1// SPDX-License-Identifier: GPL-2.0-or-later
2/* X.509 certificate parser
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8#define pr_fmt(fmt) "X.509: "fmt
9#include <linux/kernel.h>
10#include <linux/export.h>
11#include <linux/slab.h>
12#include <linux/err.h>
13#include <linux/oid_registry.h>
14#include <crypto/public_key.h>
15#include "x509_parser.h"
16#include "x509.asn1.h"
17#include "x509_akid.asn1.h"
18
19struct x509_parse_context {
20	struct x509_certificate	*cert;		/* Certificate being constructed */
21	unsigned long	data;			/* Start of data */
22	const void	*key;			/* Key data */
23	size_t		key_size;		/* Size of key data */
24	const void	*params;		/* Key parameters */
25	size_t		params_size;		/* Size of key parameters */
26	enum OID	key_algo;		/* Algorithm used by the cert's key */
27	enum OID	last_oid;		/* Last OID encountered */
28	enum OID	sig_algo;		/* Algorithm used to sign the cert */
29	u8		o_size;			/* Size of organizationName (O) */
30	u8		cn_size;		/* Size of commonName (CN) */
31	u8		email_size;		/* Size of emailAddress */
32	u16		o_offset;		/* Offset of organizationName (O) */
33	u16		cn_offset;		/* Offset of commonName (CN) */
34	u16		email_offset;		/* Offset of emailAddress */
35	unsigned	raw_akid_size;
36	const void	*raw_akid;		/* Raw authorityKeyId in ASN.1 */
37	const void	*akid_raw_issuer;	/* Raw directoryName in authorityKeyId */
38	unsigned	akid_raw_issuer_size;
39};
40
41/*
42 * Free an X.509 certificate
43 */
44void x509_free_certificate(struct x509_certificate *cert)
45{
46	if (cert) {
47		public_key_free(cert->pub);
48		public_key_signature_free(cert->sig);
49		kfree(cert->issuer);
50		kfree(cert->subject);
51		kfree(cert->id);
52		kfree(cert->skid);
53		kfree(cert);
54	}
55}
56EXPORT_SYMBOL_GPL(x509_free_certificate);
57
58/*
59 * Parse an X.509 certificate
60 */
61struct x509_certificate *x509_cert_parse(const void *data, size_t datalen)
62{
63	struct x509_certificate *cert;
64	struct x509_parse_context *ctx;
65	struct asymmetric_key_id *kid;
66	long ret;
67
68	ret = -ENOMEM;
69	cert = kzalloc(sizeof(struct x509_certificate), GFP_KERNEL);
70	if (!cert)
71		goto error_no_cert;
72	cert->pub = kzalloc(sizeof(struct public_key), GFP_KERNEL);
73	if (!cert->pub)
74		goto error_no_ctx;
75	cert->sig = kzalloc(sizeof(struct public_key_signature), GFP_KERNEL);
76	if (!cert->sig)
77		goto error_no_ctx;
78	ctx = kzalloc(sizeof(struct x509_parse_context), GFP_KERNEL);
79	if (!ctx)
80		goto error_no_ctx;
81
82	ctx->cert = cert;
83	ctx->data = (unsigned long)data;
84
85	/* Attempt to decode the certificate */
86	ret = asn1_ber_decoder(&x509_decoder, ctx, data, datalen);
87	if (ret < 0)
88		goto error_decode;
89
90	/* Decode the AuthorityKeyIdentifier */
91	if (ctx->raw_akid) {
92		pr_devel("AKID: %u %*phN\n",
93			 ctx->raw_akid_size, ctx->raw_akid_size, ctx->raw_akid);
94		ret = asn1_ber_decoder(&x509_akid_decoder, ctx,
95				       ctx->raw_akid, ctx->raw_akid_size);
96		if (ret < 0) {
97			pr_warn("Couldn't decode AuthKeyIdentifier\n");
98			goto error_decode;
99		}
100	}
101
102	ret = -ENOMEM;
103	cert->pub->key = kmemdup(ctx->key, ctx->key_size, GFP_KERNEL);
104	if (!cert->pub->key)
105		goto error_decode;
106
107	cert->pub->keylen = ctx->key_size;
108
109	cert->pub->params = kmemdup(ctx->params, ctx->params_size, GFP_KERNEL);
110	if (!cert->pub->params)
111		goto error_decode;
112
113	cert->pub->paramlen = ctx->params_size;
114	cert->pub->algo = ctx->key_algo;
115
116	/* Grab the signature bits */
117	ret = x509_get_sig_params(cert);
118	if (ret < 0)
119		goto error_decode;
120
121	/* Generate cert issuer + serial number key ID */
122	kid = asymmetric_key_generate_id(cert->raw_serial,
123					 cert->raw_serial_size,
124					 cert->raw_issuer,
125					 cert->raw_issuer_size);
126	if (IS_ERR(kid)) {
127		ret = PTR_ERR(kid);
128		goto error_decode;
129	}
130	cert->id = kid;
131
132	/* Detect self-signed certificates */
133	ret = x509_check_for_self_signed(cert);
134	if (ret < 0)
135		goto error_decode;
136
137	kfree(ctx);
138	return cert;
139
140error_decode:
141	kfree(ctx);
142error_no_ctx:
143	x509_free_certificate(cert);
144error_no_cert:
145	return ERR_PTR(ret);
146}
147EXPORT_SYMBOL_GPL(x509_cert_parse);
148
149/*
150 * Note an OID when we find one for later processing when we know how
151 * to interpret it.
