1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Common EFI (Extensible Firmware Interface) support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
9 *	David Mosberger-Tang <davidm@hpl.hp.com>
10 *	Stephane Eranian <eranian@hpl.hp.com>
11 * Copyright (C) 2005-2008 Intel Co.
12 *	Fenghua Yu <fenghua.yu@intel.com>
13 *	Bibo Mao <bibo.mao@intel.com>
14 *	Chandramouli Narayanan <mouli@linux.intel.com>
15 *	Huang Ying <ying.huang@intel.com>
16 * Copyright (C) 2013 SuSE Labs
17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
18 *
19 * Copied from efi_32.c to eliminate the duplicated code between EFI
20 * 32/64 support code. --ying 2007-10-26
21 *
22 * All EFI Runtime Services are not implemented yet as EFI only
23 * supports physical mode addressing on SoftSDV. This is to be fixed
24 * in a future version.  --drummond 1999-07-20
25 *
26 * Implemented EFI runtime services and virtual mode calls.  --davidm
27 *
28 * Goutham Rao: <goutham.rao@intel.com>
29 *	Skip non-WB memory and ignore empty memory ranges.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/efi.h>
37#include <linux/efi-bgrt.h>
38#include <linux/export.h>
39#include <linux/memblock.h>
40#include <linux/slab.h>
41#include <linux/spinlock.h>
42#include <linux/uaccess.h>
43#include <linux/time.h>
44#include <linux/io.h>
45#include <linux/reboot.h>
46#include <linux/bcd.h>
47
48#include <asm/setup.h>
49#include <asm/efi.h>
50#include <asm/e820/api.h>
51#include <asm/time.h>
52#include <asm/tlbflush.h>
53#include <asm/x86_init.h>
54#include <asm/uv/uv.h>
55
56static unsigned long efi_systab_phys __initdata;
57static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
58static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
59static unsigned long efi_runtime, efi_nr_tables;
60
61unsigned long efi_fw_vendor, efi_config_table;
62
63static const efi_config_table_type_t arch_tables[] __initconst = {
64	{EFI_PROPERTIES_TABLE_GUID,	&prop_phys,		"PROP"		},
65	{UGA_IO_PROTOCOL_GUID,		&uga_phys,		"UGA"		},
66#ifdef CONFIG_X86_UV
67	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
68#endif
69	{},
70};
71
72static const unsigned long * const efi_tables[] = {
73	&efi.acpi,
74	&efi.acpi20,
75	&efi.smbios,
76	&efi.smbios3,
77	&uga_phys,
78#ifdef CONFIG_X86_UV
79	&uv_systab_phys,
80#endif
81	&efi_fw_vendor,
82	&efi_runtime,
83	&efi_config_table,
84	&efi.esrt,
85	&prop_phys,
86	&efi_mem_attr_table,
87#ifdef CONFIG_EFI_RCI2_TABLE
88	&rci2_table_phys,
89#endif
90	&efi.tpm_log,
91	&efi.tpm_final_log,
92	&efi_rng_seed,
93#ifdef CONFIG_LOAD_UEFI_KEYS
94	&efi.mokvar_table,
95#endif
96#ifdef CONFIG_EFI_COCO_SECRET
97	&efi.coco_secret,
98#endif
99#ifdef CONFIG_UNACCEPTED_MEMORY
100	&efi.unaccepted,
101#endif
102};
103
104u64 efi_setup;		/* efi setup_data physical address */
105
106static int add_efi_memmap __initdata;
107static int __init setup_add_efi_memmap(char *arg)
108{
109	add_efi_memmap = 1;
110	return 0;
111}
112early_param("add_efi_memmap", setup_add_efi_memmap);
113
114/*
115 * Tell the kernel about the EFI memory map.  This might include
116 * more than the max 128 entries that can fit in the passed in e820
117 * legacy (zeropage) memory map, but the kernel's e820 table can hold
118 * E820_MAX_ENTRIES.
