1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/blkdev.h>
11#include <linux/bio.h>
12#include <linux/blktrace_api.h>
13#include "blk.h"
14#include "blk-cgroup-rwstat.h"
15#include "blk-stat.h"
16#include "blk-throttle.h"
17
18/* Max dispatch from a group in 1 round */
19#define THROTL_GRP_QUANTUM 8
20
21/* Total max dispatch from all groups in one round */
22#define THROTL_QUANTUM 32
23
24/* Throttling is performed over a slice and after that slice is renewed */
25#define DFL_THROTL_SLICE_HD (HZ / 10)
26#define DFL_THROTL_SLICE_SSD (HZ / 50)
27#define MAX_THROTL_SLICE (HZ)
28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29#define MIN_THROTL_BPS (320 * 1024)
30#define MIN_THROTL_IOPS (10)
31#define DFL_LATENCY_TARGET (-1L)
32#define DFL_IDLE_THRESHOLD (0)
33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34#define LATENCY_FILTERED_SSD (0)
35/*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41/* A workqueue to queue throttle related work */
42static struct workqueue_struct *kthrotld_workqueue;
43
44#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)
45
46/* We measure latency for request size from <= 4k to >= 1M */
47#define LATENCY_BUCKET_SIZE 9
48
49struct latency_bucket {
50	unsigned long total_latency; /* ns / 1024 */
51	int samples;
52};
53
54struct avg_latency_bucket {
55	unsigned long latency; /* ns / 1024 */
56	bool valid;
57};
58
59struct throtl_data
60{
61	/* service tree for active throtl groups */
62	struct throtl_service_queue service_queue;
63
64	struct request_queue *queue;
65
66	/* Total Number of queued bios on READ and WRITE lists */
67	unsigned int nr_queued[2];
68
69	unsigned int throtl_slice;
70
71	/* Work for dispatching throttled bios */
72	struct work_struct dispatch_work;
73	unsigned int limit_index;
74	bool limit_valid[LIMIT_CNT];
75
76	unsigned long low_upgrade_time;
77	unsigned long low_downgrade_time;
78
79	unsigned int scale;
80
81	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
82	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
83	struct latency_bucket __percpu *latency_buckets[2];
84	unsigned long last_calculate_time;
85	unsigned long filtered_latency;
86
87	bool track_bio_latency;
88};
89
90static void throtl_pending_timer_fn(struct timer_list *t);
91
92static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
93{
94	return pd_to_blkg(&tg->pd);
95}
96
97/**
98 * sq_to_tg - return the throl_grp the specified service queue belongs to
99 * @sq: the throtl_service_queue of interest
100 *
101 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
102 * embedded in throtl_data, %NULL is returned.
103 */
104static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
105{
106	if (sq && sq->parent_sq)
107		return container_of(sq, struct throtl_grp, service_queue);
108	else
109		return NULL;
110}
111
112/**
113 * sq_to_td - return throtl_data the specified service queue belongs to
114 * @sq: the throtl_service_queue of interest
115 *
116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
117 * Determine the associated throtl_data accordingly and return it.
118 */
119static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
120{
121	struct throtl_grp *tg = sq_to_tg(sq);
122
123	if (tg)
124		return tg->td;
125	else
126		return container_of(sq, struct throtl_data, service_queue);
127}
128
129/*
130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
131 * make the IO dispatch more smooth.
132 * Scale up: linearly scale up according to elapsed time since upgrade. For
133 *           every throtl_slice, the limit scales up 1/2 .low limit till the
134 *           limit hits .max limit
135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
136 */
137static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
138{
139	/* arbitrary value to avoid too big scale */
140	if (td->scale < 4096 && time_after_eq(jiffies,
141	    td->low_upgrade_time + td->scale * td->throtl_slice))
142		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
143
144	return low + (low >> 1) * td->scale;
145}
146
147static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
148{
149	struct blkcg_gq *blkg = tg_to_blkg(tg);
150	struct throtl_data *td;
151	uint64_t ret;
152
153	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
154		return U64_MAX;
155
156	td = tg->td;
157	ret = tg->bps[rw][td->limit_index];
158	if (ret == 0 && td->limit_index == LIMIT_LOW) {
159		/* intermediate node or iops isn't 0 */
160		if (!list_empty(&blkg->blkcg->css.children) ||
161		    tg->iops[rw][td->limit_index])
162			return U64_MAX;
163		else
164			return MIN_THROTL_BPS;
165	}
166
167	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
168	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
169		uint64_t adjusted;
170
171		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
172		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
173	}
174	return ret;
175}
176
177static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
178{
179	struct blkcg_gq *blkg = tg_to_blkg(tg);
180	struct throtl_data *td;
181	unsigned int ret;
182
183	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
184		return UINT_MAX;
185
186	td = tg->td;
187	ret = tg->iops[rw][td->limit_index];
188	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
189		/* intermediate node or bps isn't 0 */
190		if (!list_empty(&blkg->blkcg->css.children) ||
191		    tg->bps[rw][td->limit_index])
192			return UINT_MAX;
193		else
194			return MIN_THROTL_IOPS;
195	}
196
197	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
198	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
199		uint64_t adjusted;
200
201		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
202		if (adjusted > UINT_MAX)
203			adjusted = UINT_MAX;
204		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
205	}
206	return ret;
207}
208
209#define request_bucket_index(sectors) \
210	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
211
212/**
213 * throtl_log - log debug message via blktrace
214 * @sq: the service_queue being reported
215 * @fmt: printf format string
216 * @args: printf args
217 *
218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
219 * throtl_grp; otherwise, just "throtl".
220 */
221#define throtl_log(sq, fmt, args...)	do {				\
222	struct throtl_grp *__tg = sq_to_tg((sq));			\
223	struct throtl_data *__td = sq_to_td((sq));			\
224									\
225	(void)__td;							\
226	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
227		break;							\
228	if ((__tg)) {							\
229		blk_add_cgroup_trace_msg(__td->queue,			\
230			&tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
231	} else {							\
232		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
233	}								\
234} while (0)
235
236static inline unsigned int throtl_bio_data_size(struct bio *bio)
237{
238	/* assume it's one sector */
239	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
240		return 512;
241	return bio->bi_iter.bi_size;
242}
243
244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
245{
246	INIT_LIST_HEAD(&qn->node);
247	bio_list_init(&qn->bios);
248	qn->tg = tg;
249}
250
251/**
252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
253 * @bio: bio being added
254 * @qn: qnode to add bio to
255 * @queued: the service_queue->queued[] list @qn belongs to
256 *
257 * Add @bio to @qn and put @qn on @queued if it's not already on.
258 * @qn->tg's reference count is bumped when @qn is activated.  See the
259 * comment on top of throtl_qnode definition for details.
260 */
261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
262				 struct list_head *queued)
263{
264	bio_list_add(&qn->bios, bio);
265	if (list_empty(&qn->node)) {
266		list_add_tail(&qn->node, queued);
267		blkg_get(tg_to_blkg(qn->tg));
268	}
269}
270
271/**
272 * throtl_peek_queued - peek the first bio on a qnode list
273 * @queued: the qnode list to peek
274 */
275static struct bio *throtl_peek_queued(struct list_head *queued)
276{
277	struct throtl_qnode *qn;
278	struct bio *bio;
279
280	if (list_empty(queued))
281		return NULL;
282
283	qn = list_first_entry(queued, struct throtl_qnode, node);
284	bio = bio_list_peek(&qn->bios);
285	WARN_ON_ONCE(!bio);
286	return bio;
287}
288
289/**
290 * throtl_pop_queued - pop the first bio form a qnode list
291 * @queued: the qnode list to pop a bio from
292 * @tg_to_put: optional out argument for throtl_grp to put
293 *
294 * Pop the first bio from the qnode list @queued.  After popping, the first
295 * qnode is removed from @queued if empty or moved to the end of @queued so
296 * that the popping order is round-robin.
297 *
298 * When the first qnode is removed, its associated throtl_grp should be put
299 * too.  If @tg_to_put is NULL, this function automatically puts it;
300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
301 * responsible for putting it.