152 */
153int x509_note_OID(void *context, size_t hdrlen,
154	     unsigned char tag,
155	     const void *value, size_t vlen)
156{
157	struct x509_parse_context *ctx = context;
158
159	ctx->last_oid = look_up_OID(value, vlen);
160	if (ctx->last_oid == OID__NR) {
161		char buffer[50];
162		sprint_oid(value, vlen, buffer, sizeof(buffer));
163		pr_debug("Unknown OID: [%lu] %s\n",
164			 (unsigned long)value - ctx->data, buffer);
165	}
166	return 0;
167}
168
169/*
170 * Save the position of the TBS data so that we can check the signature over it
171 * later.
172 */
173int x509_note_tbs_certificate(void *context, size_t hdrlen,
174			      unsigned char tag,
175			      const void *value, size_t vlen)
176{
177	struct x509_parse_context *ctx = context;
178
179	pr_debug("x509_note_tbs_certificate(,%zu,%02x,%ld,%zu)!\n",
180		 hdrlen, tag, (unsigned long)value - ctx->data, vlen);
181
182	ctx->cert->tbs = value - hdrlen;
183	ctx->cert->tbs_size = vlen + hdrlen;
184	return 0;
185}
186
187/*
188 * Record the algorithm that was used to sign this certificate.
189 */
190int x509_note_sig_algo(void *context, size_t hdrlen, unsigned char tag,
191		       const void *value, size_t vlen)
192{
193	struct x509_parse_context *ctx = context;
194
195	pr_debug("PubKey Algo: %u\n", ctx->last_oid);
196
197	switch (ctx->last_oid) {
198	default:
199		return -ENOPKG; /* Unsupported combination */
200
201	case OID_sha1WithRSAEncryption:
202		ctx->cert->sig->hash_algo = "sha1";
203		goto rsa_pkcs1;
204
205	case OID_sha256WithRSAEncryption:
206		ctx->cert->sig->hash_algo = "sha256";
207		goto rsa_pkcs1;
208
209	case OID_sha384WithRSAEncryption:
210		ctx->cert->sig->hash_algo = "sha384";
211		goto rsa_pkcs1;
212
213	case OID_sha512WithRSAEncryption:
214		ctx->cert->sig->hash_algo = "sha512";
215		goto rsa_pkcs1;
216
217	case OID_sha224WithRSAEncryption:
218		ctx->cert->sig->hash_algo = "sha224";
219		goto rsa_pkcs1;
220
221	case OID_id_ecdsa_with_sha1:
222		ctx->cert->sig->hash_algo = "sha1";
223		goto ecdsa;
224
225	case OID_id_rsassa_pkcs1_v1_5_with_sha3_256:
226		ctx->cert->sig->hash_algo = "sha3-256";
227		goto rsa_pkcs1;
228
229	case OID_id_rsassa_pkcs1_v1_5_with_sha3_384:
230		ctx->cert->sig->hash_algo = "sha3-384";
231		goto rsa_pkcs1;
232
233	case OID_id_rsassa_pkcs1_v1_5_with_sha3_512:
234		ctx->cert->sig->hash_algo = "sha3-512";
235		goto rsa_pkcs1;
236
237	case OID_id_ecdsa_with_sha224:
238		ctx->cert->sig->hash_algo = "sha224";
239		goto ecdsa;
240
241	case OID_id_ecdsa_with_sha256:
242		ctx->cert->sig->hash_algo = "sha256";
243		goto ecdsa;
244
245	case OID_id_ecdsa_with_sha384:
246		ctx->cert->sig->hash_algo = "sha384";
247		goto ecdsa;
248
249	case OID_id_ecdsa_with_sha512:
250		ctx->cert->sig->hash_algo = "sha512";
251		goto ecdsa;
252
