !(hdev->fw_components & FW_TYPE_LINUX))
2787		return 0;
2788
2789	/* Enable DRAM scrambling before Linux boot and after successful
2790	 *  UBoot
2791	 */
2792	hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
2793
2794	if (!(hdev->fw_components & FW_TYPE_LINUX)) {
2795		dev_dbg(hdev->dev, "Skip loading Linux F/W\n");
2796		return 0;
2797	}
2798
2799	if (fw_loader->skip_bmc) {
2800		rc = hl_fw_dynamic_send_protocol_cmd(hdev, fw_loader,
2801							COMMS_SKIP_BMC, 0,
2802							true,
2803							fw_loader->cpu_timeout);
2804		if (rc) {
2805			dev_err(hdev->dev, "failed to load boot fit\n");
2806			goto protocol_err;
2807		}
2808	}
2809
2810	/* load Linux image to FW */
2811	rc = hl_fw_dynamic_load_image(hdev, fw_loader, FW_COMP_LINUX,
2812							fw_loader->cpu_timeout);
2813	if (rc) {
2814		dev_err(hdev->dev, "failed to load Linux\n");
2815		goto protocol_err;
2816	}
2817
2818	rc = hl_fw_dynamic_wait_for_linux_active(hdev, fw_loader);
2819	if (rc)
2820		goto protocol_err;
2821
2822	hl_fw_linux_update_state(hdev,
2823				le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
2824				le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
2825
2826	hl_fw_dynamic_update_linux_interrupt_if(hdev);
2827
2828protocol_err:
2829	if (fw_loader->dynamic_loader.fw_desc_valid) {
2830		fw_error_rc = fw_read_errors(hdev, le32_to_cpu(dyn_regs->cpu_boot_err0),
2831				le32_to_cpu(dyn_regs->cpu_boot_err1),
2832				le32_to_cpu(dyn_regs->cpu_boot_dev_sts0),
2833				le32_to_cpu(dyn_regs->cpu_boot_dev_sts1));
2834
2835		if (fw_error_rc)
2836			return fw_error_rc;
2837	}
2838
2839	return rc;
2840}
2841
2842/**
2843 * hl_fw_static_init_cpu - initialize the device CPU using static protocol
2844 *
2845 * @hdev: pointer to the habanalabs device structure
2846 * @fw_loader: managing structure for loading device's FW
2847 *
2848 * @return 0 on success, otherwise non-zero error code
2849 */
2850static int hl_fw_static_init_cpu(struct hl_device *hdev,
2851					struct fw_load_mgr *fw_loader)
2852{
2853	u32 cpu_msg_status_reg, cpu_timeout, msg_to_cpu_reg, status;
2854	u32 cpu_boot_dev_status0_reg, cpu_boot_dev_status1_reg;
2855	struct static_fw_load_mgr *static_loader;
2856	u32 cpu_boot_status_reg;
2857	int rc;
2858
2859	if (!(hdev->fw_components & FW_TYPE_BOOT_CPU))
2860		return 0;
2861
2862	/* init common loader parameters */
2863	cpu_timeout = fw_loader->cpu_timeout;
2864
2865	/* init static loader parameters */
2866	static_loader = &fw_loader->static_loader;
2867	cpu_msg_status_reg = static_loader->cpu_cmd_status_to_host_reg;
2868	msg_to_cpu_reg = static_loader->kmd_msg_to_cpu_reg;
2869	cpu_boot_dev_status0_reg = static_loader->cpu_boot_dev_status0_reg;
2870	cpu_boot_dev_status1_reg = static_loader->cpu_boot_dev_status1_reg;
2871	cpu_boot_status_reg = static_loader->cpu_boot_status_reg;
2872
2873	dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n",
2874		cpu_timeout / USEC_PER_SEC);
2875
2876	/* Wait for boot FIT request */
2877	rc = hl_poll_timeout(
2878		hdev,
2879		cpu_boot_status_reg,
2880		status,
2881		status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT,
2882		hdev->fw_poll_interval_usec,
2883		fw_loader->boot_fit_timeout);
2884
2885	if (rc) {
2886		dev_dbg(hdev->dev,
2887			"No boot fit request received (status = %d), resuming boot\n", status);
2888	} else {
2889		rc = hdev->asic_funcs->load_boot_fit_to_device(hdev);
2890		if (rc)
2891			goto out;
2892
2893		/* Clear device CPU message status */
2894		WREG32(cpu_msg_status_reg, CPU_MSG_CLR);
2895
2896		/* Signal device CPU that boot loader is ready */
2897		WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
2898
2899		/* Poll for CPU device ack */
2900		rc = hl_poll_timeout(
2901			hdev,
2902			cpu_msg_status_reg,
2903			status,
2904			status == CPU_MSG_OK,
2905			hdev->fw_poll_interval_usec,
2906			fw_loader->boot_fit_timeout);
2907
2908		if (rc) {
2909			dev_err(hdev->dev,
2910				"Timeout waiting for boot fit load ack (status = %d)\n", status);