119 */
120
121static void __init do_add_efi_memmap(void)
122{
123	efi_memory_desc_t *md;
124
125	if (!efi_enabled(EFI_MEMMAP))
126		return;
127
128	for_each_efi_memory_desc(md) {
129		unsigned long long start = md->phys_addr;
130		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
131		int e820_type;
132
133		switch (md->type) {
134		case EFI_LOADER_CODE:
135		case EFI_LOADER_DATA:
136		case EFI_BOOT_SERVICES_CODE:
137		case EFI_BOOT_SERVICES_DATA:
138		case EFI_CONVENTIONAL_MEMORY:
139			if (efi_soft_reserve_enabled()
140			    && (md->attribute & EFI_MEMORY_SP))
141				e820_type = E820_TYPE_SOFT_RESERVED;
142			else if (md->attribute & EFI_MEMORY_WB)
143				e820_type = E820_TYPE_RAM;
144			else
145				e820_type = E820_TYPE_RESERVED;
146			break;
147		case EFI_ACPI_RECLAIM_MEMORY:
148			e820_type = E820_TYPE_ACPI;
149			break;
150		case EFI_ACPI_MEMORY_NVS:
151			e820_type = E820_TYPE_NVS;
152			break;
153		case EFI_UNUSABLE_MEMORY:
154			e820_type = E820_TYPE_UNUSABLE;
155			break;
156		case EFI_PERSISTENT_MEMORY:
157			e820_type = E820_TYPE_PMEM;
158			break;
159		default:
160			/*
161			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
162			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
163			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
164			 */
165			e820_type = E820_TYPE_RESERVED;
166			break;
167		}
168
169		e820__range_add(start, size, e820_type);
170	}
171	e820__update_table(e820_table);
172}
173
174/*
175 * Given add_efi_memmap defaults to 0 and there is no alternative
176 * e820 mechanism for soft-reserved memory, import the full EFI memory
177 * map if soft reservations are present and enabled. Otherwise, the
178 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
179 * the efi=nosoftreserve option.
180 */
181static bool do_efi_soft_reserve(void)
182{
183	efi_memory_desc_t *md;
184
185	if (!efi_enabled(EFI_MEMMAP))
186		return false;
187
188	if (!efi_soft_reserve_enabled())
189		return false;
190
191	for_each_efi_memory_desc(md)
192		if (md->type == EFI_CONVENTIONAL_MEMORY &&
193		    (md->attribute & EFI_MEMORY_SP))
194			return true;
195	return false;
196}
197
198int __init efi_memblock_x86_reserve_range(void)
199{
200	struct efi_info *e = &boot_params.efi_info;
201	struct efi_memory_map_data data;
202	phys_addr_t pmap;
203	int rv;
204
205	if (efi_enabled(EFI_PARAVIRT))
206		return 0;
207
208	/* Can't handle firmware tables above 4GB on i386 */
209	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
210		pr_err("Memory map is above 4GB, disabling EFI.\n");
211		return -EINVAL;
212	}
213	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
214
215	data.phys_map		= pmap;
216	data.size 		= e->efi_memmap_size;
217	data.desc_size		= e->efi_memdesc_size;
218	data.desc_version	= e->efi_memdesc_version;
219
220	if (!efi_enabled(EFI_PARAVIRT)) {
221		rv = efi_memmap_init_early(&data);
222		if (rv)
223			return rv;
224	}
225
226	if (add_efi_memmap || do_efi_soft_reserve())
227		do_add_efi_memmap();
228
229	efi_fake_memmap_early();
230
231	WARN(efi.memmap.desc_version != 1,
232	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
233	     efi.memmap.desc_version);
234
235	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
236	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
237
238	return 0;
239}
240
241#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
242#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
243#define U64_HIGH_BIT		(~(U64_MAX >> 1))
244
245static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
246{
247	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