253	case OID_id_ecdsa_with_sha3_256:
254		ctx->cert->sig->hash_algo = "sha3-256";
255		goto ecdsa;
256
257	case OID_id_ecdsa_with_sha3_384:
258		ctx->cert->sig->hash_algo = "sha3-384";
259		goto ecdsa;
260
261	case OID_id_ecdsa_with_sha3_512:
262		ctx->cert->sig->hash_algo = "sha3-512";
263		goto ecdsa;
264
265	case OID_gost2012Signature256:
266		ctx->cert->sig->hash_algo = "streebog256";
267		goto ecrdsa;
268
269	case OID_gost2012Signature512:
270		ctx->cert->sig->hash_algo = "streebog512";
271		goto ecrdsa;
272
273	case OID_SM2_with_SM3:
274		ctx->cert->sig->hash_algo = "sm3";
275		goto sm2;
276	}
277
278rsa_pkcs1:
279	ctx->cert->sig->pkey_algo = "rsa";
280	ctx->cert->sig->encoding = "pkcs1";
281	ctx->sig_algo = ctx->last_oid;
282	return 0;
283ecrdsa:
284	ctx->cert->sig->pkey_algo = "ecrdsa";
285	ctx->cert->sig->encoding = "raw";
286	ctx->sig_algo = ctx->last_oid;
287	return 0;
288sm2:
289	ctx->cert->sig->pkey_algo = "sm2";
290	ctx->cert->sig->encoding = "raw";
291	ctx->sig_algo = ctx->last_oid;
292	return 0;
293ecdsa:
294	ctx->cert->sig->pkey_algo = "ecdsa";
295	ctx->cert->sig->encoding = "x962";
296	ctx->sig_algo = ctx->last_oid;
297	return 0;
298}
299
300/*
301 * Note the whereabouts and type of the signature.
302 */
303int x509_note_signature(void *context, size_t hdrlen,
304			unsigned char tag,
305			const void *value, size_t vlen)
306{
307	struct x509_parse_context *ctx = context;
308
309	pr_debug("Signature: alg=%u, size=%zu\n", ctx->last_oid, vlen);
310
311	/*
312	 * In X.509 certificates, the signature's algorithm is stored in two
313	 * places: inside the TBSCertificate (the data that is signed), and
314	 * alongside the signature.  These *must* match.
315	 */
316	if (ctx->last_oid != ctx->sig_algo) {
317		pr_warn("signatureAlgorithm (%u) differs from tbsCertificate.signature (%u)\n",
318			ctx->last_oid, ctx->sig_algo);
319		return -EINVAL;
320	}
321
322	if (strcmp(ctx->cert->sig->pkey_algo, "rsa") == 0 ||
323	    strcmp(ctx->cert->sig->pkey_algo, "ecrdsa") == 0 ||
324	    strcmp(ctx->cert->sig->pkey_algo, "sm2") == 0 ||
325	    strcmp(ctx->cert->sig->pkey_algo, "ecdsa") == 0) {
326		/* Discard the BIT STRING metadata */
327		if (vlen < 1 || *(const u8 *)value != 0)
328			return -EBADMSG;
329
330		value++;
331		vlen--;
332	}
333
334	ctx->cert->raw_sig = value;
335	ctx->cert->raw_sig_size = vlen;
336	return 0;
337}
338
339/*
340 * Note the certificate serial number
341 */
342int x509_note_serial(void *context, size_t hdrlen,
343		     unsigned char tag,
344		     const void *value, size_t vlen)
345{
346	struct x509_parse_context *ctx = context;
347	ctx->cert->raw_serial = value;
348	ctx->cert->raw_serial_size = vlen;
349	return 0;
350}
351
352/*
353 * Note some of the name segments from which we'll fabricate a name.