2911			goto out;
2912		}
2913
2914		/* Clear message */
2915		WREG32(msg_to_cpu_reg, KMD_MSG_NA);
2916	}
2917
2918	/*
2919	 * Make sure CPU boot-loader is running
2920	 * Note that the CPU_BOOT_STATUS_SRAM_AVAIL is generally set by Linux
2921	 * yet there is a debug scenario in which we loading uboot (without Linux)
2922	 * which at later stage is relocated to DRAM. In this case we expect
2923	 * uboot to set the CPU_BOOT_STATUS_SRAM_AVAIL and so we add it to the
2924	 * poll flags
2925	 */
2926	rc = hl_poll_timeout(
2927		hdev,
2928		cpu_boot_status_reg,
2929		status,
2930		(status == CPU_BOOT_STATUS_DRAM_RDY) ||
2931		(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
2932		(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
2933		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
2934		hdev->fw_poll_interval_usec,
2935		cpu_timeout);
2936
2937	dev_dbg(hdev->dev, "uboot status = %d\n", status);
2938
2939	/* Read U-Boot version now in case we will later fail */
2940	hl_fw_static_read_device_fw_version(hdev, FW_COMP_BOOT_FIT);
2941
2942	/* update state according to boot stage */
2943	hl_fw_boot_fit_update_state(hdev, cpu_boot_dev_status0_reg,
2944						cpu_boot_dev_status1_reg);
2945
2946	if (rc) {
2947		detect_cpu_boot_status(hdev, status);
2948		rc = -EIO;
2949		goto out;
2950	}
2951
2952	/* Enable DRAM scrambling before Linux boot and after successful
2953	 *  UBoot
2954	 */
2955	hdev->asic_funcs->init_cpu_scrambler_dram(hdev);
2956
2957	if (!(hdev->fw_components & FW_TYPE_LINUX)) {
2958		dev_info(hdev->dev, "Skip loading Linux F/W\n");
2959		rc = 0;
2960		goto out;
2961	}
2962
2963	if (status == CPU_BOOT_STATUS_SRAM_AVAIL) {
2964		rc = 0;
2965		goto out;
2966	}
2967
2968	dev_info(hdev->dev,
2969		"Loading firmware to device, may take some time...\n");
2970
2971	rc = hdev->asic_funcs->load_firmware_to_device(hdev);
2972	if (rc)
2973		goto out;
2974
2975	if (fw_loader->skip_bmc) {
2976		WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC);
2977
2978		rc = hl_poll_timeout(
2979			hdev,
2980			cpu_boot_status_reg,
2981			status,
2982			(status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED),
2983			hdev->fw_poll_interval_usec,
2984			cpu_timeout);
2985
2986		if (rc) {
2987			dev_err(hdev->dev,
2988				"Failed to get ACK on skipping BMC (status = %d)\n",
2989				status);
2990			WREG32(msg_to_cpu_reg, KMD_MSG_NA);
2991			rc = -EIO;
2992			goto out;
2993		}
2994	}
2995
2996	WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);
2997
2998	rc = hl_poll_timeout(
2999		hdev,
3000		cpu_boot_status_reg,
3001		status,
3002		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
3003		hdev->fw_poll_interval_usec,
3004		cpu_timeout);
3005
3006	/* Clear message */
3007	WREG32(msg_to_cpu_reg, KMD_MSG_NA);
3008
3009	if (rc) {
3010		if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
3011			dev_err(hdev->dev,
3012				"Device reports FIT image is corrupted\n");
3013		else
3014			dev_err(hdev->dev,
3015				"Failed to load firmware to device (status = %d)\n",
3016				status);
3017
3018		rc = -EIO;
3019		goto out;
3020	}
3021
3022	rc = fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
3023					fw_loader->static_loader.boot_err1_reg,
3024					cpu_boot_dev_status0_reg,
3025					cpu_boot_dev_status1_reg);
3026	if (rc)
3027		return rc;
3028
3029	hl_fw_linux_update_state(hdev, cpu_boot_dev_status0_reg,
3030						cpu_boot_dev_status1_reg);
3031
3032	return 0;
3033
3034out:
3035	fw_read_errors(hdev, fw_loader->static_loader.boot_err0_reg,
3036					fw_loader->static_loader.boot_err1_reg,
3037					cpu_boot_dev_status0_reg,
3038					cpu_boot_dev_status1_reg);
3039
3040	return rc;
3041}
3042
3043/**
3044 * hl_fw_init_cpu - initialize the device CPU
3045 *
3046 * @hdev: pointer to the habanalabs device structure
3047 *
3048 * @return 0 on success, otherwise non-zero error code
3049 *
3050 * perform necessary initializations for device's CPU. takes into account if
3051 * init protocol is static or dynamic.
