1// SPDX-License-Identifier: GPL-2.0
2/*
3 * bio-integrity.c - bio data integrity extensions
4 *
5 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
6 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
7 */
8
9#include <linux/blk-integrity.h>
10#include <linux/mempool.h>
11#include <linux/export.h>
12#include <linux/bio.h>
13#include <linux/workqueue.h>
14#include <linux/slab.h>
15#include "blk.h"
16
17static struct kmem_cache *bip_slab;
18static struct workqueue_struct *kintegrityd_wq;
19
20void blk_flush_integrity(void)
21{
22	flush_workqueue(kintegrityd_wq);
23}
24
25static void __bio_integrity_free(struct bio_set *bs,
26				 struct bio_integrity_payload *bip)
27{
28	if (bs && mempool_initialized(&bs->bio_integrity_pool)) {
29		if (bip->bip_vec)
30			bvec_free(&bs->bvec_integrity_pool, bip->bip_vec,
31				  bip->bip_max_vcnt);
32		mempool_free(bip, &bs->bio_integrity_pool);
33	} else {
34		kfree(bip);
35	}
36}
37
38/**
39 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
40 * @bio:	bio to attach integrity metadata to
41 * @gfp_mask:	Memory allocation mask
42 * @nr_vecs:	Number of integrity metadata scatter-gather elements
43 *
44 * Description: This function prepares a bio for attaching integrity
45 * metadata.  nr_vecs specifies the maximum number of pages containing
46 * integrity metadata that can be attached.
47 */
48struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
49						  gfp_t gfp_mask,
50						  unsigned int nr_vecs)
51{
52	struct bio_integrity_payload *bip;
53	struct bio_set *bs = bio->bi_pool;
54	unsigned inline_vecs;
55
56	if (WARN_ON_ONCE(bio_has_crypt_ctx(bio)))
57		return ERR_PTR(-EOPNOTSUPP);
58
59	if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) {
60		bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask);
61		inline_vecs = nr_vecs;
62	} else {
63		bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask);
64		inline_vecs = BIO_INLINE_VECS;
65	}
66
67	if (unlikely(!bip))
68		return ERR_PTR(-ENOMEM);
69
70	memset(bip, 0, sizeof(*bip));
71
72	/* always report as many vecs as asked explicitly, not inline vecs */
73	bip->bip_max_vcnt = nr_vecs;
74	if (nr_vecs > inline_vecs) {
75		bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool,
76					  &bip->bip_max_vcnt, gfp_mask);
77		if (!bip->bip_vec)
78			goto err;
79	} else {
80		bip->bip_vec = bip->bip_inline_vecs;
81	}
82
83	bip->bip_bio = bio;
84	bio->bi_integrity = bip;
85	bio->bi_opf |= REQ_INTEGRITY;
86
87	return bip;
88err:
89	__bio_integrity_free(bs, bip);
90	return ERR_PTR(-ENOMEM);
91}
92EXPORT_SYMBOL(bio_integrity_alloc);
93
94static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs,
95				     bool dirty)
96{
97	int i;
98
99	for (i = 0; i < nr_vecs; i++) {
100		if (dirty && !PageCompound(bv[i].bv_page))
101			set_page_dirty_lock(bv[i].bv_page);
102		unpin_user_page(bv[i].bv_page);
103	}
104}
105
106static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip)
107{
108	unsigned short nr_vecs = bip->bip_max_vcnt - 1;
109	struct bio_vec *copy = &bip->bip_vec[1];
110	size_t bytes = bip->bip_iter.bi_size;
111	struct iov_iter iter;
112	int ret;
113
114	iov_iter_bvec(&iter, ITER_DEST, copy, nr_vecs, bytes);
115	ret = copy_to_iter(bvec_virt(bip->bip_vec), bytes, &iter);
116	WARN_ON_ONCE(ret != bytes);
117
118	bio_integrity_unpin_bvec(copy, nr_vecs, true);
119}
120
121static void bio_integrity_unmap_user(struct bio_integrity_payload *bip)
122{
123	bool dirty = bio_data_dir(bip->bip_bio) == READ;
124
125	if (bip->bip_flags & BIP_COPY_USER) {
126		if (dirty)
127			bio_integrity_uncopy_user(bip);
128		kfree(bvec_virt(bip->bip_vec));
129		return;
130	}
131
132	bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt, dirty);
133}
134
135/**
136 * bio_integrity_free - Free bio integrity payload
137 * @bio:	bio containing bip to be freed
138 *
139 * Description: Used to free the integrity portion of a bio. Usually
140 * called from bio_free().