354 */
355int x509_extract_name_segment(void *context, size_t hdrlen,
356			      unsigned char tag,
357			      const void *value, size_t vlen)
358{
359	struct x509_parse_context *ctx = context;
360
361	switch (ctx->last_oid) {
362	case OID_commonName:
363		ctx->cn_size = vlen;
364		ctx->cn_offset = (unsigned long)value - ctx->data;
365		break;
366	case OID_organizationName:
367		ctx->o_size = vlen;
368		ctx->o_offset = (unsigned long)value - ctx->data;
369		break;
370	case OID_email_address:
371		ctx->email_size = vlen;
372		ctx->email_offset = (unsigned long)value - ctx->data;
373		break;
374	default:
375		break;
376	}
377
378	return 0;
379}
380
381/*
382 * Fabricate and save the issuer and subject names
383 */
384static int x509_fabricate_name(struct x509_parse_context *ctx, size_t hdrlen,
385			       unsigned char tag,
386			       char **_name, size_t vlen)
387{
388	const void *name, *data = (const void *)ctx->data;
389	size_t namesize;
390	char *buffer;
391
392	if (*_name)
393		return -EINVAL;
394
395	/* Empty name string if no material */
396	if (!ctx->cn_size && !ctx->o_size && !ctx->email_size) {
397		buffer = kmalloc(1, GFP_KERNEL);
398		if (!buffer)
399			return -ENOMEM;
400		buffer[0] = 0;
401		goto done;
402	}
403
404	if (ctx->cn_size && ctx->o_size) {
405		/* Consider combining O and CN, but use only the CN if it is
406		 * prefixed by the O, or a significant portion thereof.
407		 */
408		namesize = ctx->cn_size;
409		name = data + ctx->cn_offset;
410		if (ctx->cn_size >= ctx->o_size &&
411		    memcmp(data + ctx->cn_offset, data + ctx->o_offset,
412			   ctx->o_size) == 0)
413			goto single_component;
414		if (ctx->cn_size >= 7 &&
415		    ctx->o_size >= 7 &&
416		    memcmp(data + ctx->cn_offset, data + ctx->o_offset, 7) == 0)
417			goto single_component;
418
419		buffer = kmalloc(ctx->o_size + 2 + ctx->cn_size + 1,
420				 GFP_KERNEL);
421		if (!buffer)
422			return -ENOMEM;
423
424		memcpy(buffer,
425		       data + ctx->o_offset, ctx->o_size);
426		buffer[ctx->o_size + 0] = ':';
427		buffer[ctx->o_size + 1] = ' ';
428		memcpy(buffer + ctx->o_size + 2,
429		       data + ctx->cn_offset, ctx->cn_size);
430		buffer[ctx->o_size + 2 + ctx->cn_size] = 0;
431		goto done;
432
433	} else if (ctx->cn_size) {
434		namesize = ctx->cn_size;
435		name = data + ctx->cn_offset;
436	} else if (ctx->o_size) {
437		namesize = ctx->o_size;
438		name = data + ctx->o_offset;
439	} else {
440		namesize = ctx->email_size;
441		name = data + ctx->email_offset;
442	}
443
444single_component:
445	buffer = kmalloc(namesize + 1, GFP_KERNEL);
446	if (!buffer)
447		return -ENOMEM;
448	memcpy(buffer, name, namesize);
449	buffer[namesize] = 0;
450
451done:
452	*_name = buffer;
453	ctx->cn_size = 0;
454	ctx->o_size = 0;
455	ctx->email_size = 0;
456	return 0;
457}
458
459int x509_note_issuer(void *context, size_t hdrlen,
460		     unsigned char tag,
461		     const void *value, size_t vlen)
462{
463	struct x509_parse_context *ctx = context;
464	struct asymmetric_key_id *kid;
465
466	ctx->cert->raw_issuer = value;
467	ctx->cert->raw_issuer_size = vlen;
468
469	if (!ctx->cert->sig->auth_ids[2]) {
470		kid = asymmetric_key_generate_id(value, vlen, "", 0);
471		if (IS_ERR(kid))
472			return PTR_ERR(kid);
473		ctx->cert->sig->auth_ids[2] = kid;
474	}
475
476	return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->issuer, vlen);
477}
478
479int x509_note_subject(void *context, size_t hdrlen,
480		      unsigned char tag,
481		      const void *value, size_t vlen)
482{
483	struct x509_parse_context *ctx = context;
484	ctx->cert->raw_subject = value;
485	ctx->cert->raw_subject_size = vlen;
486	return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->subject, vlen);
487}
488
489/*
490 * Extract the parameters for the public key
491 */
492int x509_note_params(void *context, size_t hdrlen,
493		     unsigned char tag,
494		     const void *value, size_t vlen)
495{
496	struct x509_parse_context *ctx = context;
497
498	/*
499	 * AlgorithmIdentifier is used three times in the x509, we should skip
500	 * first and ignore third, using second one which is after subject and
501	 * before subjectPublicKey.
