1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8#define pr_fmt(fmt)			"habanalabs: " fmt
9
10#include <uapi/drm/habanalabs_accel.h>
11#include "habanalabs.h"
12
13#include <linux/pci.h>
14#include <linux/hwmon.h>
15#include <linux/vmalloc.h>
16
17#include <drm/drm_accel.h>
18#include <drm/drm_drv.h>
19
20#include <trace/events/habanalabs.h>
21
22#define HL_RESET_DELAY_USEC			10000	/* 10ms */
23
24#define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC	30
25
26enum dma_alloc_type {
27	DMA_ALLOC_COHERENT,
28	DMA_ALLOC_POOL,
29};
30
31#define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788
32
33/*
34 * hl_set_dram_bar- sets the bar to allow later access to address
35 *
36 * @hdev: pointer to habanalabs device structure.
37 * @addr: the address the caller wants to access.
38 * @region: the PCI region.
39 * @new_bar_region_base: the new BAR region base address.
40 *
41 * @return: the old BAR base address on success, U64_MAX for failure.
42 *	    The caller should set it back to the old address after use.
43 *
44 * In case the bar space does not cover the whole address space,
45 * the bar base address should be set to allow access to a given address.
46 * This function can be called also if the bar doesn't need to be set,
47 * in that case it just won't change the base.
48 */
49static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region,
50				u64 *new_bar_region_base)
51{
52	struct asic_fixed_properties *prop = &hdev->asic_prop;
53	u64 bar_base_addr, old_base;
54
55	if (is_power_of_2(prop->dram_pci_bar_size))
56		bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
57	else
58		bar_base_addr = region->region_base +
59				div64_u64((addr - region->region_base), prop->dram_pci_bar_size) *
60				prop->dram_pci_bar_size;
61
62	old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);
63
64	/* in case of success we need to update the new BAR base */
65	if ((old_base != U64_MAX) && new_bar_region_base)
66		*new_bar_region_base = bar_base_addr;
67
68	return old_base;
69}
70
71int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
72	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar)
73{
74	struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
75	u64 old_base = 0, rc, bar_region_base = region->region_base;
76	void __iomem *acc_addr;
77
78	if (set_dram_bar) {
79		old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base);
80		if (old_base == U64_MAX)
81			return -EIO;
82	}
83
84	acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
85			(addr - bar_region_base);
86
87	switch (acc_type) {
88	case DEBUGFS_READ8:
89		*val = readb(acc_addr);
90		break;
91	case DEBUGFS_WRITE8:
92		writeb(*val, acc_addr);
93		break;
94	case DEBUGFS_READ32:
95		*val = readl(acc_addr);
96		break;
97	case DEBUGFS_WRITE32:
98		writel(*val, acc_addr);
99		break;
100	case DEBUGFS_READ64:
101		*val = readq(acc_addr);
102		break;
103	case DEBUGFS_WRITE64:
104		writeq(*val, acc_addr);
105		break;
106	}
107
108	if (set_dram_bar) {
109		rc = hl_set_dram_bar(hdev, old_base, region, NULL);
110		if (rc == U64_MAX)
111			return -EIO;
112	}
113
114	return 0;
115}
116
117static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
118					gfp_t flag, enum dma_alloc_type alloc_type,
119					const char *caller)
120{
121	void *ptr = NULL;
122
123	switch (alloc_type) {
124	case DMA_ALLOC_COHERENT:
125		ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
126		break;
127	case DMA_ALLOC_POOL:
128		ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
129		break;
130	}
131
132	if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
133		trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size,
134						caller);
135
136	return ptr;
137}
138
139static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
140					dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
141					const char *caller)
142{
143	/* this is needed to avoid warning on using freed pointer */
144	u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr;
145
146	switch (alloc_type) {
147	case DMA_ALLOC_COHERENT:
148		hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
149		break;
150	case DMA_ALLOC_POOL:
151		hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
152		break;
153	}
154
155	trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller);
156}
157
158void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
159					gfp_t flag, const char *caller)
160{
161	return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
162}
163
164void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
165					dma_addr_t dma_handle, const char *caller)
166{
167	hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
168}
169
170void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
171					dma_addr_t *dma_handle, const char *caller)
172{
173	return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
174}
175
176void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
177					const char *caller)
178{
179	hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
180}
181
182void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle)
183{
184	return hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
185}
186
187void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr)
188{
189	hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, vaddr);
190}
191
192int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
193				enum dma_data_direction dir, const char *caller)
194{
195	struct asic_fixed_properties *prop = &hdev->asic_prop;
196	struct scatterlist *sg;
197	int rc, i;
198
199	rc = hdev->asic_funcs->dma_map_sgtable(hdev, sgt, dir);
200	if (rc)
201		return rc;
202
203	if (!trace_habanalabs_dma_map_page_enabled())
204		return 0;
205
206	for_each_sgtable_dma_sg(sgt, sg, i)
207		trace_habanalabs_dma_map_page(hdev->dev,
208				page_to_phys(sg_page(sg)),
209				sg->dma_address - prop->device_dma_offset_for_host_access,
210#ifdef CONFIG_NEED_SG_DMA_LENGTH
211				sg->dma_length,
212#else
213				sg->length,
214#endif
215				dir, caller);
216
217	return 0;
218}
219
220int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt,
221				enum dma_data_direction dir)
222{
223	struct asic_fixed_properties *prop = &hdev->asic_prop;
224	struct scatterlist *sg;
225	int rc, i;
226
227	rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
228	if (rc)
229		return rc;
230
231	/* Shift to the device's base physical address of host memory if necessary */
232	if (prop->device_dma_offset_for_host_access)
233		for_each_sgtable_dma_sg(sgt, sg, i)
234			sg->dma_address += prop->device_dma_offset_for_host_access;
235
236	return 0;
237}
238
239void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt,
240					enum dma_data_direction dir, const char *caller)
241{
242	struct asic_fixed_properties *prop = &hdev->asic_prop;
243	struct scatterlist *sg;
244	int i;
245
246	hdev->asic_funcs->dma_unmap_sgtable(hdev, sgt, dir);
247
248	if (trace_habanalabs_dma_unmap_page_enabled()) {
249		for_each_sgtable_dma_sg(sgt, sg, i)
250			trace_habanalabs_dma_unmap_page(hdev->dev, page_to_phys(sg_page(sg)),
251					sg->dma_address - prop->device_dma_offset_for_host_access,
252#ifdef CONFIG_NEED_SG_DMA_LENGTH
253					sg->dma_length,
254#else
255					sg->length,
256#endif
257					dir, caller);
258	}
259}
260
261void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
262				enum dma_data_direction dir)
263{
264	struct asic_fixed_properties *prop = &hdev->asic_prop;
265	struct scatterlist *sg;
266	int i;
267
268	/* Cancel the device's base physical address of host memory if necessary */
269	if (prop->device_dma_offset_for_host_access)
270		for_each_sgtable_dma_sg(sgt, sg, i)
271			sg->dma_address -= prop->device_dma_offset_for_host_access;
272
273	dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
274}
275
276/*
277 * hl_access_cfg_region - access the config region
278 *
279 * @hdev: pointer to habanalabs device structure
280 * @addr: the address to access
281 * @val: the value to write from or read to
282 * @acc_type: the type of access (read/write 64/32)
283 */
284int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
285	enum debugfs_access_type acc_type)
286{
287	struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
288	u32 val_h, val_l;
289
290	if (!IS_ALIGNED(addr, sizeof(u32))) {
291		dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
292		return -EINVAL;
293	}
294
295	switch (acc_type) {
296	case DEBUGFS_READ32:
297		*val = RREG32(addr - cfg_region->region_base);
298		break;
299	case DEBUGFS_WRITE32:
300		WREG32(addr - cfg_region->region_base, *val);
301		break;
302	case DEBUGFS_READ64:
303		val_l = RREG32(addr - cfg_region->region_base);
304		val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);
305
306		*val = (((u64) val_h) << 32) | val_l;
307		break;
308	case DEBUGFS_WRITE64:
309		WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
310		WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
311		break;
312	default:
313		dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
314		return -EOPNOTSUPP;
315	}
316
317	return 0;
318}
319
320/*
321 * hl_access_dev_mem - access device memory
322 *
323 * @hdev: pointer to habanalabs device structure
324 * @region_type: the type of the region the address belongs to
325 * @addr: the address to access
326 * @val: the value to write from or read to
327 * @acc_type: the type of access (r/w, 32/64)
328 */
329int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
330			u64 addr, u64 *val, enum debugfs_access_type acc_type)
331{
332	switch (region_type) {
333	case PCI_REGION_CFG:
334		return hl_access_cfg_region(hdev, addr, val, acc_type);
335	case PCI_REGION_SRAM:
336	case PCI_REGION_DRAM:
337		return hl_access_sram_dram_region(hdev, addr, val, acc_type,
338				region_type, (region_type == PCI_REGION_DRAM));
339	default:
340		return -EFAULT;
341	}
342
343	return 0;
344}
345
346void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
347{
348	va_list args;
349	int str_size;
350
351	va_start(args, fmt);
352	/* Calculate formatted string length. Assuming each string is null terminated, hence
353	 * increment result by 1
354	 */
355	str_size = vsnprintf(NULL, 0, fmt, args) + 1;
356	va_end(args);
357
358	if ((e->actual_size + str_size) < e->allocated_buf_size) {
359		va_start(args, fmt);
360		vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
361		va_end(args);
362	}
363
364	/* Need to update the size even when not updating destination buffer to get the exact size
365	 * of all input strings
366	 */
367	e->actual_size += str_size;
368}
369
370enum hl_device_status hl_device_status(struct hl_device *hdev)
371{
372	enum hl_device_status status;
373
374	if (hdev->device_fini_pending) {
375		status = HL_DEVICE_STATUS_MALFUNCTION;
376	} else if (hdev->reset_info.in_reset) {
377		if (hdev->reset_info.in_compute_reset)
378			status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
379		else
380			status = HL_DEVICE_STATUS_IN_RESET;
381	} else if (hdev->reset_info.needs_reset) {
382		status = HL_DEVICE_STATUS_NEEDS_RESET;
383	} else if (hdev->disabled) {
384		status = HL_DEVICE_STATUS_MALFUNCTION;
385	} else if (!hdev->init_done) {
386		status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
387	} else {
388		status = HL_DEVICE_STATUS_OPERATIONAL;
389	}
390
391	return status;
392}
393
394bool hl_device_operational(struct hl_device *hdev,
395		enum hl_device_status *status)
396{
397	enum hl_device_status current_status;
398
399	current_status = hl_device_status(hdev);
400	if (status)
401		*status = current_status;
402
403	switch (current_status) {
404	case HL_DEVICE_STATUS_MALFUNCTION:
405	case HL_DEVICE_STATUS_IN_RESET:
406	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
407	case HL_DEVICE_STATUS_NEEDS_RESET:
408		return false;
409	case HL_DEVICE_STATUS_OPERATIONAL:
410	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
411	default:
412		return true;
413	}
414}
415
416bool hl_ctrl_device_operational(struct hl_device *hdev,
417		enum hl_device_status *status)
418{
419	enum hl_device_status current_status;
420
421	current_status = hl_device_status(hdev);
422	if (status)
423		*status = current_status;
424
425	switch (current_status) {
426	case HL_DEVICE_STATUS_MALFUNCTION:
427		return false;
428	case HL_DEVICE_STATUS_IN_RESET:
429	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
430	case HL_DEVICE_STATUS_NEEDS_RESET:
431	case HL_DEVICE_STATUS_OPERATIONAL:
432	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
433	default:
434		return true;
435	}
436}
437
438static void print_idle_status_mask(struct hl_device *hdev, const char *message,
439					u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])
440{
441	if (idle_mask[3])
442		dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx_%016llx)\n",
443			message, idle_mask[3], idle_mask[2], idle_mask[1], idle_mask[0]);
444	else if (idle_mask[2])
445		dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx)\n",
446			message, idle_mask[2], idle_mask[1], idle_mask[0]);
447	else if (idle_mask[1])
448		dev_err(hdev->dev, "%s (mask %#llx_%016llx)\n",
449			message, idle_mask[1], idle_mask[0]);
450	else
451		dev_err(hdev->dev, "%s (mask %#llx)\n", message, idle_mask[0]);
452}
453
454static void hpriv_release(struct kref *ref)
455{
456	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
457	bool reset_device, device_is_idle = true;
458	struct hl_fpriv *hpriv;
459	struct hl_device *hdev;
460
461	hpriv = container_of(ref, struct hl_fpriv, refcount);
462
463	hdev = hpriv->hdev;
464
465	hdev->asic_funcs->send_device_activity(hdev, false);
466
467	hl_debugfs_remove_file(hpriv);
468
469	mutex_destroy(&hpriv->ctx_lock);
470	mutex_destroy(&hpriv->restore_phase_mutex);
471
472	/* There should be no memory buffers at this point and handles IDR can be destroyed */
473	hl_mem_mgr_idr_destroy(&hpriv->mem_mgr);
474
475	/* Device should be reset if reset-upon-device-release is enabled, or if there is a pending
476	 * reset that waits for device release.