302 */
303static struct bio *throtl_pop_queued(struct list_head *queued,
304				     struct throtl_grp **tg_to_put)
305{
306	struct throtl_qnode *qn;
307	struct bio *bio;
308
309	if (list_empty(queued))
310		return NULL;
311
312	qn = list_first_entry(queued, struct throtl_qnode, node);
313	bio = bio_list_pop(&qn->bios);
314	WARN_ON_ONCE(!bio);
315
316	if (bio_list_empty(&qn->bios)) {
317		list_del_init(&qn->node);
318		if (tg_to_put)
319			*tg_to_put = qn->tg;
320		else
321			blkg_put(tg_to_blkg(qn->tg));
322	} else {
323		list_move_tail(&qn->node, queued);
324	}
325
326	return bio;
327}
328
329/* init a service_queue, assumes the caller zeroed it */
330static void throtl_service_queue_init(struct throtl_service_queue *sq)
331{
332	INIT_LIST_HEAD(&sq->queued[READ]);
333	INIT_LIST_HEAD(&sq->queued[WRITE]);
334	sq->pending_tree = RB_ROOT_CACHED;
335	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
336}
337
338static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
339		struct blkcg *blkcg, gfp_t gfp)
340{
341	struct throtl_grp *tg;
342	int rw;
343
344	tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
345	if (!tg)
346		return NULL;
347
348	if (blkg_rwstat_init(&tg->stat_bytes, gfp))
349		goto err_free_tg;
350
351	if (blkg_rwstat_init(&tg->stat_ios, gfp))
352		goto err_exit_stat_bytes;
353
354	throtl_service_queue_init(&tg->service_queue);
355
356	for (rw = READ; rw <= WRITE; rw++) {
357		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
358		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
359	}
360
361	RB_CLEAR_NODE(&tg->rb_node);
362	tg->bps[READ][LIMIT_MAX] = U64_MAX;
363	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
364	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
365	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
366	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
367	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
368	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
369	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
370	/* LIMIT_LOW will have default value 0 */
371
372	tg->latency_target = DFL_LATENCY_TARGET;
373	tg->latency_target_conf = DFL_LATENCY_TARGET;
374	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
375	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
376
377	return &tg->pd;
378
379err_exit_stat_bytes:
380	blkg_rwstat_exit(&tg->stat_bytes);
381err_free_tg:
382	kfree(tg);
383	return NULL;
384}
385
386static void throtl_pd_init(struct blkg_policy_data *pd)
387{
388	struct throtl_grp *tg = pd_to_tg(pd);
389	struct blkcg_gq *blkg = tg_to_blkg(tg);
390	struct throtl_data *td = blkg->q->td;
391	struct throtl_service_queue *sq = &tg->service_queue;
392
393	/*
394	 * If on the default hierarchy, we switch to properly hierarchical
395	 * behavior where limits on a given throtl_grp are applied to the
396	 * whole subtree rather than just the group itself.  e.g. If 16M
397	 * read_bps limit is set on a parent group, summary bps of
398	 * parent group and its subtree groups can't exceed 16M for the
399	 * device.
400	 *
401	 * If not on the default hierarchy, the broken flat hierarchy
402	 * behavior is retained where all throtl_grps are treated as if
403	 * they're all separate root groups right below throtl_data.
404	 * Limits of a group don't interact with limits of other groups
405	 * regardless of the position of the group in the hierarchy.
406	 */
407	sq->parent_sq = &td->service_queue;
408	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
409		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
410	tg->td = td;
411}
412
413/*
414 * Set has_rules[] if @tg or any of its parents have limits configured.
415 * This doesn't require walking up to the top of the hierarchy as the
416 * parent's has_rules[] is guaranteed to be correct.
417 */
418static void tg_update_has_rules(struct throtl_grp *tg)
419{
420	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
421	struct throtl_data *td = tg->td;
422	int rw;
423
424	for (rw = READ; rw <= WRITE; rw++) {
425		tg->has_rules_iops[rw] =
426			(parent_tg && parent_tg->has_rules_iops[rw]) ||
427			(td->limit_valid[td->limit_index] &&
428			  tg_iops_limit(tg, rw) != UINT_MAX);
429		tg->has_rules_bps[rw] =
430			(parent_tg && parent_tg->has_rules_bps[rw]) ||
431			(td->limit_valid[td->limit_index] &&
432			 (tg_bps_limit(tg, rw) != U64_MAX));
433	}
434}
435
436static void throtl_pd_online(struct blkg_policy_data *pd)
437{
438	struct throtl_grp *tg = pd_to_tg(pd);
439	/*
440	 * We don't want new groups to escape the limits of its ancestors.
441	 * Update has_rules[] after a new group is brought online.
442	 */
443	tg_update_has_rules(tg);
444}
445
446#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
447static void blk_throtl_update_limit_valid(struct throtl_data *td)
448{
449	struct cgroup_subsys_state *pos_css;
450	struct blkcg_gq *blkg;
451	bool low_valid = false;
452
453	rcu_read_lock();
454	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
455		struct throtl_grp *tg = blkg_to_tg(blkg);
456
457		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
458		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
459			low_valid = true;
460			break;
461		}
462	}
463	rcu_read_unlock();
464
465	td->limit_valid[LIMIT_LOW] = low_valid;
466}
467#else
468static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
469{
470}
471#endif
472
473static void throtl_upgrade_state(struct throtl_data *td);
474static void throtl_pd_offline(struct blkg_policy_data *pd)
475{
476	struct throtl_grp *tg = pd_to_tg(pd);
477
478	tg->bps[READ][LIMIT_LOW] = 0;
479	tg->bps[WRITE][LIMIT_LOW] = 0;
480	tg->iops[READ][LIMIT_LOW] = 0;
481	tg->iops[WRITE][LIMIT_LOW] = 0;
482
483	blk_throtl_update_limit_valid(tg->td);
484
485	if (!tg->td->limit_valid[tg->td->limit_index])
486		throtl_upgrade_state(tg->td);
487}
488
489static void throtl_pd_free(struct blkg_policy_data *pd)
490{
491	struct throtl_grp *tg = pd_to_tg(pd);
492
493	del_timer_sync(&tg->service_queue.pending_timer);
494	blkg_rwstat_exit(&tg->stat_bytes);
495	blkg_rwstat_exit(&tg->stat_ios);
496	kfree(tg);
497}
498
499static struct throtl_grp *
500throtl_rb_first(struct throtl_service_queue *parent_sq)
501{
502	struct rb_node *n;
503
504	n = rb_first_cached(&parent_sq->pending_tree);
505	WARN_ON_ONCE(!n);
506	if (!n)
507		return NULL;
508	return rb_entry_tg(n);
509}
510
511static void throtl_rb_erase(struct rb_node *n,
512			    struct throtl_service_queue *parent_sq)
513{
514	rb_erase_cached(n, &parent_sq->pending_tree);
515	RB_CLEAR_NODE(n);
516}
517
518static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
519{
520	struct throtl_grp *tg;
521
522	tg = throtl_rb_first(parent_sq);
523	if (!tg)
524		return;
525
526	parent_sq->first_pending_disptime = tg->disptime;
527}
528
529static void tg_service_queue_add(struct throtl_grp *tg)
530{
531	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
532	struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
533	struct rb_node *parent = NULL;
534	struct throtl_grp *__tg;
535	unsigned long key = tg->disptime;
536	bool leftmost = true;
537
538	while (*node != NULL) {
539		parent = *node;
540		__tg = rb_entry_tg(parent);
541
542		if (time_before(key, __tg->disptime))
543			node = &parent->rb_left;
544		else {
545			node = &parent->rb_right;
546			leftmost = false;
547		}
548	}
549
550	rb_link_node(&tg->rb_node, parent, node);
551	rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
552			       leftmost);
553}
554
555static void throtl_enqueue_tg(struct throtl_grp *tg)
556{
557	if (!(tg->flags & THROTL_TG_PENDING)) {
558		tg_service_queue_add(tg);
559		tg->flags |= THROTL_TG_PENDING;
560		tg->service_queue.parent_sq->nr_pending++;
561	}
562}
563
564static void throtl_dequeue_tg(struct throtl_grp *tg)
565{
566	if (tg->flags & THROTL_TG_PENDING) {
567		struct throtl_service_queue *parent_sq =
568			tg->service_queue.parent_sq;
569
570		throtl_rb_erase(&tg->rb_node, parent_sq);
571		--parent_sq->nr_pending;
572		tg->flags &= ~THROTL_TG_PENDING;
573	}
574}
575
576/* Call with queue lock held */
577static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
578					  unsigned long expires)
579{
580	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
581
582	/*
583	 * Since we are adjusting the throttle limit dynamically, the sleep
584	 * time calculated according to previous limit might be invalid. It's
585	 * possible the cgroup sleep time is very long and no other cgroups
586	 * have IO running so notify the limit changes. Make sure the cgroup
587	 * doesn't sleep too long to avoid the missed notification.
588	 */
589	if (time_after(expires, max_expire))
590		expires = max_expire;
591	mod_timer(&sq->pending_timer, expires);
592	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
593		   expires - jiffies, jiffies);
594}
595
596/**
597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
598 * @sq: the service_queue to schedule dispatch for
599 * @force: force scheduling
600 *
601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
602 * dispatch time of the first pending child.  Returns %true if either timer
603 * is armed or there's no pending child left.  %false if the current
604 * dispatch window is still open and the caller should continue
605 * dispatching.
606 *
607 * If @force is %true, the dispatch timer is always scheduled and this
608 * function is guaranteed to return %true.  This is to be used when the
609 * caller can't dispatch itself and needs to invoke pending_timer
610 * unconditionally.  Note that forced scheduling is likely to induce short
611 * delay before dispatch starts even if @sq->first_pending_disptime is not
612 * in the future and thus shouldn't be used in hot paths.
613 */
614static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
615					  bool force)
616{
617	/* any pending children left? */
618	if (!sq->nr_pending)
619		return true;
620
621	update_min_dispatch_time(sq);
622
623	/* is the next dispatch time in the future? */
624	if (force || time_after(sq->first_pending_disptime, jiffies)) {
625		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
626		return true;
627	}
628
629	/* tell the caller to continue dispatching */
630	return false;
631}
632
633static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
634		bool rw, unsigned long start)
635{
636	tg->bytes_disp[rw] = 0;
637	tg->io_disp[rw] = 0;
638	tg->carryover_bytes[rw] = 0;
639	tg->carryover_ios[rw] = 0;
640
641	/*
642	 * Previous slice has expired. We must have trimmed it after last
643	 * bio dispatch. That means since start of last slice, we never used
644	 * that bandwidth. Do try to make use of that bandwidth while giving
645	 * credit.