141 */
142void bio_integrity_free(struct bio *bio)
143{
144	struct bio_integrity_payload *bip = bio_integrity(bio);
145	struct bio_set *bs = bio->bi_pool;
146
147	if (bip->bip_flags & BIP_BLOCK_INTEGRITY)
148		kfree(bvec_virt(bip->bip_vec));
149	else if (bip->bip_flags & BIP_INTEGRITY_USER)
150		bio_integrity_unmap_user(bip);
151
152	__bio_integrity_free(bs, bip);
153	bio->bi_integrity = NULL;
154	bio->bi_opf &= ~REQ_INTEGRITY;
155}
156
157/**
158 * bio_integrity_add_page - Attach integrity metadata
159 * @bio:	bio to update
160 * @page:	page containing integrity metadata
161 * @len:	number of bytes of integrity metadata in page
162 * @offset:	start offset within page
163 *
164 * Description: Attach a page containing integrity metadata to bio.
165 */
166int bio_integrity_add_page(struct bio *bio, struct page *page,
167			   unsigned int len, unsigned int offset)
168{
169	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
170	struct bio_integrity_payload *bip = bio_integrity(bio);
171
172	if (((bip->bip_iter.bi_size + len) >> SECTOR_SHIFT) >
173	    queue_max_hw_sectors(q))
174		return 0;
175
176	if (bip->bip_vcnt > 0) {
177		struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1];
178		bool same_page = false;
179
180		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
181					   &same_page)) {
182			bip->bip_iter.bi_size += len;
183			return len;
184		}
185
186		if (bip->bip_vcnt >=
187		    min(bip->bip_max_vcnt, queue_max_integrity_segments(q)))
188			return 0;
189
190		/*
191		 * If the queue doesn't support SG gaps and adding this segment
192		 * would create a gap, disallow it.
193		 */
194		if (bvec_gap_to_prev(&q->limits, bv, offset))
195			return 0;
196	}
197
198	bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset);
199	bip->bip_vcnt++;
200	bip->bip_iter.bi_size += len;
201
202	return len;
203}
204EXPORT_SYMBOL(bio_integrity_add_page);
205
206static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec,
207				   int nr_vecs, unsigned int len,
208				   unsigned int direction, u32 seed)
209{
210	bool write = direction == ITER_SOURCE;
211	struct bio_integrity_payload *bip;
212	struct iov_iter iter;
213	void *buf;
214	int ret;
215
216	buf = kmalloc(len, GFP_KERNEL);
217	if (!buf)
218		return -ENOMEM;
219
220	if (write) {
221		iov_iter_bvec(&iter, direction, bvec, nr_vecs, len);
222		if (!copy_from_iter_full(buf, len, &iter)) {
223			ret = -EFAULT;
224			goto free_buf;
225		}
226
227		bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
228	} else {
229		memset(buf, 0, len);
230
231		/*
232		 * We need to preserve the original bvec and the number of vecs
233		 * in it for completion handling
234		 */
235		bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1);
236	}
237
238	if (IS_ERR(bip)) {
239		ret = PTR_ERR(bip);
240		goto free_buf;
241	}
242
243	if (write)
244		bio_integrity_unpin_bvec(bvec, nr_vecs, false);
245	else
246		memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec));
247
248	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
249				     offset_in_page(buf));
250	if (ret != len) {
251		ret = -ENOMEM;
252		goto free_bip;
253	}
254
255	bip->bip_flags |= BIP_INTEGRITY_USER | BIP_COPY_USER;
256	bip->bip_iter.bi_sector = seed;
257	return 0;
258free_bip:
259	bio_integrity_free(bio);
260free_buf:
261	kfree(buf);
262	return ret;
263}
264
265static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec,
266				   int nr_vecs, unsigned int len, u32 seed)
267{
268	struct bio_integrity_payload *bip;
269
270	bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs);
271	if (IS_ERR(bip))
272		return PTR_ERR(bip);
273
274	memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec));
275	bip->bip_flags |= BIP_INTEGRITY_USER;
276	bip->bip_iter.bi_sector = seed;
277	bip->bip_iter.bi_size = len;
278	return 0;
279}
280
281static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages,