248	u64 end_hi = 0;
249	char buf[64];
250
251	if (md->num_pages == 0) {
252		end = 0;
253	} else if (md->num_pages > EFI_PAGES_MAX ||
254		   EFI_PAGES_MAX - md->num_pages <
255		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
256		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
257			>> OVERFLOW_ADDR_SHIFT;
258
259		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
260			end_hi += 1;
261	} else {
262		return true;
263	}
264
265	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
266
267	if (end_hi) {
268		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
269			i, efi_md_typeattr_format(buf, sizeof(buf), md),
270			md->phys_addr, end_hi, end);
271	} else {
272		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
273			i, efi_md_typeattr_format(buf, sizeof(buf), md),
274			md->phys_addr, end);
275	}
276	return false;
277}
278
279static void __init efi_clean_memmap(void)
280{
281	efi_memory_desc_t *out = efi.memmap.map;
282	const efi_memory_desc_t *in = out;
283	const efi_memory_desc_t *end = efi.memmap.map_end;
284	int i, n_removal;
285
286	for (i = n_removal = 0; in < end; i++) {
287		if (efi_memmap_entry_valid(in, i)) {
288			if (out != in)
289				memcpy(out, in, efi.memmap.desc_size);
290			out = (void *)out + efi.memmap.desc_size;
291		} else {
292			n_removal++;
293		}
294		in = (void *)in + efi.memmap.desc_size;
295	}
296
297	if (n_removal > 0) {
298		struct efi_memory_map_data data = {
299			.phys_map	= efi.memmap.phys_map,
300			.desc_version	= efi.memmap.desc_version,
301			.desc_size	= efi.memmap.desc_size,
302			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
303			.flags		= 0,
304		};
305
306		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
307		efi_memmap_install(&data);
308	}
309}
310
311/*
312 * Firmware can use EfiMemoryMappedIO to request that MMIO regions be
313 * mapped by the OS so they can be accessed by EFI runtime services, but
314 * should have no other significance to the OS (UEFI r2.10, sec 7.2).
315 * However, most bootloaders and EFI stubs convert EfiMemoryMappedIO
316 * regions to E820_TYPE_RESERVED entries, which prevent Linux from
317 * allocating space from them (see remove_e820_regions()).
318 *
319 * Some platforms use EfiMemoryMappedIO entries for PCI MMCONFIG space and
320 * PCI host bridge windows, which means Linux can't allocate BAR space for
321 * hot-added devices.
322 *
323 * Remove large EfiMemoryMappedIO regions from the E820 map to avoid this
324 * problem.
325 *
326 * Retain small EfiMemoryMappedIO regions because on some platforms, these
327 * describe non-window space that's included in host bridge _CRS.  If we
328 * assign that space to PCI devices, they don't work.
329 */
330static void __init efi_remove_e820_mmio(void)
331{
332	efi_memory_desc_t *md;
333	u64 size, start, end;
334	int i = 0;
335
336	for_each_efi_memory_desc(md) {
337		if (md->type == EFI_MEMORY_MAPPED_IO) {
338			size = md->num_pages << EFI_PAGE_SHIFT;
339			start = md->phys_addr;
340			end = start + size - 1;
341			if (size >= 256*1024) {
342				pr_info("Remove mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluMB) from e820 map\n",
343					i, start, end, size >> 20);
344				e820__range_remove(start, size,
345						   E820_TYPE_RESERVED, 1);
346			} else {
347				pr_info("Not removing mem%02u: MMIO range=[0x%08llx-0x%08llx] (%lluKB) from e820 map\n",
348					i, start, end, size >> 10);
349			}
350		}
351		i++;
352	}
353}
354
355void __init efi_print_memmap(void)
356{
357	efi_memory_desc_t *md;
358	int i = 0;
359
360	for_each_efi_memory_desc(md) {
361		char buf[64];