3052 */
3053int hl_fw_init_cpu(struct hl_device *hdev)
3054{
3055	struct asic_fixed_properties *prop = &hdev->asic_prop;
3056	struct fw_load_mgr *fw_loader = &hdev->fw_loader;
3057
3058	return  prop->dynamic_fw_load ?
3059			hl_fw_dynamic_init_cpu(hdev, fw_loader) :
3060			hl_fw_static_init_cpu(hdev, fw_loader);
3061}
3062
3063void hl_fw_set_pll_profile(struct hl_device *hdev)
3064{
3065	hl_fw_set_frequency(hdev, hdev->asic_prop.clk_pll_index,
3066				hdev->asic_prop.max_freq_value);
3067}
3068
3069int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk)
3070{
3071	long value;
3072
3073	if (!hl_device_operational(hdev, NULL))
3074		return -ENODEV;
3075
3076	if (!hdev->pdev) {
3077		*cur_clk = 0;
3078		*max_clk = 0;
3079		return 0;
3080	}
3081
3082	value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, false);
3083
3084	if (value < 0) {
3085		dev_err(hdev->dev, "Failed to retrieve device max clock %ld\n", value);
3086		return value;
3087	}
3088
3089	*max_clk = (value / 1000 / 1000);
3090
3091	value = hl_fw_get_frequency(hdev, hdev->asic_prop.clk_pll_index, true);
3092
3093	if (value < 0) {
3094		dev_err(hdev->dev, "Failed to retrieve device current clock %ld\n", value);
3095		return value;
3096	}
3097
3098	*cur_clk = (value / 1000 / 1000);
3099
3100	return 0;
3101}
3102
3103long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr)
3104{
3105	struct cpucp_packet pkt;
3106	u32 used_pll_idx;
3107	u64 result;
3108	int rc;
3109
3110	rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
3111	if (rc)
3112		return rc;
3113
3114	memset(&pkt, 0, sizeof(pkt));
3115
3116	if (curr)
3117		pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_CURR_GET <<
3118						CPUCP_PKT_CTL_OPCODE_SHIFT);
3119	else
3120		pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
3121
3122	pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
3123
3124	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
3125
3126	if (rc) {
3127		dev_err(hdev->dev, "Failed to get frequency of PLL %d, error %d\n",
3128			used_pll_idx, rc);
3129		return rc;
3130	}
3131
3132	return (long) result;
3133}
3134
3135void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq)
3136{
3137	struct cpucp_packet pkt;
3138	u32 used_pll_idx;
3139	int rc;
3140
3141	rc = get_used_pll_index(hdev, pll_index, &used_pll_idx);
3142	if (rc)
3143		return;
3144
3145	memset(&pkt, 0, sizeof(pkt));
3146
3147	pkt.ctl = cpu_to_le32(CPUCP_PACKET_FREQUENCY_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
3148	pkt.pll_index = cpu_to_le32((u32)used_pll_idx);
3149	pkt.value = cpu_to_le64(freq);
3150
3151	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
3152
3153	if (rc)
3154		dev_err(hdev->dev, "Failed to set frequency to PLL %d, error %d\n",
3155			used_pll_idx, rc);
3156}
3157
3158long hl_fw_get_max_power(struct hl_device *hdev)
3159{
3160	struct cpucp_packet pkt;
3161	u64 result;
3162	int rc;
3163
3164	memset(&pkt, 0, sizeof(pkt));
3165
3166	pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_GET << CPUCP_PKT_CTL_OPCODE_SHIFT);
3167
3168	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, &result);
3169
3170	if (rc) {
3171		dev_err(hdev->dev, "Failed to get max power, error %d\n", rc);