477	 */
478	reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active;
479
480	/* Check the device idle status and reset if not idle.
481	 * Skip it if already in reset, or if device is going to be reset in any case.
482	 */
483	if (!hdev->reset_info.in_reset && !reset_device && !hdev->pldm)
484		device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask,
485							HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);
486	if (!device_is_idle) {
487		print_idle_status_mask(hdev, "device is not idle after user context is closed",
488					idle_mask);
489		reset_device = true;
490	}
491
492	/* We need to remove the user from the list to make sure the reset process won't
493	 * try to kill the user process. Because, if we got here, it means there are no
494	 * more driver/device resources that the user process is occupying so there is
495	 * no need to kill it
496	 *
497	 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
498	 * a race between the release and opening the device again. We don't want to let
499	 * a user open the device while there a reset is about to happen.
500	 */
501	mutex_lock(&hdev->fpriv_list_lock);
502	list_del(&hpriv->dev_node);
503	mutex_unlock(&hdev->fpriv_list_lock);
504
505	put_pid(hpriv->taskpid);
506
507	if (reset_device) {
508		hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
509	} else {
510		/* Scrubbing is handled within hl_device_reset(), so here need to do it directly */
511		int rc = hdev->asic_funcs->scrub_device_mem(hdev);
512
513		if (rc) {
514			dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
515			hl_device_reset(hdev, HL_DRV_RESET_HARD);
516		}
517	}
518
519	/* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
520	 * thread, we don't care because the in_reset is marked so if a user will try to open
521	 * the device it will fail on that, even if compute_ctx is false.
522	 */
523	mutex_lock(&hdev->fpriv_list_lock);
524	hdev->is_compute_ctx_active = false;
525	mutex_unlock(&hdev->fpriv_list_lock);
526
527	hdev->compute_ctx_in_release = 0;
528
529	/* release the eventfd */
530	if (hpriv->notifier_event.eventfd)
531		eventfd_ctx_put(hpriv->notifier_event.eventfd);
532
533	mutex_destroy(&hpriv->notifier_event.lock);
534
535	kfree(hpriv);
536}
537
538void hl_hpriv_get(struct hl_fpriv *hpriv)
539{
540	kref_get(&hpriv->refcount);
541}
542
543int hl_hpriv_put(struct hl_fpriv *hpriv)
544{
545	return kref_put(&hpriv->refcount, hpriv_release);
546}
547
548static void print_device_in_use_info(struct hl_device *hdev, const char *message)
549{
550	u32 active_cs_num, dmabuf_export_cnt;
551	bool unknown_reason = true;
552	char buf[128];
553	size_t size;
554	int offset;
555
556	size = sizeof(buf);
557	offset = 0;
558
559	active_cs_num = hl_get_active_cs_num(hdev);
560	if (active_cs_num) {
561		unknown_reason = false;
562		offset += scnprintf(buf + offset, size - offset, " [%u active CS]", active_cs_num);
563	}
564
565	dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt);
566	if (dmabuf_export_cnt) {
567		unknown_reason = false;
568		offset += scnprintf(buf + offset, size - offset, " [%u exported dma-buf]",
569					dmabuf_export_cnt);
570	}
571
572	if (unknown_reason)
573		scnprintf(buf + offset, size - offset, " [unknown reason]");
574
575	dev_notice(hdev->dev, "%s%s\n", message, buf);
576}
577
578/*
579 * hl_device_release() - release function for habanalabs device.
580 * @ddev: pointer to DRM device structure.
581 * @file: pointer to DRM file private data structure.
582 *
583 * Called when process closes an habanalabs device
584 */
585void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv)
586{
587	struct hl_fpriv *hpriv = file_priv->driver_priv;
588	struct hl_device *hdev = to_hl_device(ddev);
589
590	if (!hdev) {
591		pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
592		put_pid(hpriv->taskpid);
593	}
594
595	hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
596
597	/* Memory buffers might be still in use at this point and thus the handles IDR destruction
598	 * is postponed to hpriv_release().
599	 */
600	hl_mem_mgr_fini(&hpriv->mem_mgr);
601
602	hdev->compute_ctx_in_release = 1;
603
604	if (!hl_hpriv_put(hpriv)) {
605		print_device_in_use_info(hdev, "User process closed FD but device still in use");
606		hl_device_reset(hdev, HL_DRV_RESET_HARD);
607	}
608
609	hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif;
610}
611
612static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
613{
614	struct hl_fpriv *hpriv = filp->private_data;
615	struct hl_device *hdev = hpriv->hdev;
616
617	filp->private_data = NULL;
618
619	if (!hdev) {
620		pr_err("Closing FD after device was removed\n");
621		goto out;
622	}
623
624	mutex_lock(&hdev->fpriv_ctrl_list_lock);
625	list_del(&hpriv->dev_node);
626	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
627out:
628	put_pid(hpriv->taskpid);
629
630	kfree(hpriv);
631
632	return 0;
633}
634
635static int __hl_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
636{
637	struct hl_device *hdev = hpriv->hdev;
638	unsigned long vm_pgoff;
639
640	if (!hdev) {
641		pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
642		return -ENODEV;
643	}
644
645	vm_pgoff = vma->vm_pgoff;
646
647	switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
648	case HL_MMAP_TYPE_BLOCK:
649		vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
650		return hl_hw_block_mmap(hpriv, vma);
651
652	case HL_MMAP_TYPE_CB:
653	case HL_MMAP_TYPE_TS_BUFF:
654		return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
655	}
656	return -EINVAL;
657}
658
659/*
660 * hl_mmap - mmap function for habanalabs device
661 *
662 * @*filp: pointer to file structure
663 * @*vma: pointer to vm_area_struct of the process
664 *
665 * Called when process does an mmap on habanalabs device. Call the relevant mmap
666 * function at the end of the common code.
667 */
668int hl_mmap(struct file *filp, struct vm_area_struct *vma)
669{
670	struct drm_file *file_priv = filp->private_data;
671	struct hl_fpriv *hpriv = file_priv->driver_priv;
672
673	return __hl_mmap(hpriv, vma);
674}
675
676static const struct file_operations hl_ctrl_ops = {
677	.owner = THIS_MODULE,
678	.open = hl_device_open_ctrl,
679	.release = hl_device_release_ctrl,
680	.unlocked_ioctl = hl_ioctl_control,
681	.compat_ioctl = hl_ioctl_control
682};
683
684static void device_release_func(struct device *dev)
685{
686	kfree(dev);
687}
688
689/*
690 * device_init_cdev - Initialize cdev and device for habanalabs device
691 *
692 * @hdev: pointer to habanalabs device structure
693 * @class: pointer to the class object of the device
694 * @minor: minor number of the specific device
695 * @fops: file operations to install for this device
696 * @name: name of the device as it will appear in the filesystem
697 * @cdev: pointer to the char device object that will be initialized
698 * @dev: pointer to the device object that will be initialized
699 *
700 * Initialize a cdev and a Linux device for habanalabs's device.
701 */
702static int device_init_cdev(struct hl_device *hdev, const struct class *class,
703				int minor, const struct file_operations *fops,
704				char *name, struct cdev *cdev,
705				struct device **dev)
706{
707	cdev_init(cdev, fops);
708	cdev->owner = THIS_MODULE;
709
710	*dev = kzalloc(sizeof(**dev), GFP_KERNEL);
711	if (!*dev)
712		return -ENOMEM;
713
714	device_initialize(*dev);
715	(*dev)->devt = MKDEV(hdev->major, minor);
716	(*dev)->class = class;
717	(*dev)->release = device_release_func;
718	dev_set_drvdata(*dev, hdev);
719	dev_set_name(*dev, "%s", name);
720
721	return 0;
722}
723
724static int cdev_sysfs_debugfs_add(struct hl_device *hdev)
725{
726	const struct class *accel_class = hdev->drm.accel->kdev->class;
727	char name[32];
728	int rc;
729
730	hdev->cdev_idx = hdev->drm.accel->index;
731
732	/* Initialize cdev and device structures for the control device */
733	snprintf(name, sizeof(name), "accel_controlD%d", hdev->cdev_idx);
734	rc = device_init_cdev(hdev, accel_class, hdev->cdev_idx, &hl_ctrl_ops, name,
735				&hdev->cdev_ctrl, &hdev->dev_ctrl);
736	if (rc)
737		return rc;
738
739	rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
740	if (rc) {
741		dev_err(hdev->dev_ctrl,
742			"failed to add an accel control char device to the system\n");
743		goto free_ctrl_device;
744	}
745
746	rc = hl_sysfs_init(hdev);
747	if (rc) {
748		dev_err(hdev->dev, "failed to initialize sysfs\n");
749		goto delete_ctrl_cdev_device;
750	}
751
752	hl_debugfs_add_device(hdev);
753
754	hdev->cdev_sysfs_debugfs_created = true;
755
756	return 0;
757
758delete_ctrl_cdev_device:
759	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
760free_ctrl_device:
761	put_device(hdev->dev_ctrl);
762	return rc;
763}
764
765static void cdev_sysfs_debugfs_remove(struct hl_device *hdev)
766{
767	if (!hdev->cdev_sysfs_debugfs_created)
768		return;
769
770	hl_sysfs_fini(hdev);
771
772	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
773	put_device(hdev->dev_ctrl);
774}
775
776static void device_hard_reset_pending(struct work_struct *work)
777{
778	struct hl_device_reset_work *device_reset_work =
779		container_of(work, struct hl_device_reset_work, reset_work.work);
780	struct hl_device *hdev = device_reset_work->hdev;
781	u32 flags;
782	int rc;
783
784	flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
785
786	rc = hl_device_reset(hdev, flags);
787
788	if ((rc == -EBUSY) && !hdev->device_fini_pending) {
789		struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
790
791		if (ctx) {
792			/* The read refcount value should subtracted by one, because the read is
793			 * protected with hl_get_compute_ctx().