362
363		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
364			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
365			md->phys_addr,
366			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
367			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
368	}
369}
370
371static int __init efi_systab_init(unsigned long phys)
372{
373	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
374					  : sizeof(efi_system_table_32_t);
375	const efi_table_hdr_t *hdr;
376	bool over4g = false;
377	void *p;
378	int ret;
379
380	hdr = p = early_memremap_ro(phys, size);
381	if (p == NULL) {
382		pr_err("Couldn't map the system table!\n");
383		return -ENOMEM;
384	}
385
386	ret = efi_systab_check_header(hdr);
387	if (ret) {
388		early_memunmap(p, size);
389		return ret;
390	}
391
392	if (efi_enabled(EFI_64BIT)) {
393		const efi_system_table_64_t *systab64 = p;
394
395		efi_runtime	= systab64->runtime;
396		over4g		= systab64->runtime > U32_MAX;
397
398		if (efi_setup) {
399			struct efi_setup_data *data;
400
401			data = early_memremap_ro(efi_setup, sizeof(*data));
402			if (!data) {
403				early_memunmap(p, size);
404				return -ENOMEM;
405			}
406
407			efi_fw_vendor		= (unsigned long)data->fw_vendor;
408			efi_config_table	= (unsigned long)data->tables;
409
410			over4g |= data->fw_vendor	> U32_MAX ||
411				  data->tables		> U32_MAX;
412
413			early_memunmap(data, sizeof(*data));
414		} else {
415			efi_fw_vendor		= systab64->fw_vendor;
416			efi_config_table	= systab64->tables;
417
418			over4g |= systab64->fw_vendor	> U32_MAX ||
419				  systab64->tables	> U32_MAX;
420		}
421		efi_nr_tables = systab64->nr_tables;
422	} else {
423		const efi_system_table_32_t *systab32 = p;
424
425		efi_fw_vendor		= systab32->fw_vendor;
426		efi_runtime		= systab32->runtime;
427		efi_config_table	= systab32->tables;
428		efi_nr_tables		= systab32->nr_tables;
429	}
430
431	efi.runtime_version = hdr->revision;
432
433	efi_systab_report_header(hdr, efi_fw_vendor);
434	early_memunmap(p, size);
435
436	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
437		pr_err("EFI data located above 4GB, disabling EFI.\n");
438		return -EINVAL;
439	}
440
441	return 0;
442}
443
444static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
445{
446	void *config_tables;
447	int sz, ret;
448
449	if (efi_nr_tables == 0)
450		return 0;
451
452	if (efi_enabled(EFI_64BIT))
453		sz = sizeof(efi_config_table_64_t);
454	else
455		sz = sizeof(efi_config_table_32_t);
456
457	/*
458	 * Let's see what config tables the firmware passed to us.
459	 */
460	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
461	if (config_tables == NULL) {
462		pr_err("Could not map Configuration table!\n");
463		return -ENOMEM;
464	}
465
466	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
467				      arch_tables);
468
469	early_memunmap(config_tables, efi_nr_tables * sz);
470	return ret;
471}
472
473void __init efi_init(void)
474{
475	if (IS_ENABLED(CONFIG_X86_32) &&
476	    (boot_params.efi_info.efi_systab_hi ||
477	     boot_params.efi_info.efi_memmap_hi)) {
478		pr_info("Table located above 4GB, disabling EFI.\n");
479		return;
480	}
481
482	efi_systab_phys = boot_params.efi_info.efi_systab |
483			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
484
485	if (efi_systab_init(efi_systab_phys))
486		return;
487
488	if (efi_reuse_config(efi_config_table, efi_nr_tables))
489		return;
490
491	if (efi_config_init(arch_tables))
492		return;
493
494	/*
495	 * Note: We currently don't support runtime services on an EFI
496	 * that doesn't match the kernel 32/64-bit mode.