646	 */
647	if (time_after(start, tg->slice_start[rw]))
648		tg->slice_start[rw] = start;
649
650	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
651	throtl_log(&tg->service_queue,
652		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
653		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
654		   tg->slice_end[rw], jiffies);
655}
656
657static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
658					  bool clear_carryover)
659{
660	tg->bytes_disp[rw] = 0;
661	tg->io_disp[rw] = 0;
662	tg->slice_start[rw] = jiffies;
663	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
664	if (clear_carryover) {
665		tg->carryover_bytes[rw] = 0;
666		tg->carryover_ios[rw] = 0;
667	}
668
669	throtl_log(&tg->service_queue,
670		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
671		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
672		   tg->slice_end[rw], jiffies);
673}
674
675static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
676					unsigned long jiffy_end)
677{
678	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
679}
680
681static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
682				       unsigned long jiffy_end)
683{
684	throtl_set_slice_end(tg, rw, jiffy_end);
685	throtl_log(&tg->service_queue,
686		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
687		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
688		   tg->slice_end[rw], jiffies);
689}
690
691/* Determine if previously allocated or extended slice is complete or not */
692static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
693{
694	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
695		return false;
696
697	return true;
698}
699
700static unsigned int calculate_io_allowed(u32 iops_limit,
701					 unsigned long jiffy_elapsed)
702{
703	unsigned int io_allowed;
704	u64 tmp;
705
706	/*
707	 * jiffy_elapsed should not be a big value as minimum iops can be
708	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
709	 * will allow dispatch after 1 second and after that slice should
710	 * have been trimmed.
711	 */
712
713	tmp = (u64)iops_limit * jiffy_elapsed;
714	do_div(tmp, HZ);
715
716	if (tmp > UINT_MAX)
717		io_allowed = UINT_MAX;
718	else
719		io_allowed = tmp;
720
721	return io_allowed;
722}
723
724static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
725{
726	/*
727	 * Can result be wider than 64 bits?
728	 * We check against 62, not 64, due to ilog2 truncation.
729	 */
730	if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
731		return U64_MAX;
732	return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
733}
734
735/* Trim the used slices and adjust slice start accordingly */
736static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
737{
738	unsigned long time_elapsed;
739	long long bytes_trim;
740	int io_trim;
741
742	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
743
744	/*
745	 * If bps are unlimited (-1), then time slice don't get
746	 * renewed. Don't try to trim the slice if slice is used. A new
747	 * slice will start when appropriate.
748	 */
749	if (throtl_slice_used(tg, rw))
750		return;
751
752	/*
753	 * A bio has been dispatched. Also adjust slice_end. It might happen
754	 * that initially cgroup limit was very low resulting in high
755	 * slice_end, but later limit was bumped up and bio was dispatched
756	 * sooner, then we need to reduce slice_end. A high bogus slice_end
757	 * is bad because it does not allow new slice to start.
758	 */
759
760	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
761
762	time_elapsed = rounddown(jiffies - tg->slice_start[rw],
763				 tg->td->throtl_slice);
764	if (!time_elapsed)
765		return;
766
767	bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
768					     time_elapsed) +
769		     tg->carryover_bytes[rw];
770	io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) +
771		  tg->carryover_ios[rw];
772	if (bytes_trim <= 0 && io_trim <= 0)
773		return;
774
775	tg->carryover_bytes[rw] = 0;
776	if ((long long)tg->bytes_disp[rw] >= bytes_trim)
777		tg->bytes_disp[rw] -= bytes_trim;
778	else
779		tg->bytes_disp[rw] = 0;
780
781	tg->carryover_ios[rw] = 0;
782	if ((int)tg->io_disp[rw] >= io_trim)
783		tg->io_disp[rw] -= io_trim;
784	else
785		tg->io_disp[rw] = 0;
786
787	tg->slice_start[rw] += time_elapsed;
788
789	throtl_log(&tg->service_queue,
790		   "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
791		   rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
792		   bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
793		   jiffies);
794}
795
796static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
797{
798	unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
799	u64 bps_limit = tg_bps_limit(tg, rw);
800	u32 iops_limit = tg_iops_limit(tg, rw);
801
802	/*
803	 * If config is updated while bios are still throttled, calculate and
804	 * accumulate how many bytes/ios are waited across changes. And
805	 * carryover_bytes/ios will be used to calculate new wait time under new
806	 * configuration.
807	 */
808	if (bps_limit != U64_MAX)
809		tg->carryover_bytes[rw] +=
810			calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
811			tg->bytes_disp[rw];
812	if (iops_limit != UINT_MAX)
813		tg->carryover_ios[rw] +=
814			calculate_io_allowed(iops_limit, jiffy_elapsed) -
815			tg->io_disp[rw];
816}
817
818static void tg_update_carryover(struct throtl_grp *tg)
819{
820	if (tg->service_queue.nr_queued[READ])
821		__tg_update_carryover(tg, READ);
822	if (tg->service_queue.nr_queued[WRITE])
823		__tg_update_carryover(tg, WRITE);
824
825	/* see comments in struct throtl_grp for meaning of these fields. */
826	throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
827		   tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
828		   tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
829}
830
831static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
832				 u32 iops_limit)
833{
834	bool rw = bio_data_dir(bio);
835	int io_allowed;
836	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
837
838	if (iops_limit == UINT_MAX) {
839		return 0;
840	}
841
842	jiffy_elapsed = jiffies - tg->slice_start[rw];
843
844	/* Round up to the next throttle slice, wait time must be nonzero */
845	jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
846	io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
847		     tg->carryover_ios[rw];
848	if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
849		return 0;
850
851	/* Calc approx time to dispatch */
852	jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
853	return jiffy_wait;
854}
855
856static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
857				u64 bps_limit)
858{
859	bool rw = bio_data_dir(bio);
860	long long bytes_allowed;
861	u64 extra_bytes;
862	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
863	unsigned int bio_size = throtl_bio_data_size(bio);
864
865	/* no need to throttle if this bio's bytes have been accounted */
866	if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
867		return 0;
868	}
869
870	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
871
872	/* Slice has just started. Consider one slice interval */
873	if (!jiffy_elapsed)
874		jiffy_elapsed_rnd = tg->td->throtl_slice;
875
876	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
877	bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
878			tg->carryover_bytes[rw];
879	if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
880		return 0;
881
882	/* Calc approx time to dispatch */
883	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
884	jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
885
886	if (!jiffy_wait)
887		jiffy_wait = 1;
888
889	/*
890	 * This wait time is without taking into consideration the rounding
891	 * up we did. Add that time also.
892	 */
893	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
894	return jiffy_wait;
895}
896
897/*
898 * Returns whether one can dispatch a bio or not. Also returns approx number
899 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
900 */
901static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
902			    unsigned long *wait)
903{
904	bool rw = bio_data_dir(bio);
905	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
906	u64 bps_limit = tg_bps_limit(tg, rw);
907	u32 iops_limit = tg_iops_limit(tg, rw);
908
909	/*
910 	 * Currently whole state machine of group depends on first bio
911	 * queued in the group bio list. So one should not be calling
912	 * this function with a different bio if there are other bios
913	 * queued.
914	 */
915	BUG_ON(tg->service_queue.nr_queued[rw] &&
916	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
917
918	/* If tg->bps = -1, then BW is unlimited */
919	if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
920	    tg->flags & THROTL_TG_CANCELING) {
921		if (wait)
922			*wait = 0;
923		return true;
924	}
925
926	/*
927	 * If previous slice expired, start a new one otherwise renew/extend
928	 * existing slice to make sure it is at least throtl_slice interval
929	 * long since now. New slice is started only for empty throttle group.
930	 * If there is queued bio, that means there should be an active
931	 * slice and it should be extended instead.
932	 */
933	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
934		throtl_start_new_slice(tg, rw, true);
935	else {
936		if (time_before(tg->slice_end[rw],
937		    jiffies + tg->td->throtl_slice))
938			throtl_extend_slice(tg, rw,
939				jiffies + tg->td->throtl_slice);
940	}
941
942	bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
943	iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
944	if (bps_wait + iops_wait == 0) {
945		if (wait)
946			*wait = 0;
947		return true;
948	}
949
950	max_wait = max(bps_wait, iops_wait);
951
952	if (wait)
953		*wait = max_wait;
954
955	if (time_before(tg->slice_end[rw], jiffies + max_wait))
956		throtl_extend_slice(tg, rw, jiffies + max_wait);
957
958	return false;
959}
960
961static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
962{
963	bool rw = bio_data_dir(bio);
964	unsigned int bio_size = throtl_bio_data_size(bio);
965
966	/* Charge the bio to the group */
967	if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
968		tg->bytes_disp[rw] += bio_size;
969		tg->last_bytes_disp[rw] += bio_size;
970	}
971
972	tg->io_disp[rw]++;
973	tg->last_io_disp[rw]++;
974}
975
976/**
977 * throtl_add_bio_tg - add a bio to the specified throtl_grp
978 * @bio: bio to add
979 * @qn: qnode to use
980 * @tg: the target throtl_grp
981 *
982 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
983 * tg->qnode_on_self[] is used.
984 */
985static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
986			      struct throtl_grp *tg)
987{
988	struct throtl_service_queue *sq = &tg->service_queue;
989	bool rw = bio_data_dir(bio);
990
991	if (!qn)
992		qn = &tg->qnode_on_self[rw];
993
994	/*
995	 * If @tg doesn't currently have any bios queued in the same
996	 * direction, queueing @bio can change when @tg should be
997	 * dispatched.  Mark that @tg was empty.  This is automatically
998	 * cleared on the next tg_update_disptime().