502	 */
503	if (!ctx->cert->raw_subject || ctx->key)
504		return 0;
505	ctx->params = value - hdrlen;
506	ctx->params_size = vlen + hdrlen;
507	return 0;
508}
509
510/*
511 * Extract the data for the public key algorithm
512 */
513int x509_extract_key_data(void *context, size_t hdrlen,
514			  unsigned char tag,
515			  const void *value, size_t vlen)
516{
517	struct x509_parse_context *ctx = context;
518	enum OID oid;
519
520	ctx->key_algo = ctx->last_oid;
521	switch (ctx->last_oid) {
522	case OID_rsaEncryption:
523		ctx->cert->pub->pkey_algo = "rsa";
524		break;
525	case OID_gost2012PKey256:
526	case OID_gost2012PKey512:
527		ctx->cert->pub->pkey_algo = "ecrdsa";
528		break;
529	case OID_sm2:
530		ctx->cert->pub->pkey_algo = "sm2";
531		break;
532	case OID_id_ecPublicKey:
533		if (parse_OID(ctx->params, ctx->params_size, &oid) != 0)
534			return -EBADMSG;
535
536		switch (oid) {
537		case OID_sm2:
538			ctx->cert->pub->pkey_algo = "sm2";
539			break;
540		case OID_id_prime192v1:
541			ctx->cert->pub->pkey_algo = "ecdsa-nist-p192";
542			break;
543		case OID_id_prime256v1:
544			ctx->cert->pub->pkey_algo = "ecdsa-nist-p256";
545			break;
546		case OID_id_ansip384r1:
547			ctx->cert->pub->pkey_algo = "ecdsa-nist-p384";
548			break;
549		default:
550			return -ENOPKG;
551		}
552		break;
553	default:
554		return -ENOPKG;
555	}
556
557	/* Discard the BIT STRING metadata */
558	if (vlen < 1 || *(const u8 *)value != 0)
559		return -EBADMSG;
560	ctx->key = value + 1;
561	ctx->key_size = vlen - 1;
562	return 0;
563}
564
565/* The keyIdentifier in AuthorityKeyIdentifier SEQUENCE is tag(CONT,PRIM,0) */
566#define SEQ_TAG_KEYID (ASN1_CONT << 6)
567
568/*
569 * Process certificate extensions that are used to qualify the certificate.
570 */
571int x509_process_extension(void *context, size_t hdrlen,
572			   unsigned char tag,
573			   const void *value, size_t vlen)
574{
575	struct x509_parse_context *ctx = context;
576	struct asymmetric_key_id *kid;
577	const unsigned char *v = value;
578
579	pr_debug("Extension: %u\n", ctx->last_oid);
580
581	if (ctx->last_oid == OID_subjectKeyIdentifier) {
582		/* Get hold of the key fingerprint */
583		if (ctx->cert->skid || vlen < 3)
584			return -EBADMSG;
585		if (v[0] != ASN1_OTS || v[1] != vlen - 2)
586			return -EBADMSG;
587		v += 2;
588		vlen -= 2;
589
590		ctx->cert->raw_skid_size = vlen;
591		ctx->cert->raw_skid = v;
592		kid = asymmetric_key_generate_id(v, vlen, "", 0);
593		if (IS_ERR(kid))
594			return PTR_ERR(kid);
595		ctx->cert->skid = kid;
596		pr_debug("subjkeyid %*phN\n", kid->len, kid->data);
597		return 0;
598	}
599
600	if (ctx->last_oid == OID_keyUsage) {
601		/*
602		 * Get hold of the keyUsage bit string
603		 * v[1] is the encoding size
604		 *       (Expect either 0x02 or 0x03, making it 1 or 2 bytes)
605		 * v[2] is the number of unused bits in the bit string
606		 *       (If >= 3 keyCertSign is missing when v[1] = 0x02)
607		 * v[3] and possibly v[4] contain the bit string
608		 *
609		 * From RFC 5280 4.2.1.3:
610		 *   0x04 is where keyCertSign lands in this bit string
611		 *   0x80 is where digitalSignature lands in this bit string
612		 */
613		if (v[0] != ASN1_BTS)
614			return -EBADMSG;
615		if (vlen < 4)
616			return -EBADMSG;