794			 */
795			dev_info(hdev->dev,
796				"Could not reset device (compute_ctx refcount %u). will try again in %u seconds",
797				kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC);
798			hl_ctx_put(ctx);
799		} else {
800			dev_info(hdev->dev, "Could not reset device. will try again in %u seconds",
801				HL_PENDING_RESET_PER_SEC);
802		}
803
804		queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work,
805					msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
806	}
807}
808
809static void device_release_watchdog_func(struct work_struct *work)
810{
811	struct hl_device_reset_work *watchdog_work =
812			container_of(work, struct hl_device_reset_work, reset_work.work);
813	struct hl_device *hdev = watchdog_work->hdev;
814	u32 flags;
815
816	dev_dbg(hdev->dev, "Device wasn't released in time. Initiate hard-reset.\n");
817
818	flags = watchdog_work->flags | HL_DRV_RESET_HARD | HL_DRV_RESET_FROM_WD_THR;
819
820	hl_device_reset(hdev, flags);
821}
822
823/*
824 * device_early_init - do some early initialization for the habanalabs device
825 *
826 * @hdev: pointer to habanalabs device structure
827 *
828 * Install the relevant function pointers and call the early_init function,
829 * if such a function exists
830 */
831static int device_early_init(struct hl_device *hdev)
832{
833	int i, rc;
834	char workq_name[32];
835
836	switch (hdev->asic_type) {
837	case ASIC_GOYA:
838		goya_set_asic_funcs(hdev);
839		strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
840		break;
841	case ASIC_GAUDI:
842		gaudi_set_asic_funcs(hdev);
843		strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
844		break;
845	case ASIC_GAUDI_SEC:
846		gaudi_set_asic_funcs(hdev);
847		strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
848		break;
849	case ASIC_GAUDI2:
850		gaudi2_set_asic_funcs(hdev);
851		strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
852		break;
853	case ASIC_GAUDI2B:
854		gaudi2_set_asic_funcs(hdev);
855		strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name));
856		break;
857	case ASIC_GAUDI2C:
858		gaudi2_set_asic_funcs(hdev);
859		strscpy(hdev->asic_name, "GAUDI2C", sizeof(hdev->asic_name));
860		break;
861	default:
862		dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
863			hdev->asic_type);
864		return -EINVAL;
865	}
866
867	rc = hdev->asic_funcs->early_init(hdev);
868	if (rc)
869		return rc;
870
871	rc = hl_asid_init(hdev);
872	if (rc)
873		goto early_fini;
874
875	if (hdev->asic_prop.completion_queues_count) {
876		hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
877				sizeof(struct workqueue_struct *),
878				GFP_KERNEL);
879		if (!hdev->cq_wq) {
880			rc = -ENOMEM;
881			goto asid_fini;
882		}
883	}
884
885	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
886		snprintf(workq_name, 32, "hl%u-free-jobs-%u", hdev->cdev_idx, (u32) i);
887		hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
888		if (hdev->cq_wq[i] == NULL) {
889			dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
890			rc = -ENOMEM;
891			goto free_cq_wq;
892		}
893	}
894
895	snprintf(workq_name, 32, "hl%u-events", hdev->cdev_idx);
896	hdev->eq_wq = create_singlethread_workqueue(workq_name);
897	if (hdev->eq_wq == NULL) {
898		dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
899		rc = -ENOMEM;
900		goto free_cq_wq;
901	}
902
903	snprintf(workq_name, 32, "hl%u-cs-completions", hdev->cdev_idx);
904	hdev->cs_cmplt_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
905	if (!hdev->cs_cmplt_wq) {
906		dev_err(hdev->dev,
907			"Failed to allocate CS completions workqueue\n");
908		rc = -ENOMEM;
909		goto free_eq_wq;
910	}
911
912	snprintf(workq_name, 32, "hl%u-ts-free-obj", hdev->cdev_idx);
913	hdev->ts_free_obj_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
914	if (!hdev->ts_free_obj_wq) {
915		dev_err(hdev->dev,
916			"Failed to allocate Timestamp registration free workqueue\n");
917		rc = -ENOMEM;
918		goto free_cs_cmplt_wq;
919	}
920
921	snprintf(workq_name, 32, "hl%u-prefetch", hdev->cdev_idx);
922	hdev->prefetch_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
923	if (!hdev->prefetch_wq) {
924		dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
925		rc = -ENOMEM;
926		goto free_ts_free_wq;
927	}
928
929	hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL);
930	if (!hdev->hl_chip_info) {
931		rc = -ENOMEM;
932		goto free_prefetch_wq;
933	}
934
935	rc = hl_mmu_if_set_funcs(hdev);
936	if (rc)
937		goto free_chip_info;
938
939	hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
940
941	snprintf(workq_name, 32, "hl%u_device_reset", hdev->cdev_idx);
942	hdev->reset_wq = create_singlethread_workqueue(workq_name);
943	if (!hdev->reset_wq) {
944		rc = -ENOMEM;
945		dev_err(hdev->dev, "Failed to create device reset WQ\n");
946		goto free_cb_mgr;
947	}
948
949	INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending);
950	hdev->device_reset_work.hdev = hdev;
951	hdev->device_fini_pending = 0;
952
953	INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work,
954				device_release_watchdog_func);
955	hdev->device_release_watchdog_work.hdev = hdev;
956
957	mutex_init(&hdev->send_cpu_message_lock);
958	mutex_init(&hdev->debug_lock);
959	INIT_LIST_HEAD(&hdev->cs_mirror_list);
960	spin_lock_init(&hdev->cs_mirror_lock);
961	spin_lock_init(&hdev->reset_info.lock);
962	INIT_LIST_HEAD(&hdev->fpriv_list);
963	INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
964	mutex_init(&hdev->fpriv_list_lock);
965	mutex_init(&hdev->fpriv_ctrl_list_lock);
966	mutex_init(&hdev->clk_throttling.lock);
967
968	return 0;
969
970free_cb_mgr:
971	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
972	hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
973free_chip_info:
974	kfree(hdev->hl_chip_info);
975free_prefetch_wq:
976	destroy_workqueue(hdev->prefetch_wq);
977free_ts_free_wq:
978	destroy_workqueue(hdev->ts_free_obj_wq);
979free_cs_cmplt_wq:
980	destroy_workqueue(hdev->cs_cmplt_wq);
981free_eq_wq:
982	destroy_workqueue(hdev->eq_wq);
983free_cq_wq:
984	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
985		if (hdev->cq_wq[i])
986			destroy_workqueue(hdev->cq_wq[i]);
987	kfree(hdev->cq_wq);
988asid_fini:
989	hl_asid_fini(hdev);
990early_fini:
991	if (hdev->asic_funcs->early_fini)
992		hdev->asic_funcs->early_fini(hdev);
993
994	return rc;
995}
996
997/*
998 * device_early_fini - finalize all that was done in device_early_init
999 *
1000 * @hdev: pointer to habanalabs device structure
1001 *
1002 */
1003static void device_early_fini(struct hl_device *hdev)
1004{
1005	int i;
1006
1007	mutex_destroy(&hdev->debug_lock);
1008	mutex_destroy(&hdev->send_cpu_message_lock);
1009
1010	mutex_destroy(&hdev->fpriv_list_lock);
1011	mutex_destroy(&hdev->fpriv_ctrl_list_lock);
1012
1013	mutex_destroy(&hdev->clk_throttling.lock);
1014
1015	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
1016	hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
1017
1018	kfree(hdev->hl_chip_info);
1019
1020	destroy_workqueue(hdev->prefetch_wq);
1021	destroy_workqueue(hdev->ts_free_obj_wq);
1022	destroy_workqueue(hdev->cs_cmplt_wq);
1023	destroy_workqueue(hdev->eq_wq);
1024	destroy_workqueue(hdev->reset_wq);
1025
1026	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1027		destroy_workqueue(hdev->cq_wq[i]);
1028	kfree(hdev->cq_wq);
1029
1030	hl_asid_fini(hdev);
1031
1032	if (hdev->asic_funcs->early_fini)
1033		hdev->asic_funcs->early_fini(hdev);
1034}
1035
1036static bool is_pci_link_healthy(struct hl_device *hdev)
1037{
1038	u16 device_id;
1039
1040	if (!hdev->pdev)
1041		return false;
1042
1043	pci_read_config_word(hdev->pdev, PCI_DEVICE_ID, &device_id);
1044
1045	return (device_id == hdev->pdev->device);
1046}
1047
1048static int hl_device_eq_heartbeat_check(struct hl_device *hdev)
1049{
1050	struct asic_fixed_properties *prop = &hdev->asic_prop;
1051
1052	if (!prop->cpucp_info.eq_health_check_supported)
1053		return 0;
1054
1055	if (hdev->eq_heartbeat_received) {
1056		hdev->eq_heartbeat_received = false;
1057	} else {
1058		dev_err(hdev->dev, "EQ heartbeat event was not received!\n");
1059		return -EIO;
1060	}
1061
1062	return 0;
1063}
1064
1065static void hl_device_heartbeat(struct work_struct *work)
1066{
1067	struct hl_device *hdev = container_of(work, struct hl_device,
1068						work_heartbeat.work);
1069	struct hl_info_fw_err_info info = {0};
1070	u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
1071
1072	/* Start heartbeat checks only after driver has enabled events from FW */
1073	if (!hl_device_operational(hdev, NULL) || !hdev->init_done)
1074		goto reschedule;
1075
1076	/*
1077	 * For EQ health check need to check if driver received the heartbeat eq event
1078	 * in order to validate the eq is working.
1079	 * Only if both the EQ is healthy and we managed to send the next heartbeat reschedule.
1080	 */
1081	if ((!hl_device_eq_heartbeat_check(hdev)) && (!hdev->asic_funcs->send_heartbeat(hdev)))
1082		goto reschedule;
1083
1084	if (hl_device_operational(hdev, NULL))
1085		dev_err(hdev->dev, "Device heartbeat failed! PCI link is %s\n",
1086			is_pci_link_healthy(hdev) ? "healthy" : "broken");
1087
1088	info.err_type = HL_INFO_FW_HEARTBEAT_ERR;
1089	info.event_mask = &event_mask;
1090	hl_handle_fw_err(hdev, &info);
1091	hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask);
1092
1093	return;
1094
1095reschedule:
1096	/*
1097	 * prev_reset_trigger tracks consecutive fatal h/w errors until first
1098	 * heartbeat immediately post reset.
1099	 * If control reached here, then at least one heartbeat work has been
1100	 * scheduled since last reset/init cycle.
1101	 * So if the device is not already in reset cycle, reset the flag
1102	 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
1103	 * status for at least one heartbeat. From this point driver restarts
1104	 * tracking future consecutive fatal errors.