999	 */
1000	if (!sq->nr_queued[rw])
1001		tg->flags |= THROTL_TG_WAS_EMPTY;
1002
1003	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1004
1005	sq->nr_queued[rw]++;
1006	throtl_enqueue_tg(tg);
1007}
1008
1009static void tg_update_disptime(struct throtl_grp *tg)
1010{
1011	struct throtl_service_queue *sq = &tg->service_queue;
1012	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1013	struct bio *bio;
1014
1015	bio = throtl_peek_queued(&sq->queued[READ]);
1016	if (bio)
1017		tg_may_dispatch(tg, bio, &read_wait);
1018
1019	bio = throtl_peek_queued(&sq->queued[WRITE]);
1020	if (bio)
1021		tg_may_dispatch(tg, bio, &write_wait);
1022
1023	min_wait = min(read_wait, write_wait);
1024	disptime = jiffies + min_wait;
1025
1026	/* Update dispatch time */
1027	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1028	tg->disptime = disptime;
1029	tg_service_queue_add(tg);
1030
1031	/* see throtl_add_bio_tg() */
1032	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1033}
1034
1035static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1036					struct throtl_grp *parent_tg, bool rw)
1037{
1038	if (throtl_slice_used(parent_tg, rw)) {
1039		throtl_start_new_slice_with_credit(parent_tg, rw,
1040				child_tg->slice_start[rw]);
1041	}
1042
1043}
1044
1045static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1046{
1047	struct throtl_service_queue *sq = &tg->service_queue;
1048	struct throtl_service_queue *parent_sq = sq->parent_sq;
1049	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1050	struct throtl_grp *tg_to_put = NULL;
1051	struct bio *bio;
1052
1053	/*
1054	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1055	 * from @tg may put its reference and @parent_sq might end up
1056	 * getting released prematurely.  Remember the tg to put and put it
1057	 * after @bio is transferred to @parent_sq.
1058	 */
1059	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1060	sq->nr_queued[rw]--;
1061
1062	throtl_charge_bio(tg, bio);
1063
1064	/*
1065	 * If our parent is another tg, we just need to transfer @bio to
1066	 * the parent using throtl_add_bio_tg().  If our parent is
1067	 * @td->service_queue, @bio is ready to be issued.  Put it on its
1068	 * bio_lists[] and decrease total number queued.  The caller is
1069	 * responsible for issuing these bios.
1070	 */
1071	if (parent_tg) {
1072		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1073		start_parent_slice_with_credit(tg, parent_tg, rw);
1074	} else {
1075		bio_set_flag(bio, BIO_BPS_THROTTLED);
1076		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1077				     &parent_sq->queued[rw]);
1078		BUG_ON(tg->td->nr_queued[rw] <= 0);
1079		tg->td->nr_queued[rw]--;
1080	}
1081
1082	throtl_trim_slice(tg, rw);
1083
1084	if (tg_to_put)
1085		blkg_put(tg_to_blkg(tg_to_put));
1086}
1087
1088static int throtl_dispatch_tg(struct throtl_grp *tg)
1089{
1090	struct throtl_service_queue *sq = &tg->service_queue;
1091	unsigned int nr_reads = 0, nr_writes = 0;
1092	unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1093	unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1094	struct bio *bio;
1095
1096	/* Try to dispatch 75% READS and 25% WRITES */
1097
1098	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1099	       tg_may_dispatch(tg, bio, NULL)) {
1100
1101		tg_dispatch_one_bio(tg, READ);
1102		nr_reads++;
1103
1104		if (nr_reads >= max_nr_reads)
1105			break;
1106	}
1107
1108	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1109	       tg_may_dispatch(tg, bio, NULL)) {
1110
1111		tg_dispatch_one_bio(tg, WRITE);
1112		nr_writes++;
1113
1114		if (nr_writes >= max_nr_writes)
1115			break;
1116	}
1117
1118	return nr_reads + nr_writes;
1119}
1120
1121static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1122{
1123	unsigned int nr_disp = 0;
1124
1125	while (1) {
1126		struct throtl_grp *tg;
1127		struct throtl_service_queue *sq;
1128
1129		if (!parent_sq->nr_pending)
1130			break;
1131
1132		tg = throtl_rb_first(parent_sq);
1133		if (!tg)
1134			break;
1135
1136		if (time_before(jiffies, tg->disptime))
1137			break;
1138
1139		nr_disp += throtl_dispatch_tg(tg);
1140
1141		sq = &tg->service_queue;
1142		if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1143			tg_update_disptime(tg);
1144		else
1145			throtl_dequeue_tg(tg);
1146
1147		if (nr_disp >= THROTL_QUANTUM)
1148			break;
1149	}
1150
1151	return nr_disp;
1152}
1153
1154static bool throtl_can_upgrade(struct throtl_data *td,
1155	struct throtl_grp *this_tg);
1156/**
1157 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1158 * @t: the pending_timer member of the throtl_service_queue being serviced
1159 *
1160 * This timer is armed when a child throtl_grp with active bio's become
1161 * pending and queued on the service_queue's pending_tree and expires when
1162 * the first child throtl_grp should be dispatched.  This function
1163 * dispatches bio's from the children throtl_grps to the parent
1164 * service_queue.
1165 *
1166 * If the parent's parent is another throtl_grp, dispatching is propagated
1167 * by either arming its pending_timer or repeating dispatch directly.  If
1168 * the top-level service_tree is reached, throtl_data->dispatch_work is
1169 * kicked so that the ready bio's are issued.
1170 */
1171static void throtl_pending_timer_fn(struct timer_list *t)
1172{
1173	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1174	struct throtl_grp *tg = sq_to_tg(sq);
1175	struct throtl_data *td = sq_to_td(sq);
1176	struct throtl_service_queue *parent_sq;
1177	struct request_queue *q;
1178	bool dispatched;
1179	int ret;
1180
1181	/* throtl_data may be gone, so figure out request queue by blkg */
1182	if (tg)
1183		q = tg->pd.blkg->q;
1184	else
1185		q = td->queue;
1186
1187	spin_lock_irq(&q->queue_lock);
1188
1189	if (!q->root_blkg)
1190		goto out_unlock;
1191
1192	if (throtl_can_upgrade(td, NULL))
1193		throtl_upgrade_state(td);
1194
1195again:
1196	parent_sq = sq->parent_sq;
1197	dispatched = false;
1198
1199	while (true) {
1200		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1201			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
1202			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1203
1204		ret = throtl_select_dispatch(sq);
1205		if (ret) {
1206			throtl_log(sq, "bios disp=%u", ret);
1207			dispatched = true;
1208		}
1209
1210		if (throtl_schedule_next_dispatch(sq, false))
1211			break;
1212
1213		/* this dispatch windows is still open, relax and repeat */
1214		spin_unlock_irq(&q->queue_lock);
1215		cpu_relax();
1216		spin_lock_irq(&q->queue_lock);
1217	}
1218
1219	if (!dispatched)
1220		goto out_unlock;
1221
1222	if (parent_sq) {
1223		/* @parent_sq is another throl_grp, propagate dispatch */
1224		if (tg->flags & THROTL_TG_WAS_EMPTY) {
1225			tg_update_disptime(tg);
1226			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1227				/* window is already open, repeat dispatching */
1228				sq = parent_sq;
1229				tg = sq_to_tg(sq);
1230				goto again;
1231			}
1232		}
1233	} else {
1234		/* reached the top-level, queue issuing */
1235		queue_work(kthrotld_workqueue, &td->dispatch_work);
1236	}
1237out_unlock:
1238	spin_unlock_irq(&q->queue_lock);
1239}
1240
1241/**
1242 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1243 * @work: work item being executed
1244 *
1245 * This function is queued for execution when bios reach the bio_lists[]
1246 * of throtl_data->service_queue.  Those bios are ready and issued by this
1247 * function.
1248 */
1249static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1250{
1251	struct throtl_data *td = container_of(work, struct throtl_data,
1252					      dispatch_work);
1253	struct throtl_service_queue *td_sq = &td->service_queue;
1254	struct request_queue *q = td->queue;
1255	struct bio_list bio_list_on_stack;
1256	struct bio *bio;
1257	struct blk_plug plug;
1258	int rw;
1259
1260	bio_list_init(&bio_list_on_stack);
1261
1262	spin_lock_irq(&q->queue_lock);
1263	for (rw = READ; rw <= WRITE; rw++)
1264		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1265			bio_list_add(&bio_list_on_stack, bio);
1266	spin_unlock_irq(&q->queue_lock);
1267
1268	if (!bio_list_empty(&bio_list_on_stack)) {
1269		blk_start_plug(&plug);
1270		while ((bio = bio_list_pop(&bio_list_on_stack)))
1271			submit_bio_noacct_nocheck(bio);
1272		blk_finish_plug(&plug);
1273	}
1274}
1275
1276static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1277			      int off)
1278{
1279	struct throtl_grp *tg = pd_to_tg(pd);
1280	u64 v = *(u64 *)((void *)tg + off);
1281
1282	if (v == U64_MAX)
1283		return 0;
1284	return __blkg_prfill_u64(sf, pd, v);
1285}
1286
1287static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1288			       int off)
1289{
1290	struct throtl_grp *tg = pd_to_tg(pd);
1291	unsigned int v = *(unsigned int *)((void *)tg + off);
1292
1293	if (v == UINT_MAX)
1294		return 0;
1295	return __blkg_prfill_u64(sf, pd, v);
1296}
1297
1298static int tg_print_conf_u64(struct seq_file *sf, void *v)
1299{
1300	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1301			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1302	return 0;
1303}
1304
1305static int tg_print_conf_uint(struct seq_file *sf, void *v)
1306{
1307	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1308			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1309	return 0;
1310}
1311
1312static void tg_conf_updated(struct throtl_grp *tg, bool global)
1313{
1314	struct throtl_service_queue *sq = &tg->service_queue;
1315	struct cgroup_subsys_state *pos_css;
1316	struct blkcg_gq *blkg;
1317
1318	throtl_log(&tg->service_queue,
1319		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1320		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1321		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1322
1323	rcu_read_lock();
1324	/*
1325	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
1326	 * considered to have rules if either the tg itself or any of its
1327	 * ancestors has rules.  This identifies groups without any
1328	 * restrictions in the whole hierarchy and allows them to bypass
1329	 * blk-throttle.
