1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/io.h>
13#include <linux/ioport.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include <linux/mmiotrace.h>
17#include <linux/cc_platform.h>
18#include <linux/efi.h>
19#include <linux/pgtable.h>
20#include <linux/kmsan.h>
21
22#include <asm/set_memory.h>
23#include <asm/e820/api.h>
24#include <asm/efi.h>
25#include <asm/fixmap.h>
26#include <asm/tlbflush.h>
27#include <asm/pgalloc.h>
28#include <asm/memtype.h>
29#include <asm/setup.h>
30
31#include "physaddr.h"
32
33/*
34 * Descriptor controlling ioremap() behavior.
35 */
36struct ioremap_desc {
37	unsigned int flags;
38};
39
40/*
41 * Fix up the linear direct mapping of the kernel to avoid cache attribute
42 * conflicts.
43 */
44int ioremap_change_attr(unsigned long vaddr, unsigned long size,
45			enum page_cache_mode pcm)
46{
47	unsigned long nrpages = size >> PAGE_SHIFT;
48	int err;
49
50	switch (pcm) {
51	case _PAGE_CACHE_MODE_UC:
52	default:
53		err = _set_memory_uc(vaddr, nrpages);
54		break;
55	case _PAGE_CACHE_MODE_WC:
56		err = _set_memory_wc(vaddr, nrpages);
57		break;
58	case _PAGE_CACHE_MODE_WT:
59		err = _set_memory_wt(vaddr, nrpages);
60		break;
61	case _PAGE_CACHE_MODE_WB:
62		err = _set_memory_wb(vaddr, nrpages);
63		break;
64	}
65
66	return err;
67}
68
69/* Does the range (or a subset of) contain normal RAM? */
70static unsigned int __ioremap_check_ram(struct resource *res)
71{
72	unsigned long start_pfn, stop_pfn;
73	unsigned long i;
74
75	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
76		return 0;
77
78	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
79	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
80	if (stop_pfn > start_pfn) {
81		for (i = 0; i < (stop_pfn - start_pfn); ++i)
82			if (pfn_valid(start_pfn + i) &&
83			    !PageReserved(pfn_to_page(start_pfn + i)))
84				return IORES_MAP_SYSTEM_RAM;
85	}
86
87	return 0;
88}
89
90/*
91 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
92 * there the whole memory is already encrypted.
93 */
94static unsigned int __ioremap_check_encrypted(struct resource *res)
95{
96	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
97		return 0;
98
99	switch (res->desc) {
100	case IORES_DESC_NONE:
101	case IORES_DESC_RESERVED:
102		break;
103	default:
104		return IORES_MAP_ENCRYPTED;
105	}
106
107	return 0;
108}
109
110/*
111 * The EFI runtime services data area is not covered by walk_mem_res(), but must
112 * be mapped encrypted when SEV is active.
113 */
114static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
115{
116	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
117		return;
118
119	if (x86_platform.hyper.is_private_mmio(addr)) {
120		desc->flags |= IORES_MAP_ENCRYPTED;
121		return;
122	}
123
124	if (!IS_ENABLED(CONFIG_EFI))
125		return;
126
127	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
128	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
129	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
130		desc->flags |= IORES_MAP_ENCRYPTED;
131}
132
133static int __ioremap_collect_map_flags(struct resource *res, void *arg)
134{
135	struct ioremap_desc *desc = arg;
136
137	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
138		desc->flags |= __ioremap_check_ram(res);
139
140	if (!(desc->flags & IORES_MAP_ENCRYPTED))
141		desc->flags |= __ioremap_check_encrypted(res);
142
143	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
144			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
145}
146
147/*
148 * To avoid multiple resource walks, this function walks resources marked as
149 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
150 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
151 *
152 * After that, deal with misc other ranges in __ioremap_check_other() which do
153 * not fall into the above category.