282				    int nr_vecs, ssize_t bytes, ssize_t offset)
283{
284	unsigned int nr_bvecs = 0;
285	int i, j;
286
287	for (i = 0; i < nr_vecs; i = j) {
288		size_t size = min_t(size_t, bytes, PAGE_SIZE - offset);
289		struct folio *folio = page_folio(pages[i]);
290
291		bytes -= size;
292		for (j = i + 1; j < nr_vecs; j++) {
293			size_t next = min_t(size_t, PAGE_SIZE, bytes);
294
295			if (page_folio(pages[j]) != folio ||
296			    pages[j] != pages[j - 1] + 1)
297				break;
298			unpin_user_page(pages[j]);
299			size += next;
300			bytes -= next;
301		}
302
303		bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset);
304		offset = 0;
305		nr_bvecs++;
306	}
307
308	return nr_bvecs;
309}
310
311int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes,
312			   u32 seed)
313{
314	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
315	unsigned int align = q->dma_pad_mask | queue_dma_alignment(q);
316	struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages;
317	struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec;
318	unsigned int direction, nr_bvecs;
319	struct iov_iter iter;
320	int ret, nr_vecs;
321	size_t offset;
322	bool copy;
323
324	if (bio_integrity(bio))
325		return -EINVAL;
326	if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q))
327		return -E2BIG;
328
329	if (bio_data_dir(bio) == READ)
330		direction = ITER_DEST;
331	else
332		direction = ITER_SOURCE;
333
334	iov_iter_ubuf(&iter, direction, ubuf, bytes);
335	nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1);
336	if (nr_vecs > BIO_MAX_VECS)
337		return -E2BIG;
338	if (nr_vecs > UIO_FASTIOV) {
339		bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL);
340		if (!bvec)
341			return -ENOMEM;
342		pages = NULL;
343	}
344
345	copy = !iov_iter_is_aligned(&iter, align, align);
346	ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset);
347	if (unlikely(ret < 0))
348		goto free_bvec;
349
350	nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset);
351	if (pages != stack_pages)
352		kvfree(pages);
353	if (nr_bvecs > queue_max_integrity_segments(q))
354		copy = true;
355
356	if (copy)
357		ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes,
358					      direction, seed);
359	else
360		ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes, seed);
361	if (ret)
362		goto release_pages;
363	if (bvec != stack_vec)
364		kfree(bvec);
365
366	return 0;
367
368release_pages:
369	bio_integrity_unpin_bvec(bvec, nr_bvecs, false);
370free_bvec:
371	if (bvec != stack_vec)
372		kfree(bvec);
373	return ret;
374}
375EXPORT_SYMBOL_GPL(bio_integrity_map_user);
376
377/**
378 * bio_integrity_process - Process integrity metadata for a bio
379 * @bio:	bio to generate/verify integrity metadata for
380 * @proc_iter:  iterator to process
381 * @proc_fn:	Pointer to the relevant processing function
382 */
383static blk_status_t bio_integrity_process(struct bio *bio,
384		struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn)
385{
386	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
387	struct blk_integrity_iter iter;
388	struct bvec_iter bviter;
389	struct bio_vec bv;
390	struct bio_integrity_payload *bip = bio_integrity(bio);
391	blk_status_t ret = BLK_STS_OK;
392
393	iter.disk_name = bio->bi_bdev->bd_disk->disk_name;
394	iter.interval = 1 << bi->interval_exp;
395	iter.tuple_size = bi->tuple_size;
396	iter.seed = proc_iter->bi_sector;
397	iter.prot_buf = bvec_virt(bip->bip_vec);
398	iter.pi_offset = bi->pi_offset;
399
400	__bio_for_each_segment(bv, bio, bviter, *proc_iter) {
401		void *kaddr = bvec_kmap_local(&bv);
402
403		iter.data_buf = kaddr;
404		iter.data_size = bv.bv_len;
405		ret = proc_fn(&iter);
406		kunmap_local(kaddr);
407
408		if (ret)
409			break;
410
411	}
412	return ret;
413}
414
415/**
416 * bio_integrity_prep - Prepare bio for integrity I/O
417 * @bio:	bio to prepare
418 *
419 * Description:  Checks if the bio already has an integrity payload attached.