617		if (v[2] >= 8)
618			return -EBADMSG;
619		if (v[3] & 0x80)
620			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_DIGITALSIG;
621		if (v[1] == 0x02 && v[2] <= 2 && (v[3] & 0x04))
622			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN;
623		else if (vlen > 4 && v[1] == 0x03 && (v[3] & 0x04))
624			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_KEYCERTSIGN;
625		return 0;
626	}
627
628	if (ctx->last_oid == OID_authorityKeyIdentifier) {
629		/* Get hold of the CA key fingerprint */
630		ctx->raw_akid = v;
631		ctx->raw_akid_size = vlen;
632		return 0;
633	}
634
635	if (ctx->last_oid == OID_basicConstraints) {
636		/*
637		 * Get hold of the basicConstraints
638		 * v[1] is the encoding size
639		 *	(Expect 0x2 or greater, making it 1 or more bytes)
640		 * v[2] is the encoding type
641		 *	(Expect an ASN1_BOOL for the CA)
642		 * v[3] is the contents of the ASN1_BOOL
643		 *      (Expect 1 if the CA is TRUE)
644		 * vlen should match the entire extension size
645		 */
646		if (v[0] != (ASN1_CONS_BIT | ASN1_SEQ))
647			return -EBADMSG;
648		if (vlen < 2)
649			return -EBADMSG;
650		if (v[1] != vlen - 2)
651			return -EBADMSG;
652		if (vlen >= 4 && v[1] != 0 && v[2] == ASN1_BOOL && v[3] == 1)
653			ctx->cert->pub->key_eflags |= 1 << KEY_EFLAG_CA;
654		return 0;
655	}
656
657	return 0;
658}
659
660/**
661 * x509_decode_time - Decode an X.509 time ASN.1 object
662 * @_t: The time to fill in
663 * @hdrlen: The length of the object header
664 * @tag: The object tag
665 * @value: The object value
666 * @vlen: The size of the object value
667 *
668 * Decode an ASN.1 universal time or generalised time field into a struct the
669 * kernel can handle and check it for validity.  The time is decoded thus:
670 *
671 *	[RFC5280 ��4.1.2.5]
672 *	CAs conforming to this profile MUST always encode certificate validity
673 *	dates through the year 2049 as UTCTime; certificate validity dates in
674 *	2050 or later MUST be encoded as GeneralizedTime.  Conforming
675 *	applications MUST be able to process validity dates that are encoded in
676 *	either UTCTime or GeneralizedTime.
677 */
678int x509_decode_time(time64_t *_t,  size_t hdrlen,
679		     unsigned char tag,
680		     const unsigned char *value, size_t vlen)
681{
682	static const unsigned char month_lengths[] = { 31, 28, 31, 30, 31, 30,
683						       31, 31, 30, 31, 30, 31 };
684	const unsigned char *p = value;
685	unsigned year, mon, day, hour, min, sec, mon_len;
686
687#define dec2bin(X) ({ unsigned char x = (X) - '0'; if (x > 9) goto invalid_time; x; })
688#define DD2bin(P) ({ unsigned x = dec2bin(P[0]) * 10 + dec2bin(P[1]); P += 2; x; })
689
690	if (tag == ASN1_UNITIM) {
691		/* UTCTime: YYMMDDHHMMSSZ */
692		if (vlen != 13)
693			goto unsupported_time;
694		year = DD2bin(p);
695		if (year >= 50)
696			year += 1900;
697		else
698			year += 2000;
699	} else if (tag == ASN1_GENTIM) {
700		/* GenTime: YYYYMMDDHHMMSSZ */
701		if (vlen != 15)
702			goto unsupported_time;
703		year = DD2bin(p) * 100 + DD2bin(p);
704		if (year >= 1950 && year <= 2049)
705			goto invalid_time;
706	} else {
707		goto unsupported_time;
708	}
709
710	mon  = DD2bin(p);
711	day = DD2bin(p);
712	hour = DD2bin(p);
713	min  = DD2bin(p);