1105	 */
1106	if (!hdev->reset_info.in_reset)
1107		hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1108
1109	schedule_delayed_work(&hdev->work_heartbeat,
1110			usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1111}
1112
1113/*
1114 * device_late_init - do late stuff initialization for the habanalabs device
1115 *
1116 * @hdev: pointer to habanalabs device structure
1117 *
1118 * Do stuff that either needs the device H/W queues to be active or needs
1119 * to happen after all the rest of the initialization is finished
1120 */
1121static int device_late_init(struct hl_device *hdev)
1122{
1123	int rc;
1124
1125	if (hdev->asic_funcs->late_init) {
1126		rc = hdev->asic_funcs->late_init(hdev);
1127		if (rc) {
1128			dev_err(hdev->dev,
1129				"failed late initialization for the H/W\n");
1130			return rc;
1131		}
1132	}
1133
1134	hdev->high_pll = hdev->asic_prop.high_pll;
1135
1136	if (hdev->heartbeat) {
1137		/*
1138		 * Before scheduling the heartbeat driver will check if eq event has received.
1139		 * for the first schedule we need to set the indication as true then for the next
1140		 * one this indication will be true only if eq event was sent by FW.
1141		 */
1142		hdev->eq_heartbeat_received = true;
1143
1144		INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
1145
1146		schedule_delayed_work(&hdev->work_heartbeat,
1147				usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1148	}
1149
1150	hdev->late_init_done = true;
1151
1152	return 0;
1153}
1154
1155/*
1156 * device_late_fini - finalize all that was done in device_late_init
1157 *
1158 * @hdev: pointer to habanalabs device structure
1159 *
1160 */
1161static void device_late_fini(struct hl_device *hdev)
1162{
1163	if (!hdev->late_init_done)
1164		return;
1165
1166	if (hdev->heartbeat)
1167		cancel_delayed_work_sync(&hdev->work_heartbeat);
1168
1169	if (hdev->asic_funcs->late_fini)
1170		hdev->asic_funcs->late_fini(hdev);
1171
1172	hdev->late_init_done = false;
1173}
1174
1175int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
1176{
1177	u64 max_power, curr_power, dc_power, dividend, divisor;
1178	int rc;
1179
1180	max_power = hdev->max_power;
1181	dc_power = hdev->asic_prop.dc_power_default;
1182	divisor = max_power - dc_power;
1183	if (!divisor) {
1184		dev_warn(hdev->dev, "device utilization is not supported\n");
1185		return -EOPNOTSUPP;
1186	}
1187	rc = hl_fw_cpucp_power_get(hdev, &curr_power);
1188
1189	if (rc)
1190		return rc;
1191
1192	curr_power = clamp(curr_power, dc_power, max_power);
1193
1194	dividend = (curr_power - dc_power) * 100;
1195	*utilization = (u32) div_u64(dividend, divisor);
1196
1197	return 0;
1198}
1199
1200int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
1201{
1202	int rc = 0;
1203
1204	mutex_lock(&hdev->debug_lock);
1205
1206	if (!enable) {
1207		if (!hdev->in_debug) {
1208			dev_err(hdev->dev,
1209				"Failed to disable debug mode because device was not in debug mode\n");
1210			rc = -EFAULT;
1211			goto out;
1212		}
1213
1214		if (!hdev->reset_info.hard_reset_pending)
1215			hdev->asic_funcs->halt_coresight(hdev, ctx);
1216
1217		hdev->in_debug = 0;
1218
1219		goto out;
1220	}
1221
1222	if (hdev->in_debug) {
1223		dev_err(hdev->dev,
1224			"Failed to enable debug mode because device is already in debug mode\n");
1225		rc = -EFAULT;
1226		goto out;
1227	}
1228
1229	hdev->in_debug = 1;
1230
1231out:
1232	mutex_unlock(&hdev->debug_lock);
1233
1234	return rc;
1235}
1236
1237static void take_release_locks(struct hl_device *hdev)
1238{
1239	/* Flush anyone that is inside the critical section of enqueue
1240	 * jobs to the H/W
1241	 */
1242	hdev->asic_funcs->hw_queues_lock(hdev);
1243	hdev->asic_funcs->hw_queues_unlock(hdev);
1244
1245	/* Flush processes that are sending message to CPU */
1246	mutex_lock(&hdev->send_cpu_message_lock);
1247	mutex_unlock(&hdev->send_cpu_message_lock);
1248
1249	/* Flush anyone that is inside device open */
1250	mutex_lock(&hdev->fpriv_list_lock);
1251	mutex_unlock(&hdev->fpriv_list_lock);
1252	mutex_lock(&hdev->fpriv_ctrl_list_lock);
1253	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
1254}
1255
1256static void hl_abort_waiting_for_completions(struct hl_device *hdev)
1257{
1258	hl_abort_waiting_for_cs_completions(hdev);
1259
1260	/* Release all pending user interrupts, each pending user interrupt
1261	 * holds a reference to a user context.
1262	 */
1263	hl_release_pending_user_interrupts(hdev);
1264}
1265
1266static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
1267				bool skip_wq_flush)
1268{
1269	if (hard_reset)
1270		device_late_fini(hdev);
1271
1272	/*
1273	 * Halt the engines and disable interrupts so we won't get any more
1274	 * completions from H/W and we won't have any accesses from the
1275	 * H/W to the host machine
1276	 */
1277	hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
1278
1279	/* Go over all the queues, release all CS and their jobs */
1280	hl_cs_rollback_all(hdev, skip_wq_flush);
1281
1282	/* flush the MMU prefetch workqueue */
1283	flush_workqueue(hdev->prefetch_wq);
1284
1285	hl_abort_waiting_for_completions(hdev);
1286}
1287
1288/*
1289 * hl_device_suspend - initiate device suspend
1290 *
1291 * @hdev: pointer to habanalabs device structure
1292 *
1293 * Puts the hw in the suspend state (all asics).
1294 * Returns 0 for success or an error on failure.
1295 * Called at driver suspend.
1296 */
1297int hl_device_suspend(struct hl_device *hdev)
1298{
1299	int rc;
1300
1301	pci_save_state(hdev->pdev);
1302
1303	/* Block future CS/VM/JOB completion operations */
1304	spin_lock(&hdev->reset_info.lock);
1305	if (hdev->reset_info.in_reset) {
1306		spin_unlock(&hdev->reset_info.lock);
1307		dev_err(hdev->dev, "Can't suspend while in reset\n");
1308		return -EIO;
1309	}
1310	hdev->reset_info.in_reset = 1;
1311	spin_unlock(&hdev->reset_info.lock);
1312
1313	/* This blocks all other stuff that is not blocked by in_reset */
1314	hdev->disabled = true;
1315
1316	take_release_locks(hdev);
1317
1318	rc = hdev->asic_funcs->suspend(hdev);
1319	if (rc)
1320		dev_err(hdev->dev,
1321			"Failed to disable PCI access of device CPU\n");
1322
1323	/* Shut down the device */
1324	pci_disable_device(hdev->pdev);
1325	pci_set_power_state(hdev->pdev, PCI_D3hot);
1326
1327	return 0;
1328}
1329
1330/*
1331 * hl_device_resume - initiate device resume
1332 *
1333 * @hdev: pointer to habanalabs device structure
1334 *
1335 * Bring the hw back to operating state (all asics).
1336 * Returns 0 for success or an error on failure.
1337 * Called at driver resume.
1338 */
1339int hl_device_resume(struct hl_device *hdev)
1340{
1341	int rc;
1342
1343	pci_set_power_state(hdev->pdev, PCI_D0);
1344	pci_restore_state(hdev->pdev);
1345	rc = pci_enable_device_mem(hdev->pdev);
1346	if (rc) {
1347		dev_err(hdev->dev,
1348			"Failed to enable PCI device in resume\n");
1349		return rc;
1350	}
1351
1352	pci_set_master(hdev->pdev);
1353
1354	rc = hdev->asic_funcs->resume(hdev);
1355	if (rc) {
1356		dev_err(hdev->dev, "Failed to resume device after suspend\n");
1357		goto disable_device;
1358	}
1359
1360
1361	/* 'in_reset' was set to true during suspend, now we must clear it in order
1362	 * for hard reset to be performed
1363	 */
1364	spin_lock(&hdev->reset_info.lock);
1365	hdev->reset_info.in_reset = 0;
1366	spin_unlock(&hdev->reset_info.lock);
1367
1368	rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
1369	if (rc) {
1370		dev_err(hdev->dev, "Failed to reset device during resume\n");
1371		goto disable_device;
1372	}
1373
1374	return 0;
1375
1376disable_device:
1377	pci_disable_device(hdev->pdev);
1378
1379	return rc;
1380}
1381
1382static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
1383{
1384	struct task_struct *task = NULL;
1385	struct list_head *hpriv_list;
1386	struct hl_fpriv *hpriv;
1387	struct mutex *hpriv_lock;
1388	u32 pending_cnt;
1389
1390	hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1391	hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1392
1393	/* Giving time for user to close FD, and for processes that are inside
1394	 * hl_device_open to finish
1395	 */
1396	if (!list_empty(hpriv_list))
1397		ssleep(1);
1398
1399	if (timeout) {
1400		pending_cnt = timeout;
1401	} else {
1402		if (hdev->process_kill_trial_cnt) {
1403			/* Processes have been already killed */
1404			pending_cnt = 1;
1405			goto wait_for_processes;
1406		} else {
1407			/* Wait a small period after process kill */
1408			pending_cnt = HL_PENDING_RESET_PER_SEC;
1409		}
1410	}
1411
1412	mutex_lock(hpriv_lock);
1413
1414	/* This section must be protected because we are dereferencing
1415	 * pointers that are freed if the process exits
1416	 */
1417	list_for_each_entry(hpriv, hpriv_list, dev_node) {
1418		task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
1419		if (task) {
1420			dev_info(hdev->dev, "Killing user process pid=%d\n",
1421				task_pid_nr(task));
1422			send_sig(SIGKILL, task, 1);
1423			usleep_range(1000, 10000);
1424
1425			put_task_struct(task);
1426		} else {
1427			dev_dbg(hdev->dev,
1428				"Can't get task struct for user process %d, process was killed from outside the driver\n",
1429				pid_nr(hpriv->taskpid));
1430		}
1431	}
1432
1433	mutex_unlock(hpriv_lock);
1434
1435	/*
1436	 * We killed the open users, but that doesn't mean they are closed.
1437	 * It could be that they are running a long cleanup phase in the driver
1438	 * e.g. MMU unmappings, or running other long teardown flow even before
1439	 * our cleanup.
1440	 * Therefore we need to wait again to make sure they are closed before
1441	 * continuing with the reset.
1442	 */
1443
1444wait_for_processes:
1445	while ((!list_empty(hpriv_list)) && (pending_cnt)) {
1446		dev_dbg(hdev->dev,
1447			"Waiting for all unmap operations to finish before hard reset\n");
1448
1449		pending_cnt--;
1450
1451		ssleep(1);
1452	}
1453
1454	/* All processes exited successfully */
1455	if (list_empty(hpriv_list))
1456		return 0;
1457
1458	/* Give up waiting for processes to exit */
1459	if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
1460		return -ETIME;
1461
1462	hdev->process_kill_trial_cnt++;
1463
1464	return -EBUSY;
1465}
1466
1467static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
1468{
1469	struct list_head *hpriv_list;
1470	struct hl_fpriv *hpriv;
1471	struct mutex *hpriv_lock;
1472
1473	hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1474	hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1475
1476	mutex_lock(hpriv_lock);
1477	list_for_each_entry(hpriv, hpriv_list, dev_node)
1478		hpriv->hdev = NULL;
1479	mutex_unlock(hpriv_lock);
1480}
1481
1482static void send_disable_pci_access(struct hl_device *hdev, u32 flags)
1483{
1484	/* If reset is due to heartbeat, device CPU is no responsive in
1485	 * which case no point sending PCI disable message to it.