420 * If it does, the payload has been generated by another kernel subsystem,
421 * and we just pass it through. Otherwise allocates integrity payload.
422 * The bio must have data direction, target device and start sector set priot
423 * to calling.  In the WRITE case, integrity metadata will be generated using
424 * the block device's integrity function.  In the READ case, the buffer
425 * will be prepared for DMA and a suitable end_io handler set up.
426 */
427bool bio_integrity_prep(struct bio *bio)
428{
429	struct bio_integrity_payload *bip;
430	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
431	void *buf;
432	unsigned long start, end;
433	unsigned int len, nr_pages;
434	unsigned int bytes, offset, i;
435
436	if (!bi)
437		return true;
438
439	if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE)
440		return true;
441
442	if (!bio_sectors(bio))
443		return true;
444
445	/* Already protected? */
446	if (bio_integrity(bio))
447		return true;
448
449	if (bio_data_dir(bio) == READ) {
450		if (!bi->profile->verify_fn ||
451		    !(bi->flags & BLK_INTEGRITY_VERIFY))
452			return true;
453	} else {
454		if (!bi->profile->generate_fn ||
455		    !(bi->flags & BLK_INTEGRITY_GENERATE))
456			return true;
457	}
458
459	/* Allocate kernel buffer for protection data */
460	len = bio_integrity_bytes(bi, bio_sectors(bio));
461	buf = kmalloc(len, GFP_NOIO);
462	if (unlikely(buf == NULL)) {
463		printk(KERN_ERR "could not allocate integrity buffer\n");
464		goto err_end_io;
465	}
466
467	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
468	start = ((unsigned long) buf) >> PAGE_SHIFT;
469	nr_pages = end - start;
470
471	/* Allocate bio integrity payload and integrity vectors */
472	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
473	if (IS_ERR(bip)) {
474		printk(KERN_ERR "could not allocate data integrity bioset\n");
475		kfree(buf);
476		goto err_end_io;
477	}
478
479	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
480	bip_set_seed(bip, bio->bi_iter.bi_sector);
481
482	if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM)
483		bip->bip_flags |= BIP_IP_CHECKSUM;
484
485	/* Map it */
486	offset = offset_in_page(buf);
487	for (i = 0; i < nr_pages && len > 0; i++) {
488		bytes = PAGE_SIZE - offset;
489
490		if (bytes > len)
491			bytes = len;
492
493		if (bio_integrity_add_page(bio, virt_to_page(buf),
494					   bytes, offset) < bytes) {
495			printk(KERN_ERR "could not attach integrity payload\n");
496			goto err_end_io;
497		}
498
499		buf += bytes;
500		len -= bytes;
501		offset = 0;
502	}
503
504	/* Auto-generate integrity metadata if this is a write */
505	if (bio_data_dir(bio) == WRITE) {
506		bio_integrity_process(bio, &bio->bi_iter,
507				      bi->profile->generate_fn);
508	} else {
509		bip->bio_iter = bio->bi_iter;
510	}
511	return true;
512
513err_end_io:
514	bio->bi_status = BLK_STS_RESOURCE;
515	bio_endio(bio);
516	return false;
517}
518EXPORT_SYMBOL(bio_integrity_prep);
519
520/**
521 * bio_integrity_verify_fn - Integrity I/O completion worker
522 * @work:	Work struct stored in bio to be verified
523 *
524 * Description: This workqueue function is called to complete a READ
525 * request.  The function verifies the transferred integrity metadata
526 * and then calls the original bio end_io function.
527 */
528static void bio_integrity_verify_fn(struct work_struct *work)
529{
530	struct bio_integrity_payload *bip =
531		container_of(work, struct bio_integrity_payload, bip_work);
532	struct bio *bio = bip->bip_bio;
533	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
534
535	/*
536	 * At the moment verify is called bio's iterator was advanced
537	 * during split and completion, we need to rewind iterator to
538	 * it's original position.