714	sec  = DD2bin(p);
715
716	if (*p != 'Z')
717		goto unsupported_time;
718
719	if (year < 1970 ||
720	    mon < 1 || mon > 12)
721		goto invalid_time;
722
723	mon_len = month_lengths[mon - 1];
724	if (mon == 2) {
725		if (year % 4 == 0) {
726			mon_len = 29;
727			if (year % 100 == 0) {
728				mon_len = 28;
729				if (year % 400 == 0)
730					mon_len = 29;
731			}
732		}
733	}
734
735	if (day < 1 || day > mon_len ||
736	    hour > 24 || /* ISO 8601 permits 24:00:00 as midnight tomorrow */
737	    min > 59 ||
738	    sec > 60) /* ISO 8601 permits leap seconds [X.680 46.3] */
739		goto invalid_time;
740
741	*_t = mktime64(year, mon, day, hour, min, sec);
742	return 0;
743
744unsupported_time:
745	pr_debug("Got unsupported time [tag %02x]: '%*phN'\n",
746		 tag, (int)vlen, value);
747	return -EBADMSG;
748invalid_time:
749	pr_debug("Got invalid time [tag %02x]: '%*phN'\n",
750		 tag, (int)vlen, value);
751	return -EBADMSG;
752}
753EXPORT_SYMBOL_GPL(x509_decode_time);
754
755int x509_note_not_before(void *context, size_t hdrlen,
756			 unsigned char tag,
757			 const void *value, size_t vlen)
758{
759	struct x509_parse_context *ctx = context;
760	return x509_decode_time(&ctx->cert->valid_from, hdrlen, tag, value, vlen);
761}
762
763int x509_note_not_after(void *context, size_t hdrlen,
764			unsigned char tag,
765			const void *value, size_t vlen)
766{
767	struct x509_parse_context *ctx = context;
768	return x509_decode_time(&ctx->cert->valid_to, hdrlen, tag, value, vlen);
769}
770
771/*
772 * Note a key identifier-based AuthorityKeyIdentifier
773 */
774int x509_akid_note_kid(void *context, size_t hdrlen,
775		       unsigned char tag,
776		       const void *value, size_t vlen)
777{
778	struct x509_parse_context *ctx = context;
779	struct asymmetric_key_id *kid;
780
781	pr_debug("AKID: keyid: %*phN\n", (int)vlen, value);
782
783	if (ctx->cert->sig->auth_ids[1])
784		return 0;
785
786	kid = asymmetric_key_generate_id(value, vlen, "", 0);
787	if (IS_ERR(kid))
788		return PTR_ERR(kid);
789	pr_debug("authkeyid %*phN\n", kid->len, kid->data);
790	ctx->cert->sig->auth_ids[1] = kid;
791	return 0;
792}
793
794/*
795 * Note a directoryName in an AuthorityKeyIdentifier
796 */
797int x509_akid_note_name(void *context, size_t hdrlen,
798			unsigned char tag,
799			const void *value, size_t vlen)
800{
801	struct x509_parse_context *ctx = context;
802
803	pr_debug("AKID: name: %*phN\n", (int)vlen, value);
804
805	ctx->akid_raw_issuer = value;
806	ctx->akid_raw_issuer_size = vlen;
807	return 0;
808}
809
810/*
811 * Note a serial number in an AuthorityKeyIdentifier
812 */
813int x509_akid_note_serial(void *context, size_t hdrlen,
814			  unsigned char tag,
815			  const void *value, size_t vlen)
816{
817	struct x509_parse_context *ctx = context;
818	struct asymmetric_key_id *kid;
819
820	pr_debug("AKID: serial: %*phN\n", (int)vlen, value);
821
822	if (!ctx->akid_raw_issuer || ctx->cert->sig->auth_ids[0])
823		return 0;
824
825	kid = asymmetric_key_generate_id(value,
826					 vlen,
827					 ctx->akid_raw_issuer,
828					 ctx->akid_raw_issuer_size);
829	if (IS_ERR(kid))
830		return PTR_ERR(kid);
831
832	pr_debug("authkeyid %*phN\n", kid->len, kid->data);
833	ctx->cert->sig->auth_ids[0] = kid;
834	return 0;
835}
836