1486	 */
1487	if ((flags & HL_DRV_RESET_HARD) &&
1488			!(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
1489		/* Disable PCI access from device F/W so he won't send
1490		 * us additional interrupts. We disable MSI/MSI-X at
1491		 * the halt_engines function and we can't have the F/W
1492		 * sending us interrupts after that. We need to disable
1493		 * the access here because if the device is marked
1494		 * disable, the message won't be send. Also, in case
1495		 * of heartbeat, the device CPU is marked as disable
1496		 * so this message won't be sent
1497		 */
1498		if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0)) {
1499			dev_warn(hdev->dev, "Failed to disable FW's PCI access\n");
1500			return;
1501		}
1502
1503		/* verify that last EQs are handled before disabled is set */
1504		if (hdev->cpu_queues_enable)
1505			synchronize_irq(pci_irq_vector(hdev->pdev,
1506					hdev->asic_prop.eq_interrupt_id));
1507	}
1508}
1509
1510static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
1511{
1512	u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1513
1514	/* No consecutive mechanism when user context exists */
1515	if (hdev->is_compute_ctx_active)
1516		return;
1517
1518	/*
1519	 * 'reset cause' is being updated here, because getting here
1520	 * means that it's the 1st time and the last time we're here
1521	 * ('in_reset' makes sure of it). This makes sure that
1522	 * 'reset_cause' will continue holding its 1st recorded reason!
1523	 */
1524	if (flags & HL_DRV_RESET_HEARTBEAT) {
1525		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
1526		cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
1527	} else if (flags & HL_DRV_RESET_TDR) {
1528		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
1529		cur_reset_trigger = HL_DRV_RESET_TDR;
1530	} else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
1531		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1532		cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
1533	} else {
1534		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1535	}
1536
1537	/*
1538	 * If reset cause is same twice, then reset_trigger_repeated
1539	 * is set and if this reset is due to a fatal FW error
1540	 * device is set to an unstable state.
1541	 */
1542	if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
1543		hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
1544		hdev->reset_info.reset_trigger_repeated = 0;
1545	} else {
1546		hdev->reset_info.reset_trigger_repeated = 1;
1547	}
1548}
1549
1550/*
1551 * hl_device_reset - reset the device
1552 *
1553 * @hdev: pointer to habanalabs device structure
1554 * @flags: reset flags.
1555 *
1556 * Block future CS and wait for pending CS to be enqueued
1557 * Call ASIC H/W fini
1558 * Flush all completions
1559 * Re-initialize all internal data structures
1560 * Call ASIC H/W init, late_init
1561 * Test queues
1562 * Enable device
1563 *
1564 * Returns 0 for success or an error on failure.
1565 */
1566int hl_device_reset(struct hl_device *hdev, u32 flags)
1567{
1568	bool hard_reset, from_hard_reset_thread, fw_reset, reset_upon_device_release,
1569		schedule_hard_reset = false, delay_reset, from_dev_release, from_watchdog_thread;
1570	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
1571	struct hl_ctx *ctx;
1572	int i, rc, hw_fini_rc;
1573
1574	if (!hdev->init_done) {
1575		dev_err(hdev->dev, "Can't reset before initialization is done\n");
1576		return 0;
1577	}
1578
1579	hard_reset = !!(flags & HL_DRV_RESET_HARD);
1580	from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
1581	fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
1582	from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE);
1583	delay_reset = !!(flags & HL_DRV_RESET_DELAY);
1584	from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR);
1585	reset_upon_device_release = hdev->reset_upon_device_release && from_dev_release;
1586
1587	if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) {
1588		dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n");
1589		return 0;
1590	}
1591
1592	if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
1593		dev_dbg(hdev->dev, "asic doesn't support compute reset - do hard-reset instead\n");
1594		hard_reset = true;
1595	}
1596
1597	if (reset_upon_device_release) {
1598		if (hard_reset) {
1599			dev_crit(hdev->dev,
1600				"Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
1601			return -EINVAL;
1602		}
1603
1604		goto do_reset;
1605	}
1606
1607	if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
1608		dev_dbg(hdev->dev,
1609			"asic doesn't allow inference soft reset - do hard-reset instead\n");
1610		hard_reset = true;
1611	}
1612
1613do_reset:
1614	/* Re-entry of reset thread */
1615	if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
1616		goto kill_processes;
1617
1618	/*
1619	 * Prevent concurrency in this function - only one reset should be
1620	 * done at any given time. We need to perform this only if we didn't
1621	 * get here from a dedicated hard reset thread.
1622	 */
1623	if (!from_hard_reset_thread) {
1624		/* Block future CS/VM/JOB completion operations */
1625		spin_lock(&hdev->reset_info.lock);
1626		if (hdev->reset_info.in_reset) {
1627			/* We allow scheduling of a hard reset only during a compute reset */
1628			if (hard_reset && hdev->reset_info.in_compute_reset)
1629				hdev->reset_info.hard_reset_schedule_flags = flags;
1630			spin_unlock(&hdev->reset_info.lock);
1631			return 0;
1632		}
1633
1634		/* This still allows the completion of some KDMA ops
1635		 * Update this before in_reset because in_compute_reset implies we are in reset
1636		 */
1637		hdev->reset_info.in_compute_reset = !hard_reset;
1638
1639		hdev->reset_info.in_reset = 1;
1640
1641		spin_unlock(&hdev->reset_info.lock);
1642
1643		/* Cancel the device release watchdog work if required.
1644		 * In case of reset-upon-device-release while the release watchdog work is
1645		 * scheduled due to a hard-reset, do hard-reset instead of compute-reset.
1646		 */
1647		if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) {
1648			struct hl_device_reset_work *watchdog_work =
1649					&hdev->device_release_watchdog_work;
1650
1651			hdev->reset_info.watchdog_active = 0;
1652			if (!from_watchdog_thread)
1653				cancel_delayed_work_sync(&watchdog_work->reset_work);
1654
1655			if (from_dev_release && (watchdog_work->flags & HL_DRV_RESET_HARD)) {
1656				hdev->reset_info.in_compute_reset = 0;
1657				flags |= HL_DRV_RESET_HARD;
1658				flags &= ~HL_DRV_RESET_DEV_RELEASE;
1659				hard_reset = true;
1660			}
1661		}
1662
1663		if (delay_reset)
1664			usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);
1665
1666escalate_reset_flow:
1667		handle_reset_trigger(hdev, flags);
1668		send_disable_pci_access(hdev, flags);
1669
1670		/* This also blocks future CS/VM/JOB completion operations */
1671		hdev->disabled = true;
1672
1673		take_release_locks(hdev);
1674
1675		if (hard_reset)
1676			dev_info(hdev->dev, "Going to reset device\n");
1677		else if (reset_upon_device_release)
1678			dev_dbg(hdev->dev, "Going to reset device after release by user\n");
1679		else
1680			dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
1681	}
1682
1683	if ((hard_reset) && (!from_hard_reset_thread)) {
1684		hdev->reset_info.hard_reset_pending = true;
1685
1686		hdev->process_kill_trial_cnt = 0;
1687
1688		hdev->device_reset_work.flags = flags;
1689
1690		/*
1691		 * Because the reset function can't run from heartbeat work,
1692		 * we need to call the reset function from a dedicated work.
1693		 */
1694		queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0);
1695
1696		return 0;
1697	}
1698
1699	cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release);
1700
1701kill_processes:
1702	if (hard_reset) {
1703		/* Kill processes here after CS rollback. This is because the
1704		 * process can't really exit until all its CSs are done, which
1705		 * is what we do in cs rollback
1706		 */
1707		rc = device_kill_open_processes(hdev, 0, false);
1708
1709		if (rc == -EBUSY) {
1710			if (hdev->device_fini_pending) {
1711				dev_crit(hdev->dev,
1712					"%s Failed to kill all open processes, stopping hard reset\n",
1713					dev_name(&(hdev)->pdev->dev));
1714				goto out_err;
1715			}
1716
1717			/* signal reset thread to reschedule */
1718			return rc;
1719		}
1720
1721		if (rc) {
1722			dev_crit(hdev->dev,
1723				"%s Failed to kill all open processes, stopping hard reset\n",
1724				dev_name(&(hdev)->pdev->dev));
1725			goto out_err;
1726		}
1727
1728		/* Flush the Event queue workers to make sure no other thread is
1729		 * reading or writing to registers during the reset
1730		 */
1731		flush_workqueue(hdev->eq_wq);
1732	}
1733
1734	/* Reset the H/W. It will be in idle state after this returns */
1735	hw_fini_rc = hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
1736
1737	if (hard_reset) {
1738		hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
1739
1740		/* Release kernel context */
1741		if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
1742			hdev->kernel_ctx = NULL;
1743
1744		hl_vm_fini(hdev);
1745		hl_mmu_fini(hdev);
1746		hl_eq_reset(hdev, &hdev->event_queue);
1747	}
1748
1749	/* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
1750	hl_hw_queue_reset(hdev, hard_reset);
1751	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1752		hl_cq_reset(hdev, &hdev->completion_queue[i]);
1753
1754	/* Make sure the context switch phase will run again */
1755	ctx = hl_get_compute_ctx(hdev);
1756	if (ctx) {
1757		atomic_set(&ctx->thread_ctx_switch_token, 1);
1758		ctx->thread_ctx_switch_wait_token = 0;
1759		hl_ctx_put(ctx);
1760	}
1761
1762	if (hw_fini_rc) {
1763		rc = hw_fini_rc;
1764		goto out_err;
1765	}
1766	/* Finished tear-down, starting to re-initialize */
1767
1768	if (hard_reset) {
1769		hdev->device_cpu_disabled = false;
1770		hdev->reset_info.hard_reset_pending = false;
1771
1772		/*
1773		 * Put the device in an unusable state if there are 2 back to back resets due to
1774		 * fatal errors.