539	 */
540	bio->bi_status = bio_integrity_process(bio, &bip->bio_iter,
541						bi->profile->verify_fn);
542	bio_integrity_free(bio);
543	bio_endio(bio);
544}
545
546/**
547 * __bio_integrity_endio - Integrity I/O completion function
548 * @bio:	Protected bio
549 *
550 * Description: Completion for integrity I/O
551 *
552 * Normally I/O completion is done in interrupt context.  However,
553 * verifying I/O integrity is a time-consuming task which must be run
554 * in process context.	This function postpones completion
555 * accordingly.
556 */
557bool __bio_integrity_endio(struct bio *bio)
558{
559	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
560	struct bio_integrity_payload *bip = bio_integrity(bio);
561
562	if (bio_op(bio) == REQ_OP_READ && !bio->bi_status &&
563	    (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) {
564		INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
565		queue_work(kintegrityd_wq, &bip->bip_work);
566		return false;
567	}
568
569	bio_integrity_free(bio);
570	return true;
571}
572
573/**
574 * bio_integrity_advance - Advance integrity vector
575 * @bio:	bio whose integrity vector to update
576 * @bytes_done:	number of data bytes that have been completed
577 *
578 * Description: This function calculates how many integrity bytes the
579 * number of completed data bytes correspond to and advances the
580 * integrity vector accordingly.
581 */
582void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
583{
584	struct bio_integrity_payload *bip = bio_integrity(bio);
585	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
586	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
587
588	bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9);
589	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
590}
591
592/**
593 * bio_integrity_trim - Trim integrity vector
594 * @bio:	bio whose integrity vector to update
595 *
596 * Description: Used to trim the integrity vector in a cloned bio.
597 */
598void bio_integrity_trim(struct bio *bio)
599{
600	struct bio_integrity_payload *bip = bio_integrity(bio);
601	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
602
603	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
604}
605EXPORT_SYMBOL(bio_integrity_trim);
606
607/**
608 * bio_integrity_clone - Callback for cloning bios with integrity metadata
609 * @bio:	New bio
610 * @bio_src:	Original bio
611 * @gfp_mask:	Memory allocation mask
612 *
613 * Description:	Called to allocate a bip when cloning a bio
614 */
615int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
616			gfp_t gfp_mask)
617{
618	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
619	struct bio_integrity_payload *bip;
620
621	BUG_ON(bip_src == NULL);
622
623	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
624	if (IS_ERR(bip))
625		return PTR_ERR(bip);
626
627	memcpy(bip->bip_vec, bip_src->bip_vec,
628	       bip_src->bip_vcnt * sizeof(struct bio_vec));
629
630	bip->bip_vcnt = bip_src->bip_vcnt;
631	bip->bip_iter = bip_src->bip_iter;
632	bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY;
633
634	return 0;
635}
636
637int bioset_integrity_create(struct bio_set *bs, int pool_size)
638{
639	if (mempool_initialized(&bs->bio_integrity_pool))
640		return 0;
641
642	if (mempool_init_slab_pool(&bs->bio_integrity_pool,
643				   pool_size, bip_slab))
644		return -1;
645
646	if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) {
647		mempool_exit(&bs->bio_integrity_pool);
648		return -1;
649	}
650
651	return 0;
652}
653EXPORT_SYMBOL(bioset_integrity_create);
654
655void bioset_integrity_free(struct bio_set *bs)
656{
657	mempool_exit(&bs->bio_integrity_pool);
658	mempool_exit(&bs->bvec_integrity_pool);
659}
660
661void __init bio_integrity_init(void)
662{
663	/*
664	 * kintegrityd won't block much but may burn a lot of CPU cycles.
665	 * Make it highpri CPU intensive wq with max concurrency of 1.
666	 */
667	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
668					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
669	if (!kintegrityd_wq)
670		panic("Failed to create kintegrityd\n");
671
672	bip_slab = kmem_cache_create("bio_integrity_payload",
673				     sizeof(struct bio_integrity_payload) +
674				     sizeof(struct bio_vec) * BIO_INLINE_VECS,
675				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
676}
677