1330	 */
1331	blkg_for_each_descendant_pre(blkg, pos_css,
1332			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1333		struct throtl_grp *this_tg = blkg_to_tg(blkg);
1334		struct throtl_grp *parent_tg;
1335
1336		tg_update_has_rules(this_tg);
1337		/* ignore root/second level */
1338		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1339		    !blkg->parent->parent)
1340			continue;
1341		parent_tg = blkg_to_tg(blkg->parent);
1342		/*
1343		 * make sure all children has lower idle time threshold and
1344		 * higher latency target
1345		 */
1346		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1347				parent_tg->idletime_threshold);
1348		this_tg->latency_target = max(this_tg->latency_target,
1349				parent_tg->latency_target);
1350	}
1351	rcu_read_unlock();
1352
1353	/*
1354	 * We're already holding queue_lock and know @tg is valid.  Let's
1355	 * apply the new config directly.
1356	 *
1357	 * Restart the slices for both READ and WRITES. It might happen
1358	 * that a group's limit are dropped suddenly and we don't want to
1359	 * account recently dispatched IO with new low rate.
1360	 */
1361	throtl_start_new_slice(tg, READ, false);
1362	throtl_start_new_slice(tg, WRITE, false);
1363
1364	if (tg->flags & THROTL_TG_PENDING) {
1365		tg_update_disptime(tg);
1366		throtl_schedule_next_dispatch(sq->parent_sq, true);
1367	}
1368}
1369
1370static ssize_t tg_set_conf(struct kernfs_open_file *of,
1371			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1372{
1373	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1374	struct blkg_conf_ctx ctx;
1375	struct throtl_grp *tg;
1376	int ret;
1377	u64 v;
1378
1379	blkg_conf_init(&ctx, buf);
1380
1381	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1382	if (ret)
1383		goto out_finish;
1384
1385	ret = -EINVAL;
1386	if (sscanf(ctx.body, "%llu", &v) != 1)
1387		goto out_finish;
1388	if (!v)
1389		v = U64_MAX;
1390
1391	tg = blkg_to_tg(ctx.blkg);
1392	tg_update_carryover(tg);
1393
1394	if (is_u64)
1395		*(u64 *)((void *)tg + of_cft(of)->private) = v;
1396	else
1397		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1398
1399	tg_conf_updated(tg, false);
1400	ret = 0;
1401out_finish:
1402	blkg_conf_exit(&ctx);
1403	return ret ?: nbytes;
1404}
1405
1406static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1407			       char *buf, size_t nbytes, loff_t off)
1408{
1409	return tg_set_conf(of, buf, nbytes, off, true);
1410}
1411
1412static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1413				char *buf, size_t nbytes, loff_t off)
1414{
1415	return tg_set_conf(of, buf, nbytes, off, false);
1416}
1417
1418static int tg_print_rwstat(struct seq_file *sf, void *v)
1419{
1420	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1421			  blkg_prfill_rwstat, &blkcg_policy_throtl,
1422			  seq_cft(sf)->private, true);
1423	return 0;
1424}
1425
1426static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1427				      struct blkg_policy_data *pd, int off)
1428{
1429	struct blkg_rwstat_sample sum;
1430
1431	blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1432				  &sum);
1433	return __blkg_prfill_rwstat(sf, pd, &sum);
1434}
1435
1436static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1437{
1438	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1439			  tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1440			  seq_cft(sf)->private, true);
1441	return 0;
1442}
1443
1444static struct cftype throtl_legacy_files[] = {
1445	{
1446		.name = "throttle.read_bps_device",
1447		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1448		.seq_show = tg_print_conf_u64,
1449		.write = tg_set_conf_u64,
1450	},
1451	{
1452		.name = "throttle.write_bps_device",
1453		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1454		.seq_show = tg_print_conf_u64,
1455		.write = tg_set_conf_u64,
1456	},
1457	{
1458		.name = "throttle.read_iops_device",
1459		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1460		.seq_show = tg_print_conf_uint,
1461		.write = tg_set_conf_uint,
1462	},
1463	{
1464		.name = "throttle.write_iops_device",
1465		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1466		.seq_show = tg_print_conf_uint,
1467		.write = tg_set_conf_uint,
1468	},
1469	{
1470		.name = "throttle.io_service_bytes",
1471		.private = offsetof(struct throtl_grp, stat_bytes),
1472		.seq_show = tg_print_rwstat,
1473	},
1474	{
1475		.name = "throttle.io_service_bytes_recursive",
1476		.private = offsetof(struct throtl_grp, stat_bytes),
1477		.seq_show = tg_print_rwstat_recursive,
1478	},
1479	{
1480		.name = "throttle.io_serviced",
1481		.private = offsetof(struct throtl_grp, stat_ios),
1482		.seq_show = tg_print_rwstat,
1483	},
1484	{
1485		.name = "throttle.io_serviced_recursive",
1486		.private = offsetof(struct throtl_grp, stat_ios),
1487		.seq_show = tg_print_rwstat_recursive,
1488	},
1489	{ }	/* terminate */
1490};
1491
1492static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1493			 int off)
1494{
1495	struct throtl_grp *tg = pd_to_tg(pd);
1496	const char *dname = blkg_dev_name(pd->blkg);
1497	char bufs[4][21] = { "max", "max", "max", "max" };
1498	u64 bps_dft;
1499	unsigned int iops_dft;
1500	char idle_time[26] = "";
1501	char latency_time[26] = "";
1502
1503	if (!dname)
1504		return 0;
1505
1506	if (off == LIMIT_LOW) {
1507		bps_dft = 0;
1508		iops_dft = 0;
1509	} else {
1510		bps_dft = U64_MAX;
1511		iops_dft = UINT_MAX;
1512	}
1513
1514	if (tg->bps_conf[READ][off] == bps_dft &&
1515	    tg->bps_conf[WRITE][off] == bps_dft &&
1516	    tg->iops_conf[READ][off] == iops_dft &&
1517	    tg->iops_conf[WRITE][off] == iops_dft &&
1518	    (off != LIMIT_LOW ||
1519	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1520	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1521		return 0;
1522
1523	if (tg->bps_conf[READ][off] != U64_MAX)
1524		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1525			tg->bps_conf[READ][off]);
1526	if (tg->bps_conf[WRITE][off] != U64_MAX)
1527		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1528			tg->bps_conf[WRITE][off]);
1529	if (tg->iops_conf[READ][off] != UINT_MAX)
1530		snprintf(bufs[2], sizeof(bufs[2]), "%u",
1531			tg->iops_conf[READ][off]);
1532	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1533		snprintf(bufs[3], sizeof(bufs[3]), "%u",
1534			tg->iops_conf[WRITE][off]);
1535	if (off == LIMIT_LOW) {
1536		if (tg->idletime_threshold_conf == ULONG_MAX)
1537			strcpy(idle_time, " idle=max");
1538		else
1539			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1540				tg->idletime_threshold_conf);
1541
1542		if (tg->latency_target_conf == ULONG_MAX)
1543			strcpy(latency_time, " latency=max");
1544		else
1545			snprintf(latency_time, sizeof(latency_time),
1546				" latency=%lu", tg->latency_target_conf);
1547	}
1548
1549	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1550		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1551		   latency_time);
1552	return 0;
1553}
1554
1555static int tg_print_limit(struct seq_file *sf, void *v)
1556{
1557	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1558			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1559	return 0;
1560}
1561
1562static ssize_t tg_set_limit(struct kernfs_open_file *of,
1563			  char *buf, size_t nbytes, loff_t off)
1564{
1565	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1566	struct blkg_conf_ctx ctx;
1567	struct throtl_grp *tg;
1568	u64 v[4];
1569	unsigned long idle_time;
1570	unsigned long latency_time;
1571	int ret;
1572	int index = of_cft(of)->private;
1573
1574	blkg_conf_init(&ctx, buf);
1575
1576	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1577	if (ret)
1578		goto out_finish;
1579
1580	tg = blkg_to_tg(ctx.blkg);
1581	tg_update_carryover(tg);
1582
1583	v[0] = tg->bps_conf[READ][index];
1584	v[1] = tg->bps_conf[WRITE][index];
1585	v[2] = tg->iops_conf[READ][index];
1586	v[3] = tg->iops_conf[WRITE][index];
1587
1588	idle_time = tg->idletime_threshold_conf;
1589	latency_time = tg->latency_target_conf;
1590	while (true) {
1591		char tok[27];	/* wiops=18446744073709551616 */
1592		char *p;
1593		u64 val = U64_MAX;
1594		int len;