1775		 */
1776		if (hdev->reset_info.reset_trigger_repeated &&
1777				(hdev->reset_info.prev_reset_trigger == HL_DRV_RESET_FW_FATAL_ERR ||
1778						hdev->reset_info.prev_reset_trigger ==
1779								HL_DRV_RESET_HEARTBEAT)) {
1780			dev_crit(hdev->dev,
1781				"%s Consecutive fatal errors, stopping hard reset\n",
1782				dev_name(&(hdev)->pdev->dev));
1783			rc = -EIO;
1784			goto out_err;
1785		}
1786
1787		if (hdev->kernel_ctx) {
1788			dev_crit(hdev->dev,
1789				"%s kernel ctx was alive during hard reset, something is terribly wrong\n",
1790				dev_name(&(hdev)->pdev->dev));
1791			rc = -EBUSY;
1792			goto out_err;
1793		}
1794
1795		rc = hl_mmu_init(hdev);
1796		if (rc) {
1797			dev_err(hdev->dev,
1798				"Failed to initialize MMU S/W after hard reset\n");
1799			goto out_err;
1800		}
1801
1802		/* Allocate the kernel context */
1803		hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
1804						GFP_KERNEL);
1805		if (!hdev->kernel_ctx) {
1806			rc = -ENOMEM;
1807			hl_mmu_fini(hdev);
1808			goto out_err;
1809		}
1810
1811		hdev->is_compute_ctx_active = false;
1812
1813		rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1814		if (rc) {
1815			dev_err(hdev->dev,
1816				"failed to init kernel ctx in hard reset\n");
1817			kfree(hdev->kernel_ctx);
1818			hdev->kernel_ctx = NULL;
1819			hl_mmu_fini(hdev);
1820			goto out_err;
1821		}
1822	}
1823
1824	/* Device is now enabled as part of the initialization requires
1825	 * communication with the device firmware to get information that
1826	 * is required for the initialization itself
1827	 */
1828	hdev->disabled = false;
1829
1830	/* F/W security enabled indication might be updated after hard-reset */
1831	if (hard_reset) {
1832		rc = hl_fw_read_preboot_status(hdev);
1833		if (rc)
1834			goto out_err;
1835	}
1836
1837	rc = hdev->asic_funcs->hw_init(hdev);
1838	if (rc) {
1839		dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
1840		goto out_err;
1841	}
1842
1843	/* If device is not idle fail the reset process */
1844	if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
1845						HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
1846		print_idle_status_mask(hdev, "device is not idle after reset", idle_mask);
1847		rc = -EIO;
1848		goto out_err;
1849	}
1850
1851	/* Check that the communication with the device is working */
1852	rc = hdev->asic_funcs->test_queues(hdev);
1853	if (rc) {
1854		dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
1855		goto out_err;
1856	}
1857
1858	if (hard_reset) {
1859		rc = device_late_init(hdev);
1860		if (rc) {
1861			dev_err(hdev->dev, "Failed late init after hard reset\n");
1862			goto out_err;
1863		}
1864
1865		rc = hl_vm_init(hdev);
1866		if (rc) {
1867			dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
1868			goto out_err;
1869		}
1870
1871		if (!hdev->asic_prop.fw_security_enabled)
1872			hl_fw_set_max_power(hdev);
1873	} else {
1874		rc = hdev->asic_funcs->compute_reset_late_init(hdev);
1875		if (rc) {
1876			if (reset_upon_device_release)
1877				dev_err(hdev->dev,
1878					"Failed late init in reset after device release\n");
1879			else
1880				dev_err(hdev->dev, "Failed late init after compute reset\n");
1881			goto out_err;
1882		}
1883	}
1884
1885	rc = hdev->asic_funcs->scrub_device_mem(hdev);
1886	if (rc) {
1887		dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
1888		goto out_err;
1889	}
1890
1891	spin_lock(&hdev->reset_info.lock);
1892	hdev->reset_info.in_compute_reset = 0;
1893
1894	/* Schedule hard reset only if requested and if not already in hard reset.
1895	 * We keep 'in_reset' enabled, so no other reset can go in during the hard
1896	 * reset schedule
1897	 */
1898	if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
1899		schedule_hard_reset = true;
1900	else
1901		hdev->reset_info.in_reset = 0;
1902
1903	spin_unlock(&hdev->reset_info.lock);
1904
1905	hdev->reset_info.needs_reset = false;
1906
1907	if (hard_reset)
1908		dev_info(hdev->dev,
1909			 "Successfully finished resetting the %s device\n",
1910			 dev_name(&(hdev)->pdev->dev));
1911	else
1912		dev_dbg(hdev->dev,
1913			"Successfully finished resetting the %s device\n",
1914			dev_name(&(hdev)->pdev->dev));
1915
1916	if (hard_reset) {
1917		hdev->reset_info.hard_reset_cnt++;
1918
1919		/* After reset is done, we are ready to receive events from
1920		 * the F/W. We can't do it before because we will ignore events
1921		 * and if those events are fatal, we won't know about it and
1922		 * the device will be operational although it shouldn't be
1923		 */
1924		hdev->asic_funcs->enable_events_from_fw(hdev);
1925	} else {
1926		if (!reset_upon_device_release)
1927			hdev->reset_info.compute_reset_cnt++;
1928
1929		if (schedule_hard_reset) {
1930			dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
1931			flags = hdev->reset_info.hard_reset_schedule_flags;
1932			hdev->reset_info.hard_reset_schedule_flags = 0;
1933			hard_reset = true;
1934			goto escalate_reset_flow;
1935		}
1936	}
1937
1938	return 0;
1939
1940out_err:
1941	hdev->disabled = true;
1942
1943	spin_lock(&hdev->reset_info.lock);
1944	hdev->reset_info.in_compute_reset = 0;
1945
1946	if (hard_reset) {
1947		dev_err(hdev->dev,
1948			"%s Failed to reset! Device is NOT usable\n",
1949			dev_name(&(hdev)->pdev->dev));
1950		hdev->reset_info.hard_reset_cnt++;
1951	} else {
1952		if (reset_upon_device_release) {
1953			dev_err(hdev->dev, "Failed to reset device after user release\n");
1954			flags &= ~HL_DRV_RESET_DEV_RELEASE;
1955		} else {
1956			dev_err(hdev->dev, "Failed to do compute reset\n");
1957			hdev->reset_info.compute_reset_cnt++;
1958		}
1959
1960		spin_unlock(&hdev->reset_info.lock);
1961		flags |= HL_DRV_RESET_HARD;
1962		hard_reset = true;
1963		goto escalate_reset_flow;
1964	}
1965
1966	hdev->reset_info.in_reset = 0;
1967
1968	spin_unlock(&hdev->reset_info.lock);
1969
1970	return rc;
1971}
1972
1973/*
1974 * hl_device_cond_reset() - conditionally reset the device.
1975 * @hdev: pointer to habanalabs device structure.
1976 * @reset_flags: reset flags.
1977 * @event_mask: events to notify user about.
1978 *
1979 * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device
1980 * unless another reset precedes it.
1981 */
1982int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask)
1983{
1984	struct hl_ctx *ctx = NULL;
1985
1986	/* F/W reset cannot be postponed */
1987	if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW)
1988		goto device_reset;
1989
1990	/* Device release watchdog is relevant only if user exists and gets a reset notification */
1991	if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) {
1992		dev_err(hdev->dev, "Resetting device without a reset indication to user\n");
1993		goto device_reset;
1994	}
1995
1996	ctx = hl_get_compute_ctx(hdev);
1997	if (!ctx)
1998		goto device_reset;
1999
2000	/*
2001	 * There is no point in postponing the reset if user is not registered for events.
2002	 * However if no eventfd_ctx exists but the device release watchdog is already scheduled, it
2003	 * just implies that user has unregistered as part of handling a previous event. In this
2004	 * case an immediate reset is not required.
2005	 */
2006	if (!ctx->hpriv->notifier_event.eventfd && !hdev->reset_info.watchdog_active)
2007		goto device_reset;
2008
2009	/* Schedule the device release watchdog work unless reset is already in progress or if the
2010	 * work is already scheduled.
2011	 */
2012	spin_lock(&hdev->reset_info.lock);
2013	if (hdev->reset_info.in_reset) {
2014		spin_unlock(&hdev->reset_info.lock);
2015		goto device_reset;
2016	}
2017
2018	if (hdev->reset_info.watchdog_active) {
2019		hdev->device_release_watchdog_work.flags |= flags;
2020		goto out;
2021	}
2022
2023	hdev->device_release_watchdog_work.flags = flags;
2024	dev_dbg(hdev->dev, "Device is going to be hard-reset in %u sec unless being released\n",
2025		hdev->device_release_watchdog_timeout_sec);
2026	schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work,
2027				msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000));
2028	hdev->reset_info.watchdog_active = 1;
2029out:
2030	spin_unlock(&hdev->reset_info.lock);
2031
2032	hl_notifier_event_send_all(hdev, event_mask);
2033
2034	hl_ctx_put(ctx);
2035
2036	hl_abort_waiting_for_completions(hdev);
2037
2038	return 0;
2039
2040device_reset:
2041	if (event_mask)
2042		hl_notifier_event_send_all(hdev, event_mask);
2043	if (ctx)
2044		hl_ctx_put(ctx);
2045
2046	return hl_device_reset(hdev, flags | HL_DRV_RESET_HARD);
2047}
2048
2049static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
2050{
2051	mutex_lock(&notifier_event->lock);
2052	notifier_event->events_mask |= event_mask;
2053
2054	if (notifier_event->eventfd)
2055		eventfd_signal(notifier_event->eventfd);
2056
2057	mutex_unlock(&notifier_event->lock);
2058}
2059
2060/*
2061 * hl_notifier_event_send_all - notify all user processes via eventfd
2062 *
2063 * @hdev: pointer to habanalabs device structure
2064 * @event_mask: the occurred event/s
2065 * Returns 0 for success or an error on failure.