3172		return rc;
3173	}
3174
3175	return result;
3176}
3177
3178void hl_fw_set_max_power(struct hl_device *hdev)
3179{
3180	struct cpucp_packet pkt;
3181	int rc;
3182
3183	/* TODO: remove this after simulator supports this packet */
3184	if (!hdev->pdev)
3185		return;
3186
3187	memset(&pkt, 0, sizeof(pkt));
3188
3189	pkt.ctl = cpu_to_le32(CPUCP_PACKET_MAX_POWER_SET << CPUCP_PKT_CTL_OPCODE_SHIFT);
3190	pkt.value = cpu_to_le64(hdev->max_power);
3191
3192	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL);
3193
3194	if (rc)
3195		dev_err(hdev->dev, "Failed to set max power, error %d\n", rc);
3196}
3197
3198static int hl_fw_get_sec_attest_data(struct hl_device *hdev, u32 packet_id, void *data, u32 size,
3199					u32 nonce, u32 timeout)
3200{
3201	struct cpucp_packet pkt = {};
3202	dma_addr_t req_dma_addr;
3203	void *req_cpu_addr;
3204	int rc;
3205
3206	req_cpu_addr = hl_cpu_accessible_dma_pool_alloc(hdev, size, &req_dma_addr);
3207	if (!req_cpu_addr) {
3208		dev_err(hdev->dev,
3209			"Failed to allocate DMA memory for CPU-CP packet %u\n", packet_id);
3210		return -ENOMEM;
3211	}
3212
3213	memset(data, 0, size);
3214
3215	pkt.ctl = cpu_to_le32(packet_id << CPUCP_PKT_CTL_OPCODE_SHIFT);
3216	pkt.addr = cpu_to_le64(req_dma_addr);
3217	pkt.data_max_size = cpu_to_le32(size);
3218	pkt.nonce = cpu_to_le32(nonce);
3219
3220	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
3221					timeout, NULL);
3222	if (rc) {
3223		dev_err(hdev->dev,
3224			"Failed to handle CPU-CP pkt %u, error %d\n", packet_id, rc);
3225		goto out;
3226	}
3227
3228	memcpy(data, req_cpu_addr, size);
3229
3230out:
3231	hl_cpu_accessible_dma_pool_free(hdev, size, req_cpu_addr);
3232
3233	return rc;
3234}
3235
3236int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3237				u32 nonce)
3238{
3239	return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_SEC_ATTEST_GET, sec_attest_info,
3240					sizeof(struct cpucp_sec_attest_info), nonce,
3241					HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC);
3242}
3243
3244int hl_fw_get_dev_info_signed(struct hl_device *hdev,
3245			      struct cpucp_dev_info_signed *dev_info_signed, u32 nonce)
3246{
3247	return hl_fw_get_sec_attest_data(hdev, CPUCP_PACKET_INFO_SIGNED_GET, dev_info_signed,
3248					 sizeof(struct cpucp_dev_info_signed), nonce,
3249					 HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC);
3250}
3251
3252int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
3253						dma_addr_t buff, u32 *size)
3254{
3255	struct cpucp_packet pkt = {};
3256	u64 result;
3257	int rc = 0;
3258
3259	pkt.ctl = cpu_to_le32(CPUCP_PACKET_GENERIC_PASSTHROUGH << CPUCP_PKT_CTL_OPCODE_SHIFT);
3260	pkt.addr = cpu_to_le64(buff);
3261	pkt.data_max_size = cpu_to_le32(*size);
3262	pkt.pkt_subidx = cpu_to_le32(sub_opcode);
3263
3264	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *)&pkt, sizeof(pkt),
3265						HL_CPUCP_INFO_TIMEOUT_USEC, &result);
3266	if (rc)
3267		dev_err(hdev->dev, "failed to send CPUCP data of generic fw pkt\n");
3268	else
3269		dev_dbg(hdev->dev, "generic pkt was successful, result: 0x%llx\n", result);
3270
3271	*size = (u32)result;
3272
3273	return rc;
3274}
3275