1595
1596		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1597			break;
1598		if (tok[0] == '\0')
1599			break;
1600		ctx.body += len;
1601
1602		ret = -EINVAL;
1603		p = tok;
1604		strsep(&p, "=");
1605		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1606			goto out_finish;
1607
1608		ret = -ERANGE;
1609		if (!val)
1610			goto out_finish;
1611
1612		ret = -EINVAL;
1613		if (!strcmp(tok, "rbps") && val > 1)
1614			v[0] = val;
1615		else if (!strcmp(tok, "wbps") && val > 1)
1616			v[1] = val;
1617		else if (!strcmp(tok, "riops") && val > 1)
1618			v[2] = min_t(u64, val, UINT_MAX);
1619		else if (!strcmp(tok, "wiops") && val > 1)
1620			v[3] = min_t(u64, val, UINT_MAX);
1621		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1622			idle_time = val;
1623		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1624			latency_time = val;
1625		else
1626			goto out_finish;
1627	}
1628
1629	tg->bps_conf[READ][index] = v[0];
1630	tg->bps_conf[WRITE][index] = v[1];
1631	tg->iops_conf[READ][index] = v[2];
1632	tg->iops_conf[WRITE][index] = v[3];
1633
1634	if (index == LIMIT_MAX) {
1635		tg->bps[READ][index] = v[0];
1636		tg->bps[WRITE][index] = v[1];
1637		tg->iops[READ][index] = v[2];
1638		tg->iops[WRITE][index] = v[3];
1639	}
1640	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1641		tg->bps_conf[READ][LIMIT_MAX]);
1642	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1643		tg->bps_conf[WRITE][LIMIT_MAX]);
1644	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1645		tg->iops_conf[READ][LIMIT_MAX]);
1646	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1647		tg->iops_conf[WRITE][LIMIT_MAX]);
1648	tg->idletime_threshold_conf = idle_time;
1649	tg->latency_target_conf = latency_time;
1650
1651	/* force user to configure all settings for low limit  */
1652	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1653	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1654	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1655	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
1656		tg->bps[READ][LIMIT_LOW] = 0;
1657		tg->bps[WRITE][LIMIT_LOW] = 0;
1658		tg->iops[READ][LIMIT_LOW] = 0;
1659		tg->iops[WRITE][LIMIT_LOW] = 0;
1660		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1661		tg->latency_target = DFL_LATENCY_TARGET;
1662	} else if (index == LIMIT_LOW) {
1663		tg->idletime_threshold = tg->idletime_threshold_conf;
1664		tg->latency_target = tg->latency_target_conf;
1665	}
1666
1667	blk_throtl_update_limit_valid(tg->td);
1668	if (tg->td->limit_valid[LIMIT_LOW]) {
1669		if (index == LIMIT_LOW)
1670			tg->td->limit_index = LIMIT_LOW;
1671	} else
1672		tg->td->limit_index = LIMIT_MAX;
1673	tg_conf_updated(tg, index == LIMIT_LOW &&
1674		tg->td->limit_valid[LIMIT_LOW]);
1675	ret = 0;
1676out_finish:
1677	blkg_conf_exit(&ctx);
1678	return ret ?: nbytes;
1679}
1680
1681static struct cftype throtl_files[] = {
1682#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1683	{
1684		.name = "low",
1685		.flags = CFTYPE_NOT_ON_ROOT,
1686		.seq_show = tg_print_limit,
1687		.write = tg_set_limit,
1688		.private = LIMIT_LOW,
1689	},
1690#endif
1691	{
1692		.name = "max",
1693		.flags = CFTYPE_NOT_ON_ROOT,
1694		.seq_show = tg_print_limit,
1695		.write = tg_set_limit,
1696		.private = LIMIT_MAX,
1697	},
1698	{ }	/* terminate */
1699};
1700
1701static void throtl_shutdown_wq(struct request_queue *q)
1702{
1703	struct throtl_data *td = q->td;
1704
1705	cancel_work_sync(&td->dispatch_work);
1706}
1707
1708struct blkcg_policy blkcg_policy_throtl = {
1709	.dfl_cftypes		= throtl_files,
1710	.legacy_cftypes		= throtl_legacy_files,
1711
1712	.pd_alloc_fn		= throtl_pd_alloc,
1713	.pd_init_fn		= throtl_pd_init,
1714	.pd_online_fn		= throtl_pd_online,
1715	.pd_offline_fn		= throtl_pd_offline,
1716	.pd_free_fn		= throtl_pd_free,
1717};
1718
1719void blk_throtl_cancel_bios(struct gendisk *disk)
1720{
1721	struct request_queue *q = disk->queue;
1722	struct cgroup_subsys_state *pos_css;
1723	struct blkcg_gq *blkg;
1724
1725	spin_lock_irq(&q->queue_lock);
1726	/*
1727	 * queue_lock is held, rcu lock is not needed here technically.
1728	 * However, rcu lock is still held to emphasize that following
1729	 * path need RCU protection and to prevent warning from lockdep.
1730	 */
1731	rcu_read_lock();
1732	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1733		struct throtl_grp *tg = blkg_to_tg(blkg);
1734		struct throtl_service_queue *sq = &tg->service_queue;
1735
1736		/*
1737		 * Set the flag to make sure throtl_pending_timer_fn() won't
1738		 * stop until all throttled bios are dispatched.
1739		 */
1740		tg->flags |= THROTL_TG_CANCELING;
1741
1742		/*
1743		 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1744		 * will be inserted to service queue without THROTL_TG_PENDING
1745		 * set in tg_update_disptime below. Then IO dispatched from
1746		 * child in tg_dispatch_one_bio will trigger double insertion
1747		 * and corrupt the tree.
1748		 */
1749		if (!(tg->flags & THROTL_TG_PENDING))
1750			continue;
1751
1752		/*
1753		 * Update disptime after setting the above flag to make sure
1754		 * throtl_select_dispatch() won't exit without dispatching.
1755		 */
1756		tg_update_disptime(tg);
1757
1758		throtl_schedule_pending_timer(sq, jiffies + 1);
1759	}
1760	rcu_read_unlock();
1761	spin_unlock_irq(&q->queue_lock);
1762}
1763
1764#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1765static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1766{
1767	unsigned long rtime = jiffies, wtime = jiffies;
1768
1769	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1770		rtime = tg->last_low_overflow_time[READ];
1771	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1772		wtime = tg->last_low_overflow_time[WRITE];
1773	return min(rtime, wtime);
1774}
1775
1776static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1777{
1778	struct throtl_service_queue *parent_sq;
1779	struct throtl_grp *parent = tg;
1780	unsigned long ret = __tg_last_low_overflow_time(tg);
1781
1782	while (true) {
1783		parent_sq = parent->service_queue.parent_sq;
1784		parent = sq_to_tg(parent_sq);
1785		if (!parent)
1786			break;
1787
1788		/*
1789		 * The parent doesn't have low limit, it always reaches low
1790		 * limit. Its overflow time is useless for children
1791		 */
1792		if (!parent->bps[READ][LIMIT_LOW] &&
1793		    !parent->iops[READ][LIMIT_LOW] &&
1794		    !parent->bps[WRITE][LIMIT_LOW] &&
1795		    !parent->iops[WRITE][LIMIT_LOW])
1796			continue;
1797		if (time_after(__tg_last_low_overflow_time(parent), ret))
1798			ret = __tg_last_low_overflow_time(parent);
1799	}
1800	return ret;
1801}
1802
1803static bool throtl_tg_is_idle(struct throtl_grp *tg)
1804{
1805	/*
1806	 * cgroup is idle if:
1807	 * - single idle is too long, longer than a fixed value (in case user
1808	 *   configure a too big threshold) or 4 times of idletime threshold
1809	 * - average think time is more than threshold
1810	 * - IO latency is largely below threshold
1811	 */
1812	unsigned long time;
1813	bool ret;
1814
1815	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1816	ret = tg->latency_target == DFL_LATENCY_TARGET ||
1817	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1818	      (blk_time_get_ns() >> 10) - tg->last_finish_time > time ||
1819	      tg->avg_idletime > tg->idletime_threshold ||
1820	      (tg->latency_target && tg->bio_cnt &&
1821		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1822	throtl_log(&tg->service_queue,
1823		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1824		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1825		tg->bio_cnt, ret, tg->td->scale);
1826	return ret;
1827}
1828
1829static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1830{
1831	struct throtl_service_queue *sq = &tg->service_queue;
1832	bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1833
1834	/*
1835	 * if low limit is zero, low limit is always reached.
1836	 * if low limit is non-zero, we can check if there is any request
1837	 * is queued to determine if low limit is reached as we throttle
1838	 * request according to limit.