2066 */
2067void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
2068{
2069	struct hl_fpriv	*hpriv;
2070
2071	if (!event_mask) {
2072		dev_warn(hdev->dev, "Skip sending zero event");
2073		return;
2074	}
2075
2076	mutex_lock(&hdev->fpriv_list_lock);
2077
2078	list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
2079		hl_notifier_event_send(&hpriv->notifier_event, event_mask);
2080
2081	mutex_unlock(&hdev->fpriv_list_lock);
2082}
2083
2084/*
2085 * hl_device_init - main initialization function for habanalabs device
2086 *
2087 * @hdev: pointer to habanalabs device structure
2088 *
2089 * Allocate an id for the device, do early initialization and then call the
2090 * ASIC specific initialization functions. Finally, create the cdev and the
2091 * Linux device to expose it to the user
2092 */
2093int hl_device_init(struct hl_device *hdev)
2094{
2095	int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
2096	struct hl_ts_free_jobs *free_jobs_data;
2097	bool expose_interfaces_on_err = false;
2098	void *p;
2099
2100	/* Initialize ASIC function pointers and perform early init */
2101	rc = device_early_init(hdev);
2102	if (rc)
2103		goto out_disabled;
2104
2105	user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
2106				hdev->asic_prop.user_interrupt_count;
2107
2108	if (user_interrupt_cnt) {
2109		hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
2110						GFP_KERNEL);
2111		if (!hdev->user_interrupt) {
2112			rc = -ENOMEM;
2113			goto early_fini;
2114		}
2115
2116		/* Timestamp records supported only if CQ supported in device */
2117		if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) {
2118			for (i = 0 ; i < user_interrupt_cnt ; i++) {
2119				p = vzalloc(TIMESTAMP_FREE_NODES_NUM *
2120						sizeof(struct timestamp_reg_free_node));
2121				if (!p) {
2122					rc = -ENOMEM;
2123					goto free_usr_intr_mem;
2124				}
2125				free_jobs_data = &hdev->user_interrupt[i].ts_free_jobs_data;
2126				free_jobs_data->free_nodes_pool = p;
2127				free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM;
2128				free_jobs_data->next_avail_free_node_idx = 0;
2129			}
2130		}
2131	}
2132
2133	free_jobs_data = &hdev->common_user_cq_interrupt.ts_free_jobs_data;
2134	p = vzalloc(TIMESTAMP_FREE_NODES_NUM *
2135				sizeof(struct timestamp_reg_free_node));
2136	if (!p) {
2137		rc = -ENOMEM;
2138		goto free_usr_intr_mem;
2139	}
2140
2141	free_jobs_data->free_nodes_pool = p;
2142	free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM;
2143	free_jobs_data->next_avail_free_node_idx = 0;
2144
2145	/*
2146	 * Start calling ASIC initialization. First S/W then H/W and finally
2147	 * late init
2148	 */
2149	rc = hdev->asic_funcs->sw_init(hdev);
2150	if (rc)
2151		goto free_common_usr_intr_mem;
2152
2153
2154	/* initialize completion structure for multi CS wait */
2155	hl_multi_cs_completion_init(hdev);
2156
2157	/*
2158	 * Initialize the H/W queues. Must be done before hw_init, because
2159	 * there the addresses of the kernel queue are being written to the
2160	 * registers of the device
2161	 */
2162	rc = hl_hw_queues_create(hdev);
2163	if (rc) {
2164		dev_err(hdev->dev, "failed to initialize kernel queues\n");
2165		goto sw_fini;
2166	}
2167
2168	cq_cnt = hdev->asic_prop.completion_queues_count;
2169
2170	/*
2171	 * Initialize the completion queues. Must be done before hw_init,
2172	 * because there the addresses of the completion queues are being
2173	 * passed as arguments to request_irq
2174	 */
2175	if (cq_cnt) {
2176		hdev->completion_queue = kcalloc(cq_cnt,
2177				sizeof(*hdev->completion_queue),
2178				GFP_KERNEL);
2179
2180		if (!hdev->completion_queue) {
2181			dev_err(hdev->dev,
2182				"failed to allocate completion queues\n");
2183			rc = -ENOMEM;
2184			goto hw_queues_destroy;
2185		}
2186	}
2187
2188	for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
2189		rc = hl_cq_init(hdev, &hdev->completion_queue[i],
2190				hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
2191		if (rc) {
2192			dev_err(hdev->dev,
2193				"failed to initialize completion queue\n");
2194			goto cq_fini;
2195		}
2196		hdev->completion_queue[i].cq_idx = i;
2197	}
2198
2199	hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
2200					sizeof(struct hl_cs *), GFP_KERNEL);
2201	if (!hdev->shadow_cs_queue) {
2202		rc = -ENOMEM;
2203		goto cq_fini;
2204	}
2205
2206	/*
2207	 * Initialize the event queue. Must be done before hw_init,
2208	 * because there the address of the event queue is being
2209	 * passed as argument to request_irq
2210	 */
2211	rc = hl_eq_init(hdev, &hdev->event_queue);
2212	if (rc) {
2213		dev_err(hdev->dev, "failed to initialize event queue\n");
2214		goto free_shadow_cs_queue;
2215	}
2216
2217	/* MMU S/W must be initialized before kernel context is created */
2218	rc = hl_mmu_init(hdev);
2219	if (rc) {
2220		dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
2221		goto eq_fini;
2222	}
2223
2224	/* Allocate the kernel context */
2225	hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
2226	if (!hdev->kernel_ctx) {
2227		rc = -ENOMEM;
2228		goto mmu_fini;
2229	}
2230
2231	hdev->is_compute_ctx_active = false;
2232
2233	hdev->asic_funcs->state_dump_init(hdev);
2234
2235	hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC;
2236
2237	hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
2238
2239	rc = hl_debugfs_device_init(hdev);
2240	if (rc) {
2241		dev_err(hdev->dev, "failed to initialize debugfs entry structure\n");
2242		kfree(hdev->kernel_ctx);
2243		goto mmu_fini;
2244	}
2245
2246	/* The debugfs entry structure is accessed in hl_ctx_init(), so it must be called after
2247	 * hl_debugfs_device_init().
2248	 */
2249	rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
2250	if (rc) {
2251		dev_err(hdev->dev, "failed to initialize kernel context\n");
2252		kfree(hdev->kernel_ctx);
2253		goto debugfs_device_fini;
2254	}
2255
2256	rc = hl_cb_pool_init(hdev);
2257	if (rc) {
2258		dev_err(hdev->dev, "failed to initialize CB pool\n");
2259		goto release_ctx;
2260	}
2261
2262	rc = hl_dec_init(hdev);
2263	if (rc) {
2264		dev_err(hdev->dev, "Failed to initialize the decoder module\n");
2265		goto cb_pool_fini;
2266	}
2267
2268	/*
2269	 * From this point, override rc (=0) in case of an error to allow debugging
2270	 * (by adding char devices and creating sysfs/debugfs files as part of the error flow).
2271	 */
2272	expose_interfaces_on_err = true;
2273
2274	/* Device is now enabled as part of the initialization requires
2275	 * communication with the device firmware to get information that
2276	 * is required for the initialization itself
2277	 */
2278	hdev->disabled = false;
2279
2280	rc = hdev->asic_funcs->hw_init(hdev);
2281	if (rc) {
2282		dev_err(hdev->dev, "failed to initialize the H/W\n");
2283		rc = 0;
2284		goto out_disabled;
2285	}
2286
2287	/* Check that the communication with the device is working */
2288	rc = hdev->asic_funcs->test_queues(hdev);
2289	if (rc) {
2290		dev_err(hdev->dev, "Failed to detect if device is alive\n");
2291		rc = 0;
2292		goto out_disabled;
2293	}
2294
2295	rc = device_late_init(hdev);
2296	if (rc) {
2297		dev_err(hdev->dev, "Failed late initialization\n");
2298		rc = 0;
2299		goto out_disabled;
2300	}
2301
2302	dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
2303		hdev->asic_name,
2304		hdev->asic_prop.dram_size / SZ_1G);
2305
2306	rc = hl_vm_init(hdev);
2307	if (rc) {
2308		dev_err(hdev->dev, "Failed to initialize memory module\n");
2309		rc = 0;
2310		goto out_disabled;
2311	}
2312
2313	/*
2314	 * Expose devices and sysfs/debugfs files to user.
2315	 * From here there is no need to expose them in case of an error.
2316	 */
2317	expose_interfaces_on_err = false;
2318
2319	rc = drm_dev_register(&hdev->drm, 0);
2320	if (rc) {
2321		dev_err(hdev->dev, "Failed to register DRM device, rc %d\n", rc);
2322		rc = 0;
2323		goto out_disabled;
2324	}
2325
2326	rc = cdev_sysfs_debugfs_add(hdev);
2327	if (rc) {
2328		dev_err(hdev->dev, "Failed to add char devices and sysfs/debugfs files\n");
2329		rc = 0;
2330		goto out_disabled;
2331	}
2332
2333	/* Need to call this again because the max power might change,
2334	 * depending on card type for certain ASICs
2335	 */
2336	if (hdev->asic_prop.set_max_power_on_device_init &&
2337			!hdev->asic_prop.fw_security_enabled)
2338		hl_fw_set_max_power(hdev);
2339
2340	/*
2341	 * hl_hwmon_init() must be called after device_late_init(), because only
2342	 * there we get the information from the device about which
2343	 * hwmon-related sensors the device supports.
2344	 * Furthermore, it must be done after adding the device to the system.
2345	 */
2346	rc = hl_hwmon_init(hdev);
2347	if (rc) {
2348		dev_err(hdev->dev, "Failed to initialize hwmon\n");
2349		rc = 0;
2350		goto out_disabled;
2351	}
2352
2353	dev_notice(hdev->dev,
2354		"Successfully added device %s to habanalabs driver\n",
2355		dev_name(&(hdev)->pdev->dev));
2356
2357	/* After initialization is done, we are ready to receive events from
2358	 * the F/W. We can't do it before because we will ignore events and if
2359	 * those events are fatal, we won't know about it and the device will
2360	 * be operational although it shouldn't be
2361	 */
2362	hdev->asic_funcs->enable_events_from_fw(hdev);
2363
2364	hdev->init_done = true;
2365
2366	return 0;
2367
2368cb_pool_fini:
2369	hl_cb_pool_fini(hdev);
2370release_ctx:
2371	if (hl_ctx_put(hdev->kernel_ctx) != 1)
2372		dev_err(hdev->dev,
2373			"kernel ctx is still alive on initialization failure\n");
2374debugfs_device_fini:
2375	hl_debugfs_device_fini(hdev);
2376mmu_fini:
2377	hl_mmu_fini(hdev);
2378eq_fini:
2379	hl_eq_fini(hdev, &hdev->event_queue);
2380free_shadow_cs_queue:
2381	kfree(hdev->shadow_cs_queue);
2382cq_fini:
2383	for (i = 0 ; i < cq_ready_cnt ; i++)
2384		hl_cq_fini(hdev, &hdev->completion_queue[i]);
2385	kfree(hdev->completion_queue);
2386hw_queues_destroy:
2387	hl_hw_queues_destroy(hdev);
2388sw_fini:
2389	hdev->asic_funcs->sw_fini(hdev);
2390free_common_usr_intr_mem:
2391	vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool);
2392free_usr_intr_mem:
2393	if (user_interrupt_cnt) {
2394		for (i = 0 ; i < user_interrupt_cnt ; i++) {
2395			if (!hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool)
2396				break;
2397			vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool);
2398		}
2399		kfree(hdev->user_interrupt);
2400	}
2401early_fini:
2402	device_early_fini(hdev);
2403out_disabled:
2404	hdev->disabled = true;
2405	if (expose_interfaces_on_err) {
2406		drm_dev_register(&hdev->drm, 0);
2407		cdev_sysfs_debugfs_add(hdev);
2408	}
2409
2410	pr_err("Failed to initialize accel%d. Device %s is NOT usable!\n",
2411		hdev->cdev_idx, dev_name(&hdev->pdev->dev));
2412
2413	return rc;
2414}
2415
2416/*
2417 * hl_device_fini - main tear-down function for habanalabs device
2418 *
2419 * @hdev: pointer to habanalabs device structure
2420 *
2421 * Destroy the device, call ASIC fini functions and release the id
2422 */
2423void hl_device_fini(struct hl_device *hdev)
2424{
2425	u32 user_interrupt_cnt;
2426	bool device_in_reset;
2427	ktime_t timeout;
2428	u64 reset_sec;
2429	int i, rc;
2430
2431	dev_info(hdev->dev, "Removing device %s\n", dev_name(&(hdev)->pdev->dev));
2432
2433	hdev->device_fini_pending = 1;
2434	flush_delayed_work(&hdev->device_reset_work.reset_work);
2435
2436	if (hdev->pldm)
2437		reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
2438	else
2439		reset_sec = HL_HARD_RESET_MAX_TIMEOUT;
2440
2441	/*
2442	 * This function is competing with the reset function, so try to
2443	 * take the reset atomic and if we are already in middle of reset,
2444	 * wait until reset function is finished. Reset function is designed
2445	 * to always finish. However, in Gaudi, because of all the network
2446	 * ports, the hard reset could take between 10-30 seconds
2447	 */
2448
2449	timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
2450
2451	spin_lock(&hdev->reset_info.lock);
2452	device_in_reset = !!hdev->reset_info.in_reset;
2453	if (!device_in_reset)
2454		hdev->reset_info.in_reset = 1;
2455	spin_unlock(&hdev->reset_info.lock);
2456
2457	while (device_in_reset) {
2458		usleep_range(50, 200);
2459
2460		spin_lock(&hdev->reset_info.lock);
2461		device_in_reset = !!hdev->reset_info.in_reset;
2462		if (!device_in_reset)
2463			hdev->reset_info.in_reset = 1;
2464		spin_unlock(&hdev->reset_info.lock);
2465
2466		if (ktime_compare(ktime_get(), timeout) > 0) {
2467			dev_crit(hdev->dev,
2468				"%s Failed to remove device because reset function did not finish\n",
2469				dev_name(&(hdev)->pdev->dev));
2470			return;
2471		}
2472	}
2473
2474	cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work);
2475
2476	/* Disable PCI access from device F/W so it won't send us additional
2477	 * interrupts. We disable MSI/MSI-X at the halt_engines function and we
2478	 * can't have the F/W sending us interrupts after that. We need to
2479	 * disable the access here because if the device is marked disable, the
2480	 * message won't be send. Also, in case of heartbeat, the device CPU is
2481	 * marked as disable so this message won't be sent
2482	 */
2483	hl_fw_send_pci_access_msg(hdev,	CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
2484
2485	/* Mark device as disabled */
2486	hdev->disabled = true;
2487
2488	take_release_locks(hdev);
2489
2490	hdev->reset_info.hard_reset_pending = true;
2491
2492	hl_hwmon_fini(hdev);
2493
2494	cleanup_resources(hdev, true, false, false);
2495
2496	/* Kill processes here after CS rollback. This is because the process
2497	 * can't really exit until all its CSs are done, which is what we
2498	 * do in cs rollback
2499	 */
2500	dev_info(hdev->dev,
2501		"Waiting for all processes to exit (timeout of %u seconds)",
2502		HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI);
2503
2504	hdev->process_kill_trial_cnt = 0;
2505	rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false);
2506	if (rc) {
2507		dev_crit(hdev->dev, "Failed to kill all open processes (%d)\n", rc);
2508		device_disable_open_processes(hdev, false);
2509	}
2510
2511	hdev->process_kill_trial_cnt = 0;
2512	rc = device_kill_open_processes(hdev, 0, true);
2513	if (rc) {
2514		dev_crit(hdev->dev, "Failed to kill all control device open processes (%d)\n", rc);
2515		device_disable_open_processes(hdev, true);
2516	}
2517
2518	hl_cb_pool_fini(hdev);
2519
2520	/* Reset the H/W. It will be in idle state after this returns */
2521	rc = hdev->asic_funcs->hw_fini(hdev, true, false);
2522	if (rc)
2523		dev_err(hdev->dev, "hw_fini failed in device fini while removing device %d\n", rc);
2524
2525	hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
2526
2527	/* Release kernel context */
2528	if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
2529		dev_err(hdev->dev, "kernel ctx is still alive\n");
2530
2531	hl_dec_fini(hdev);
2532
2533	hl_vm_fini(hdev);
2534
2535	hl_mmu_fini(hdev);
2536
2537	vfree(hdev->captured_err_info.page_fault_info.user_mappings);
2538
2539	hl_eq_fini(hdev, &hdev->event_queue);
2540
2541	kfree(hdev->shadow_cs_queue);
2542
2543	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
2544		hl_cq_fini(hdev, &hdev->completion_queue[i]);
2545	kfree(hdev->completion_queue);
2546
2547	user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
2548					hdev->asic_prop.user_interrupt_count;
2549
2550	if (user_interrupt_cnt) {
2551		if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) {
2552			for (i = 0 ; i < user_interrupt_cnt ; i++)
2553				vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool);
2554		}
2555
2556		kfree(hdev->user_interrupt);
2557	}
2558
2559	vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool);
2560
2561	hl_hw_queues_destroy(hdev);
2562
2563	/* Call ASIC S/W finalize function */
2564	hdev->asic_funcs->sw_fini(hdev);
2565
2566	device_early_fini(hdev);
2567
2568	/* Hide devices and sysfs/debugfs files from user */
2569	cdev_sysfs_debugfs_remove(hdev);
2570	drm_dev_unregister(&hdev->drm);
2571
2572	hl_debugfs_device_fini(hdev);
2573
2574	pr_info("removed device successfully\n");
2575}
2576
2577/*
2578 * MMIO register access helper functions.