497	 */
498
499	if (!efi_runtime_supported())
500		pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
501
502	if (!efi_runtime_supported() || efi_runtime_disabled()) {
503		efi_memmap_unmap();
504		return;
505	}
506
507	/* Parse the EFI Properties table if it exists */
508	if (prop_phys != EFI_INVALID_TABLE_ADDR) {
509		efi_properties_table_t *tbl;
510
511		tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
512		if (tbl == NULL) {
513			pr_err("Could not map Properties table!\n");
514		} else {
515			if (tbl->memory_protection_attribute &
516			    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
517				set_bit(EFI_NX_PE_DATA, &efi.flags);
518
519			early_memunmap(tbl, sizeof(*tbl));
520		}
521	}
522
523	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
524	efi_clean_memmap();
525
526	efi_remove_e820_mmio();
527
528	if (efi_enabled(EFI_DBG))
529		efi_print_memmap();
530}
531
532/* Merge contiguous regions of the same type and attribute */
533static void __init efi_merge_regions(void)
534{
535	efi_memory_desc_t *md, *prev_md = NULL;
536
537	for_each_efi_memory_desc(md) {
538		u64 prev_size;
539
540		if (!prev_md) {
541			prev_md = md;
542			continue;
543		}
544
545		if (prev_md->type != md->type ||
546		    prev_md->attribute != md->attribute) {
547			prev_md = md;
548			continue;
549		}
550
551		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
552
553		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
554			prev_md->num_pages += md->num_pages;
555			md->type = EFI_RESERVED_TYPE;
556			md->attribute = 0;
557			continue;
558		}
559		prev_md = md;
560	}
561}
562
563static void *realloc_pages(void *old_memmap, int old_shift)
564{
565	void *ret;
566
567	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
568	if (!ret)
569		goto out;
570
571	/*
572	 * A first-time allocation doesn't have anything to copy.
573	 */
574	if (!old_memmap)
575		return ret;
576
577	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
578
579out:
580	free_pages((unsigned long)old_memmap, old_shift);
581	return ret;
582}
583
584/*
585 * Iterate the EFI memory map in reverse order because the regions
586 * will be mapped top-down. The end result is the same as if we had
587 * mapped things forward, but doesn't require us to change the
588 * existing implementation of efi_map_region().
589 */
590static inline void *efi_map_next_entry_reverse(void *entry)
591{
592	/* Initial call */
593	if (!entry)
594		return efi.memmap.map_end - efi.memmap.desc_size;
595
596	entry -= efi.memmap.desc_size;
597	if (entry < efi.memmap.map)
598		return NULL;
599
600	return entry;
601}
602
603/*
604 * efi_map_next_entry - Return the next EFI memory map descriptor
605 * @entry: Previous EFI memory map descriptor
606 *
607 * This is a helper function to iterate over the EFI memory map, which
608 * we do in different orders depending on the current configuration.
609 *
610 * To begin traversing the memory map @entry must be %NULL.
611 *
612 * Returns %NULL when we reach the end of the memory map.
613 */
614static void *efi_map_next_entry(void *entry)
615{
616	if (efi_enabled(EFI_64BIT)) {
617		/*
618		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
619		 * config table feature requires us to map all entries
620		 * in the same order as they appear in the EFI memory
621		 * map. That is to say, entry N must have a lower
622		 * virtual address than entry N+1. This is because the
623		 * firmware toolchain leaves relative references in
624		 * the code/data sections, which are split and become
625		 * separate EFI memory regions. Mapping things
626		 * out-of-order leads to the firmware accessing
627		 * unmapped addresses.
628		 *
629		 * Since we need to map things this way whether or not
630		 * the kernel actually makes use of
631		 * EFI_PROPERTIES_TABLE, let's just switch to this
632		 * scheme by default for 64-bit.
633		 */
634		return efi_map_next_entry_reverse(entry);
635	}
636
637	/* Initial call */
638	if (!entry)
639		return efi.memmap.map;
640
641	entry += efi.memmap.desc_size;
642	if (entry >= efi.memmap.map_end)
643		return NULL;
644
645	return entry;
646}
647
648static bool should_map_region(efi_memory_desc_t *md)
649{
650	/*
651	 * Runtime regions always require runtime mappings (obviously).
652	 */
653	if (md->attribute & EFI_MEMORY_RUNTIME)
654		return true;
655
656	/*
657	 * 32-bit EFI doesn't suffer from the bug that requires us to
658	 * reserve boot services regions, and mixed mode support
659	 * doesn't exist for 32-bit kernels.
660	 */
661	if (IS_ENABLED(CONFIG_X86_32))
662		return false;
663
664	/*
665	 * EFI specific purpose memory may be reserved by default
666	 * depending on kernel config and boot options.