1839	 */
1840	return !limit || sq->nr_queued[rw];
1841}
1842
1843static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1844{
1845	/*
1846	 * cgroup reaches low limit when low limit of READ and WRITE are
1847	 * both reached, it's ok to upgrade to next limit if cgroup reaches
1848	 * low limit
1849	 */
1850	if (throtl_low_limit_reached(tg, READ) &&
1851	    throtl_low_limit_reached(tg, WRITE))
1852		return true;
1853
1854	if (time_after_eq(jiffies,
1855		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1856	    throtl_tg_is_idle(tg))
1857		return true;
1858	return false;
1859}
1860
1861static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1862{
1863	while (true) {
1864		if (throtl_tg_can_upgrade(tg))
1865			return true;
1866		tg = sq_to_tg(tg->service_queue.parent_sq);
1867		if (!tg || !tg_to_blkg(tg)->parent)
1868			return false;
1869	}
1870	return false;
1871}
1872
1873static bool throtl_can_upgrade(struct throtl_data *td,
1874	struct throtl_grp *this_tg)
1875{
1876	struct cgroup_subsys_state *pos_css;
1877	struct blkcg_gq *blkg;
1878
1879	if (td->limit_index != LIMIT_LOW)
1880		return false;
1881
1882	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1883		return false;
1884
1885	rcu_read_lock();
1886	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1887		struct throtl_grp *tg = blkg_to_tg(blkg);
1888
1889		if (tg == this_tg)
1890			continue;
1891		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1892			continue;
1893		if (!throtl_hierarchy_can_upgrade(tg)) {
1894			rcu_read_unlock();
1895			return false;
1896		}
1897	}
1898	rcu_read_unlock();
1899	return true;
1900}
1901
1902static void throtl_upgrade_check(struct throtl_grp *tg)
1903{
1904	unsigned long now = jiffies;
1905
1906	if (tg->td->limit_index != LIMIT_LOW)
1907		return;
1908
1909	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1910		return;
1911
1912	tg->last_check_time = now;
1913
1914	if (!time_after_eq(now,
1915	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1916		return;
1917
1918	if (throtl_can_upgrade(tg->td, NULL))
1919		throtl_upgrade_state(tg->td);
1920}
1921
1922static void throtl_upgrade_state(struct throtl_data *td)
1923{
1924	struct cgroup_subsys_state *pos_css;
1925	struct blkcg_gq *blkg;
1926
1927	throtl_log(&td->service_queue, "upgrade to max");
1928	td->limit_index = LIMIT_MAX;
1929	td->low_upgrade_time = jiffies;
1930	td->scale = 0;
1931	rcu_read_lock();
1932	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1933		struct throtl_grp *tg = blkg_to_tg(blkg);
1934		struct throtl_service_queue *sq = &tg->service_queue;
1935
1936		tg->disptime = jiffies - 1;
1937		throtl_select_dispatch(sq);
1938		throtl_schedule_next_dispatch(sq, true);
1939	}
1940	rcu_read_unlock();
1941	throtl_select_dispatch(&td->service_queue);
1942	throtl_schedule_next_dispatch(&td->service_queue, true);
1943	queue_work(kthrotld_workqueue, &td->dispatch_work);
1944}
1945
1946static void throtl_downgrade_state(struct throtl_data *td)
1947{
1948	td->scale /= 2;
1949
1950	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1951	if (td->scale) {
1952		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1953		return;
1954	}
1955
1956	td->limit_index = LIMIT_LOW;
1957	td->low_downgrade_time = jiffies;
1958}
1959
1960static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1961{
1962	struct throtl_data *td = tg->td;
1963	unsigned long now = jiffies;
1964
1965	/*
1966	 * If cgroup is below low limit, consider downgrade and throttle other
1967	 * cgroups
1968	 */
1969	if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1970					td->throtl_slice) &&
1971	    (!throtl_tg_is_idle(tg) ||
1972	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1973		return true;
1974	return false;
1975}
1976
1977static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1978{
1979	struct throtl_data *td = tg->td;
1980
1981	if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1982		return false;
1983
1984	while (true) {
1985		if (!throtl_tg_can_downgrade(tg))
1986			return false;
1987		tg = sq_to_tg(tg->service_queue.parent_sq);
1988		if (!tg || !tg_to_blkg(tg)->parent)
1989			break;
1990	}
1991	return true;
1992}
1993
1994static void throtl_downgrade_check(struct throtl_grp *tg)
1995{
1996	uint64_t bps;
1997	unsigned int iops;
1998	unsigned long elapsed_time;
1999	unsigned long now = jiffies;
2000
2001	if (tg->td->limit_index != LIMIT_MAX ||
2002	    !tg->td->limit_valid[LIMIT_LOW])
2003		return;
2004	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2005		return;
2006	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2007		return;
2008
2009	elapsed_time = now - tg->last_check_time;
2010	tg->last_check_time = now;
2011
2012	if (time_before(now, tg_last_low_overflow_time(tg) +
2013			tg->td->throtl_slice))
2014		return;
2015
2016	if (tg->bps[READ][LIMIT_LOW]) {
2017		bps = tg->last_bytes_disp[READ] * HZ;
2018		do_div(bps, elapsed_time);
2019		if (bps >= tg->bps[READ][LIMIT_LOW])
2020			tg->last_low_overflow_time[READ] = now;
2021	}
2022
2023	if (tg->bps[WRITE][LIMIT_LOW]) {
2024		bps = tg->last_bytes_disp[WRITE] * HZ;
2025		do_div(bps, elapsed_time);
2026		if (bps >= tg->bps[WRITE][LIMIT_LOW])
2027			tg->last_low_overflow_time[WRITE] = now;
2028	}
2029
2030	if (tg->iops[READ][LIMIT_LOW]) {
2031		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2032		if (iops >= tg->iops[READ][LIMIT_LOW])
2033			tg->last_low_overflow_time[READ] = now;
2034	}
2035
2036	if (tg->iops[WRITE][LIMIT_LOW]) {
2037		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2038		if (iops >= tg->iops[WRITE][LIMIT_LOW])
2039			tg->last_low_overflow_time[WRITE] = now;
2040	}
2041
2042	/*
2043	 * If cgroup is below low limit, consider downgrade and throttle other
2044	 * cgroups
2045	 */
2046	if (throtl_hierarchy_can_downgrade(tg))
2047		throtl_downgrade_state(tg->td);
2048
2049	tg->last_bytes_disp[READ] = 0;
2050	tg->last_bytes_disp[WRITE] = 0;
2051	tg->last_io_disp[READ] = 0;
2052	tg->last_io_disp[WRITE] = 0;
2053}
2054
2055static void blk_throtl_update_idletime(struct throtl_grp *tg)
2056{
2057	unsigned long now;
2058	unsigned long last_finish_time = tg->last_finish_time;
2059
2060	if (last_finish_time == 0)
2061		return;
2062
2063	now = blk_time_get_ns() >> 10;
2064	if (now <= last_finish_time ||
2065	    last_finish_time == tg->checked_last_finish_time)
2066		return;
2067
2068	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2069	tg->checked_last_finish_time = last_finish_time;
2070}
2071
2072static void throtl_update_latency_buckets(struct throtl_data *td)
2073{
2074	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2075	int i, cpu, rw;
2076	unsigned long last_latency[2] = { 0 };
2077	unsigned long latency[2];
2078
2079	if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2080		return;
2081	if (time_before(jiffies, td->last_calculate_time + HZ))
2082		return;
2083	td->last_calculate_time = jiffies;
2084
2085	memset(avg_latency, 0, sizeof(avg_latency));
2086	for (rw = READ; rw <= WRITE; rw++) {
2087		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2088			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2089
2090			for_each_possible_cpu(cpu) {
2091				struct latency_bucket *bucket;
2092
2093				/* this isn't race free, but ok in practice */
2094				bucket = per_cpu_ptr(td->latency_buckets[rw],
2095					cpu);
2096				tmp->total_latency += bucket[i].total_latency;
2097				tmp->samples += bucket[i].samples;
2098				bucket[i].total_latency = 0;
2099				bucket[i].samples = 0;
2100			}
2101
2102			if (tmp->samples >= 32) {
2103				int samples = tmp->samples;
2104
2105				latency[rw] = tmp->total_latency;
2106
2107				tmp->total_latency = 0;
2108				tmp->samples = 0;
2109				latency[rw] /= samples;
2110				if (latency[rw] == 0)
2111					continue;
2112				avg_latency[rw][i].latency = latency[rw];
2113			}
2114		}
2115	}
2116
2117	for (rw = READ; rw <= WRITE; rw++) {
2118		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2119			if (!avg_latency[rw][i].latency) {
2120				if (td->avg_buckets[rw][i].latency < last_latency[rw])
2121					td->avg_buckets[rw][i].latency =
2122						last_latency[rw];
2123				continue;
2124			}
2125
2126			if (!td->avg_buckets[rw][i].valid)
2127				latency[rw] = avg_latency[rw][i].latency;
2128			else
2129				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2130					avg_latency[rw][i].latency) >> 3;
2131
2132			td->avg_buckets[rw][i].latency = max(latency[rw],
2133				last_latency[rw]);
2134			td->avg_buckets[rw][i].valid = true;
2135			last_latency[rw] = td->avg_buckets[rw][i].latency;
2136		}
2137	}
2138
2139	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2140		throtl_log(&td->service_queue,
2141			"Latency bucket %d: read latency=%ld, read valid=%d, "
2142			"write latency=%ld, write valid=%d", i,
2143			td->avg_buckets[READ][i].latency,
2144			td->avg_buckets[READ][i].valid,
2145			td->avg_buckets[WRITE][i].latency,
2146			td->avg_buckets[WRITE][i].valid);
2147}
2148#else
2149static inline void throtl_update_latency_buckets(struct throtl_data *td)
2150{
2151}
2152
2153static void blk_throtl_update_idletime(struct throtl_grp *tg)
2154{
2155}
2156
2157static void throtl_downgrade_check(struct throtl_grp *tg)
2158{
2159}
2160
2161static void throtl_upgrade_check(struct throtl_grp *tg)
2162{
2163}
2164
2165static bool throtl_can_upgrade(struct throtl_data *td,
2166	struct throtl_grp *this_tg)
2167{
2168	return false;
2169}
2170
2171static void throtl_upgrade_state(struct throtl_data *td)
2172{
2173}
2174#endif
2175
2176bool __blk_throtl_bio(struct bio *bio)
2177{
2178	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2179	struct blkcg_gq *blkg = bio->bi_blkg;
2180	struct throtl_qnode *qn = NULL;
2181	struct throtl_grp *tg = blkg_to_tg(blkg);
2182	struct throtl_service_queue *sq;
2183	bool rw = bio_data_dir(bio);
2184	bool throttled = false;
2185	struct throtl_data *td = tg->td;
2186
2187	rcu_read_lock();
2188
2189	spin_lock_irq(&q->queue_lock);
2190
2191	throtl_update_latency_buckets(td);
2192
2193	blk_throtl_update_idletime(tg);
2194
2195	sq = &tg->service_queue;
2196
2197again:
2198	while (true) {
2199		if (tg->last_low_overflow_time[rw] == 0)
2200			tg->last_low_overflow_time[rw] = jiffies;
2201		throtl_downgrade_check(tg);
2202		throtl_upgrade_check(tg);
2203		/* throtl is FIFO - if bios are already queued, should queue */
2204		if (sq->nr_queued[rw])
2205			break;
2206
2207		/* if above limits, break to queue */
2208		if (!tg_may_dispatch(tg, bio, NULL)) {
2209			tg->last_low_overflow_time[rw] = jiffies;
2210			if (throtl_can_upgrade(td, tg)) {
2211				throtl_upgrade_state(td);
2212				goto again;
2213			}
2214			break;
2215		}
2216
2217		/* within limits, let's charge and dispatch directly */
2218		throtl_charge_bio(tg, bio);
2219
2220		/*
2221		 * We need to trim slice even when bios are not being queued
2222		 * otherwise it might happen that a bio is not queued for
2223		 * a long time and slice keeps on extending and trim is not
2224		 * called for a long time. Now if limits are reduced suddenly
2225		 * we take into account all the IO dispatched so far at new
2226		 * low rate and * newly queued IO gets a really long dispatch
2227		 * time.