2579 */
2580
2581/*
2582 * hl_rreg - Read an MMIO register
2583 *
2584 * @hdev: pointer to habanalabs device structure
2585 * @reg: MMIO register offset (in bytes)
2586 *
2587 * Returns the value of the MMIO register we are asked to read
2588 *
2589 */
2590inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
2591{
2592	u32 val = readl(hdev->rmmio + reg);
2593
2594	if (unlikely(trace_habanalabs_rreg32_enabled()))
2595		trace_habanalabs_rreg32(hdev->dev, reg, val);
2596
2597	return val;
2598}
2599
2600/*
2601 * hl_wreg - Write to an MMIO register
2602 *
2603 * @hdev: pointer to habanalabs device structure
2604 * @reg: MMIO register offset (in bytes)
2605 * @val: 32-bit value
2606 *
2607 * Writes the 32-bit value into the MMIO register
2608 *
2609 */
2610inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
2611{
2612	if (unlikely(trace_habanalabs_wreg32_enabled()))
2613		trace_habanalabs_wreg32(hdev->dev, reg, val);
2614
2615	writel(val, hdev->rmmio + reg);
2616}
2617
2618void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2619			u8 flags)
2620{
2621	struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info;
2622
2623	if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) {
2624		dev_err(hdev->dev,
2625				"Number of possible razwi initiators (%u) exceeded limit (%u)\n",
2626				num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR);
2627		return;
2628	}
2629
2630	/* In case it's the first razwi since the device was opened, capture its parameters */
2631	if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1))
2632		return;
2633
2634	razwi_info->razwi.timestamp = ktime_to_ns(ktime_get());
2635	razwi_info->razwi.addr = addr;
2636	razwi_info->razwi.num_of_possible_engines = num_of_engines;
2637	memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0],
2638			num_of_engines * sizeof(u16));
2639	razwi_info->razwi.flags = flags;
2640
2641	razwi_info->razwi_info_available = true;
2642}
2643
2644void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2645			u8 flags, u64 *event_mask)
2646{
2647	hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags);
2648
2649	if (event_mask)
2650		*event_mask |= HL_NOTIFIER_EVENT_RAZWI;
2651}
2652
2653static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu)
2654{
2655	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2656	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2657	struct hl_vm_hash_node *hnode;
2658	struct hl_userptr *userptr;
2659	enum vm_type *vm_type;
2660	struct hl_ctx *ctx;
2661	u32 map_idx = 0;
2662	int i;
2663
2664	/* Reset previous session count*/
2665	pgf_info->num_of_user_mappings = 0;
2666
2667	ctx = hl_get_compute_ctx(hdev);
2668	if (!ctx) {
2669		dev_err(hdev->dev, "Can't get user context for user mappings\n");
2670		return;
2671	}
2672
2673	mutex_lock(&ctx->mem_hash_lock);
2674	hash_for_each(ctx->mem_hash, i, hnode, node) {
2675		vm_type = hnode->ptr;
2676		if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) ||
2677				((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu))
2678			pgf_info->num_of_user_mappings++;
2679
2680	}
2681
2682	if (!pgf_info->num_of_user_mappings)
2683		goto finish;
2684
2685	/* In case we already allocated in previous session, need to release it before
2686	 * allocating new buffer.
2687	 */
2688	vfree(pgf_info->user_mappings);
2689	pgf_info->user_mappings =
2690			vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping));
2691	if (!pgf_info->user_mappings) {
2692		pgf_info->num_of_user_mappings = 0;
2693		goto finish;
2694	}
2695
2696	hash_for_each(ctx->mem_hash, i, hnode, node) {
2697		vm_type = hnode->ptr;
2698		if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) {
2699			userptr = hnode->ptr;
2700			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2701			pgf_info->user_mappings[map_idx].size = userptr->size;
2702			map_idx++;
2703		} else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) {
2704			phys_pg_pack = hnode->ptr;
2705			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2706			pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size;
2707			map_idx++;
2708		}
2709	}
2710finish:
2711	mutex_unlock(&ctx->mem_hash_lock);
2712	hl_ctx_put(ctx);
2713}
2714
2715void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu)
2716{
2717	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2718
2719	/* Capture only the first page fault */
2720	if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1))
2721		return;
2722
2723	pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get());
2724	pgf_info->page_fault.addr = addr;
2725	pgf_info->page_fault.engine_id = eng_id;
2726	hl_capture_user_mappings(hdev, is_pmmu);
2727
2728	pgf_info->page_fault_info_available = true;
2729}
2730
2731void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
2732				u64 *event_mask)
2733{
2734	hl_capture_page_fault(hdev, addr, eng_id, is_pmmu);
2735
2736	if (event_mask)
2737		*event_mask |=  HL_NOTIFIER_EVENT_PAGE_FAULT;
2738}
2739
2740static void hl_capture_hw_err(struct hl_device *hdev, u16 event_id)
2741{
2742	struct hw_err_info *info = &hdev->captured_err_info.hw_err;
2743
2744	/* Capture only the first HW err */
2745	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2746		return;
2747
2748	info->event.timestamp = ktime_to_ns(ktime_get());
2749	info->event.event_id = event_id;
2750
2751	info->event_info_available = true;
2752}
2753
2754void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask)
2755{
2756	hl_capture_hw_err(hdev, event_id);
2757
2758	if (event_mask)
2759		*event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR;
2760}
2761
2762static void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info)
2763{
2764	struct fw_err_info *info = &hdev->captured_err_info.fw_err;
2765
2766	/* Capture only the first FW error */
2767	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2768		return;
2769
2770	info->event.timestamp = ktime_to_ns(ktime_get());
2771	info->event.err_type = fw_info->err_type;
2772	if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR)
2773		info->event.event_id = fw_info->event_id;
2774
2775	info->event_info_available = true;
2776}
2777
2778void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info)
2779{
2780	hl_capture_fw_err(hdev, info);
2781
2782	if (info->event_mask)
2783		*info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR;
2784}
2785
2786void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count)
2787{
2788	struct engine_err_info *info = &hdev->captured_err_info.engine_err;
2789
2790	/* Capture only the first engine error */
2791	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2792		return;
2793
2794	info->event.timestamp = ktime_to_ns(ktime_get());
2795	info->event.engine_id = engine_id;
2796	info->event.error_count = error_count;
2797	info->event_info_available = true;
2798}
2799
2800void hl_enable_err_info_capture(struct hl_error_info *captured_err_info)
2801{
2802	vfree(captured_err_info->page_fault_info.user_mappings);
2803	memset(captured_err_info, 0, sizeof(struct hl_error_info));
2804	atomic_set(&captured_err_info->cs_timeout.write_enable, 1);
2805	captured_err_info->undef_opcode.write_enable = true;
2806}
2807
2808void hl_init_cpu_for_irq(struct hl_device *hdev)
2809{
2810#ifdef CONFIG_NUMA
2811	struct cpumask *available_mask = &hdev->irq_affinity_mask;
2812	int numa_node = hdev->pdev->dev.numa_node, i;
2813	static struct cpumask cpu_mask;
2814
2815	if (numa_node < 0)
2816		return;
2817
2818	if (!cpumask_and(&cpu_mask, cpumask_of_node(numa_node), cpu_online_mask)) {
2819		dev_err(hdev->dev, "No available affinities in current numa node\n");
2820		return;
2821	}
2822
2823	/* Remove HT siblings */
2824	for_each_cpu(i, &cpu_mask)
2825		cpumask_set_cpu(cpumask_first(topology_sibling_cpumask(i)), available_mask);
2826#endif
2827}
2828
2829void hl_set_irq_affinity(struct hl_device *hdev, int irq)
2830{
2831	if (cpumask_empty(&hdev->irq_affinity_mask)) {
2832		dev_dbg(hdev->dev, "affinity mask is empty\n");
2833		return;
2834	}
2835
2836	if (irq_set_affinity_and_hint(irq, &hdev->irq_affinity_mask))
2837		dev_err(hdev->dev, "Failed setting irq %d affinity\n", irq);
2838}
2839