667	 */
668	if (md->type == EFI_CONVENTIONAL_MEMORY &&
669	    efi_soft_reserve_enabled() &&
670	    (md->attribute & EFI_MEMORY_SP))
671		return false;
672
673	/*
674	 * Map all of RAM so that we can access arguments in the 1:1
675	 * mapping when making EFI runtime calls.
676	 */
677	if (efi_is_mixed()) {
678		if (md->type == EFI_CONVENTIONAL_MEMORY ||
679		    md->type == EFI_LOADER_DATA ||
680		    md->type == EFI_LOADER_CODE)
681			return true;
682	}
683
684	/*
685	 * Map boot services regions as a workaround for buggy
686	 * firmware that accesses them even when they shouldn't.
687	 *
688	 * See efi_{reserve,free}_boot_services().
689	 */
690	if (md->type == EFI_BOOT_SERVICES_CODE ||
691	    md->type == EFI_BOOT_SERVICES_DATA)
692		return true;
693
694	return false;
695}
696
697/*
698 * Map the efi memory ranges of the runtime services and update new_mmap with
699 * virtual addresses.
700 */
701static void * __init efi_map_regions(int *count, int *pg_shift)
702{
703	void *p, *new_memmap = NULL;
704	unsigned long left = 0;
705	unsigned long desc_size;
706	efi_memory_desc_t *md;
707
708	desc_size = efi.memmap.desc_size;
709
710	p = NULL;
711	while ((p = efi_map_next_entry(p))) {
712		md = p;
713
714		if (!should_map_region(md))
715			continue;
716
717		efi_map_region(md);
718
719		if (left < desc_size) {
720			new_memmap = realloc_pages(new_memmap, *pg_shift);
721			if (!new_memmap)
722				return NULL;
723
724			left += PAGE_SIZE << *pg_shift;
725			(*pg_shift)++;
726		}
727
728		memcpy(new_memmap + (*count * desc_size), md, desc_size);
729
730		left -= desc_size;
731		(*count)++;
732	}
733
734	return new_memmap;
735}
736
737static void __init kexec_enter_virtual_mode(void)
738{
739#ifdef CONFIG_KEXEC_CORE
740	efi_memory_desc_t *md;
741	unsigned int num_pages;
742
743	/*
744	 * We don't do virtual mode, since we don't do runtime services, on
745	 * non-native EFI.
746	 */
747	if (efi_is_mixed()) {
748		efi_memmap_unmap();
749		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
750		return;
751	}
752
753	if (efi_alloc_page_tables()) {
754		pr_err("Failed to allocate EFI page tables\n");
755		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
756		return;
757	}
758
759	/*
760	* Map efi regions which were passed via setup_data. The virt_addr is a
761	* fixed addr which was used in first kernel of a kexec boot.
762	*/
763	for_each_efi_memory_desc(md)
764		efi_map_region_fixed(md); /* FIXME: add error handling */
765
766	/*
767	 * Unregister the early EFI memmap from efi_init() and install
768	 * the new EFI memory map.
769	 */
770	efi_memmap_unmap();
771
772	if (efi_memmap_init_late(efi.memmap.phys_map,
773				 efi.memmap.desc_size * efi.memmap.nr_map)) {
774		pr_err("Failed to remap late EFI memory map\n");
775		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
776		return;
777	}
778
779	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
780	num_pages >>= PAGE_SHIFT;
781
782	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
783		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
784		return;
785	}
786
787	efi_sync_low_kernel_mappings();
788	efi_native_runtime_setup();
789#endif
790}
791
792/*
793 * This function will switch the EFI runtime services to virtual mode.
794 * Essentially, we look through the EFI memmap and map every region that
795 * has the runtime attribute bit set in its memory descriptor into the
796 * efi_pgd page table.
797 *
798 * The new method does a pagetable switch in a preemption-safe manner
799 * so that we're in a different address space when calling a runtime
800 * function. For function arguments passing we do copy the PUDs of the
801 * kernel page table into efi_pgd prior to each call.
802 *
803 * Specially for kexec boot, efi runtime maps in previous kernel should
804 * be passed in via setup_data. In that case runtime ranges will be mapped
805 * to the same virtual addresses as the first kernel, see
806 * kexec_enter_virtual_mode().