2228		 *
2229		 * So keep on trimming slice even if bio is not queued.
2230		 */
2231		throtl_trim_slice(tg, rw);
2232
2233		/*
2234		 * @bio passed through this layer without being throttled.
2235		 * Climb up the ladder.  If we're already at the top, it
2236		 * can be executed directly.
2237		 */
2238		qn = &tg->qnode_on_parent[rw];
2239		sq = sq->parent_sq;
2240		tg = sq_to_tg(sq);
2241		if (!tg) {
2242			bio_set_flag(bio, BIO_BPS_THROTTLED);
2243			goto out_unlock;
2244		}
2245	}
2246
2247	/* out-of-limit, queue to @tg */
2248	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2249		   rw == READ ? 'R' : 'W',
2250		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2251		   tg_bps_limit(tg, rw),
2252		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2253		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2254
2255	tg->last_low_overflow_time[rw] = jiffies;
2256
2257	td->nr_queued[rw]++;
2258	throtl_add_bio_tg(bio, qn, tg);
2259	throttled = true;
2260
2261	/*
2262	 * Update @tg's dispatch time and force schedule dispatch if @tg
2263	 * was empty before @bio.  The forced scheduling isn't likely to
2264	 * cause undue delay as @bio is likely to be dispatched directly if
2265	 * its @tg's disptime is not in the future.
2266	 */
2267	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2268		tg_update_disptime(tg);
2269		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2270	}
2271
2272out_unlock:
2273#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2274	if (throttled || !td->track_bio_latency)
2275		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2276#endif
2277	spin_unlock_irq(&q->queue_lock);
2278
2279	rcu_read_unlock();
2280	return throttled;
2281}
2282
2283#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2284static void throtl_track_latency(struct throtl_data *td, sector_t size,
2285				 enum req_op op, unsigned long time)
2286{
2287	const bool rw = op_is_write(op);
2288	struct latency_bucket *latency;
2289	int index;
2290
2291	if (!td || td->limit_index != LIMIT_LOW ||
2292	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2293	    !blk_queue_nonrot(td->queue))
2294		return;
2295
2296	index = request_bucket_index(size);
2297
2298	latency = get_cpu_ptr(td->latency_buckets[rw]);
2299	latency[index].total_latency += time;
2300	latency[index].samples++;
2301	put_cpu_ptr(td->latency_buckets[rw]);
2302}
2303
2304void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2305{
2306	struct request_queue *q = rq->q;
2307	struct throtl_data *td = q->td;
2308
2309	throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2310			     time_ns >> 10);
2311}
2312
2313void blk_throtl_bio_endio(struct bio *bio)
2314{
2315	struct blkcg_gq *blkg;
2316	struct throtl_grp *tg;
2317	u64 finish_time_ns;
2318	unsigned long finish_time;
2319	unsigned long start_time;
2320	unsigned long lat;
2321	int rw = bio_data_dir(bio);
2322
2323	blkg = bio->bi_blkg;
2324	if (!blkg)
2325		return;
2326	tg = blkg_to_tg(blkg);
2327	if (!tg->td->limit_valid[LIMIT_LOW])
2328		return;
2329
2330	finish_time_ns = blk_time_get_ns();
2331	tg->last_finish_time = finish_time_ns >> 10;
2332
2333	start_time = bio_issue_time(&bio->bi_issue) >> 10;
2334	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2335	if (!start_time || finish_time <= start_time)
2336		return;
2337
2338	lat = finish_time - start_time;
2339	/* this is only for bio based driver */
2340	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2341		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2342				     bio_op(bio), lat);
2343
2344	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2345		int bucket;
2346		unsigned int threshold;
2347
2348		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2349		threshold = tg->td->avg_buckets[rw][bucket].latency +
2350			tg->latency_target;
2351		if (lat > threshold)
2352			tg->bad_bio_cnt++;
2353		/*
2354		 * Not race free, could get wrong count, which means cgroups
2355		 * will be throttled
2356		 */
2357		tg->bio_cnt++;
2358	}
2359
2360	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2361		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2362		tg->bio_cnt /= 2;
2363		tg->bad_bio_cnt /= 2;
2364	}
2365}
2366#endif
2367
2368int blk_throtl_init(struct gendisk *disk)
2369{
2370	struct request_queue *q = disk->queue;
2371	struct throtl_data *td;
2372	int ret;
2373
2374	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2375	if (!td)
2376		return -ENOMEM;
2377	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2378		LATENCY_BUCKET_SIZE, __alignof__(u64));
2379	if (!td->latency_buckets[READ]) {
2380		kfree(td);
2381		return -ENOMEM;
2382	}
2383	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2384		LATENCY_BUCKET_SIZE, __alignof__(u64));
2385	if (!td->latency_buckets[WRITE]) {
2386		free_percpu(td->latency_buckets[READ]);
2387		kfree(td);
2388		return -ENOMEM;
2389	}
2390
2391	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2392	throtl_service_queue_init(&td->service_queue);
2393
2394	q->td = td;
2395	td->queue = q;
2396
2397	td->limit_valid[LIMIT_MAX] = true;
2398	td->limit_index = LIMIT_MAX;
2399	td->low_upgrade_time = jiffies;
2400	td->low_downgrade_time = jiffies;
2401
2402	/* activate policy */
2403	ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
2404	if (ret) {
2405		free_percpu(td->latency_buckets[READ]);
2406		free_percpu(td->latency_buckets[WRITE]);
2407		kfree(td);
2408	}
2409	return ret;
2410}
2411
2412void blk_throtl_exit(struct gendisk *disk)
2413{
2414	struct request_queue *q = disk->queue;
2415
2416	BUG_ON(!q->td);
2417	del_timer_sync(&q->td->service_queue.pending_timer);
2418	throtl_shutdown_wq(q);
2419	blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
2420	free_percpu(q->td->latency_buckets[READ]);
2421	free_percpu(q->td->latency_buckets[WRITE]);
2422	kfree(q->td);
2423}
2424
2425void blk_throtl_register(struct gendisk *disk)
2426{
2427	struct request_queue *q = disk->queue;
2428	struct throtl_data *td;
2429	int i;
2430
2431	td = q->td;
2432	BUG_ON(!td);
2433
2434	if (blk_queue_nonrot(q)) {
2435		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2436		td->filtered_latency = LATENCY_FILTERED_SSD;
2437	} else {
2438		td->throtl_slice = DFL_THROTL_SLICE_HD;
2439		td->filtered_latency = LATENCY_FILTERED_HD;
2440		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2441			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2442			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2443		}
2444	}
2445#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2446	/* if no low limit, use previous default */
2447	td->throtl_slice = DFL_THROTL_SLICE_HD;
2448
2449#else
2450	td->track_bio_latency = !queue_is_mq(q);
2451	if (!td->track_bio_latency)
2452		blk_stat_enable_accounting(q);
2453#endif
2454}
2455
2456#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2457ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2458{
2459	if (!q->td)
2460		return -EINVAL;
2461	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2462}
2463
2464ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2465	const char *page, size_t count)
2466{
2467	unsigned long v;
2468	unsigned long t;
2469
2470	if (!q->td)
2471		return -EINVAL;
2472	if (kstrtoul(page, 10, &v))
2473		return -EINVAL;
2474	t = msecs_to_jiffies(v);
2475	if (t == 0 || t > MAX_THROTL_SLICE)
2476		return -EINVAL;
2477	q->td->throtl_slice = t;
2478	return count;
2479}
2480#endif
2481
2482static int __init throtl_init(void)
2483{
2484	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2485	if (!kthrotld_workqueue)
2486		panic("Failed to create kthrotld\n");
2487
2488	return blkcg_policy_register(&blkcg_policy_throtl);
2489}
2490
2491module_init(throtl_init);
2492