807 */
808static void __init __efi_enter_virtual_mode(void)
809{
810	int count = 0, pg_shift = 0;
811	void *new_memmap = NULL;
812	efi_status_t status;
813	unsigned long pa;
814
815	if (efi_alloc_page_tables()) {
816		pr_err("Failed to allocate EFI page tables\n");
817		goto err;
818	}
819
820	efi_merge_regions();
821	new_memmap = efi_map_regions(&count, &pg_shift);
822	if (!new_memmap) {
823		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
824		goto err;
825	}
826
827	pa = __pa(new_memmap);
828
829	/*
830	 * Unregister the early EFI memmap from efi_init() and install
831	 * the new EFI memory map that we are about to pass to the
832	 * firmware via SetVirtualAddressMap().
833	 */
834	efi_memmap_unmap();
835
836	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
837		pr_err("Failed to remap late EFI memory map\n");
838		goto err;
839	}
840
841	if (efi_enabled(EFI_DBG)) {
842		pr_info("EFI runtime memory map:\n");
843		efi_print_memmap();
844	}
845
846	if (efi_setup_page_tables(pa, 1 << pg_shift))
847		goto err;
848
849	efi_sync_low_kernel_mappings();
850
851	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
852					     efi.memmap.desc_size,
853					     efi.memmap.desc_version,
854					     (efi_memory_desc_t *)pa,
855					     efi_systab_phys);
856	if (status != EFI_SUCCESS) {
857		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
858		       status);
859		goto err;
860	}
861
862	efi_check_for_embedded_firmwares();
863	efi_free_boot_services();
864
865	if (!efi_is_mixed())
866		efi_native_runtime_setup();
867	else
868		efi_thunk_runtime_setup();
869
870	/*
871	 * Apply more restrictive page table mapping attributes now that
872	 * SVAM() has been called and the firmware has performed all
873	 * necessary relocation fixups for the new virtual addresses.
874	 */
875	efi_runtime_update_mappings();
876
877	/* clean DUMMY object */
878	efi_delete_dummy_variable();
879	return;
880
881err:
882	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
883}
884
885void __init efi_enter_virtual_mode(void)
886{
887	if (efi_enabled(EFI_PARAVIRT))
888		return;
889
890	efi.runtime = (efi_runtime_services_t *)efi_runtime;
891
892	if (efi_setup)
893		kexec_enter_virtual_mode();
894	else
895		__efi_enter_virtual_mode();
896
897	efi_dump_pagetable();
898}
899
900bool efi_is_table_address(unsigned long phys_addr)
901{
902	unsigned int i;
903
904	if (phys_addr == EFI_INVALID_TABLE_ADDR)
905		return false;
906
907	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
908		if (*(efi_tables[i]) == phys_addr)
909			return true;
910
911	return false;
912}
913
914char *efi_systab_show_arch(char *str)
915{
916	if (uga_phys != EFI_INVALID_TABLE_ADDR)
917		str += sprintf(str, "UGA=0x%lx\n", uga_phys);
918	return str;
919}
920
921#define EFI_FIELD(var) efi_ ## var
922
923#define EFI_ATTR_SHOW(name) \
924static ssize_t name##_show(struct kobject *kobj, \
925				struct kobj_attribute *attr, char *buf) \
926{ \
927	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
928}
929
930EFI_ATTR_SHOW(fw_vendor);
931EFI_ATTR_SHOW(runtime);
932EFI_ATTR_SHOW(config_table);
933
934struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
935struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
936struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
937
938umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
939{
940	if (attr == &efi_attr_fw_vendor.attr) {
941		if (efi_enabled(EFI_PARAVIRT) ||
942				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
943			return 0;
944	} else if (attr == &efi_attr_runtime.attr) {
945		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
946			return 0;
947	} else if (attr == &efi_attr_config_table.attr) {
948		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
949			return 0;
950	}
951	return attr->mode;
952}
953
954enum efi_secureboot_mode __x86_ima_efi_boot_mode(void)
955{
956	return boot_params.secure_boot;
957}
958