154 */
155static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
156				struct ioremap_desc *desc)
157{
158	u64 start, end;
159
160	start = (u64)addr;
161	end = start + size - 1;
162	memset(desc, 0, sizeof(struct ioremap_desc));
163
164	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
165
166	__ioremap_check_other(addr, desc);
167}
168
169/*
170 * Remap an arbitrary physical address space into the kernel virtual
171 * address space. It transparently creates kernel huge I/O mapping when
172 * the physical address is aligned by a huge page size (1GB or 2MB) and
173 * the requested size is at least the huge page size.
174 *
175 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
176 * Therefore, the mapping code falls back to use a smaller page toward 4KB
177 * when a mapping range is covered by non-WB type of MTRRs.
178 *
179 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
180 * have to convert them into an offset in a page-aligned mapping, but the
181 * caller shouldn't need to know that small detail.
182 */
183static void __iomem *
184__ioremap_caller(resource_size_t phys_addr, unsigned long size,
185		 enum page_cache_mode pcm, void *caller, bool encrypted)
186{
187	unsigned long offset, vaddr;
188	resource_size_t last_addr;
189	const resource_size_t unaligned_phys_addr = phys_addr;
190	const unsigned long unaligned_size = size;
191	struct ioremap_desc io_desc;
192	struct vm_struct *area;
193	enum page_cache_mode new_pcm;
194	pgprot_t prot;
195	int retval;
196	void __iomem *ret_addr;
197
198	/* Don't allow wraparound or zero size */
199	last_addr = phys_addr + size - 1;
200	if (!size || last_addr < phys_addr)
201		return NULL;
202
203	if (!phys_addr_valid(phys_addr)) {
204		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
205		       (unsigned long long)phys_addr);
206		WARN_ON_ONCE(1);
207		return NULL;
208	}
209
210	__ioremap_check_mem(phys_addr, size, &io_desc);
211
212	/*
213	 * Don't allow anybody to remap normal RAM that we're using..
214	 */
215	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
216		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
217			  &phys_addr, &last_addr);
218		return NULL;
219	}
220
221	/*
222	 * Mappings have to be page-aligned
223	 */
224	offset = phys_addr & ~PAGE_MASK;
225	phys_addr &= PAGE_MASK;
226	size = PAGE_ALIGN(last_addr+1) - phys_addr;
227
228	/*
229	 * Mask out any bits not part of the actual physical
230	 * address, like memory encryption bits.
231	 */
232	phys_addr &= PHYSICAL_PAGE_MASK;
233
234	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
235						pcm, &new_pcm);
236	if (retval) {
237		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
238		return NULL;
239	}
240
241	if (pcm != new_pcm) {
242		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
243			printk(KERN_ERR
244		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
245				(unsigned long long)phys_addr,
246				(unsigned long long)(phys_addr + size),
247				pcm, new_pcm);
248			goto err_free_memtype;
249		}
250		pcm = new_pcm;
251	}
252
253	/*
254	 * If the page being mapped is in memory and SEV is active then
255	 * make sure the memory encryption attribute is enabled in the
256	 * resulting mapping.
257	 * In TDX guests, memory is marked private by default. If encryption
258	 * is not requested (using encrypted), explicitly set decrypt
259	 * attribute in all IOREMAPPED memory.
260	 */
261	prot = PAGE_KERNEL_IO;
262	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
263		prot = pgprot_encrypted(prot);
264	else
265		prot = pgprot_decrypted(prot);
266
267	switch (pcm) {
268	case _PAGE_CACHE_MODE_UC:
269	default:
270		prot = __pgprot(pgprot_val(prot) |
271				cachemode2protval(_PAGE_CACHE_MODE_UC));
272		break;
273	case _PAGE_CACHE_MODE_UC_MINUS:
274		prot = __pgprot(pgprot_val(prot) |
275				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
276		break;
277	case _PAGE_CACHE_MODE_WC:
278		prot = __pgprot(pgprot_val(prot) |
279				cachemode2protval(_PAGE_CACHE_MODE_WC));
280		break;
281	case _PAGE_CACHE_MODE_WT:
282		prot = __pgprot(pgprot_val(prot) |
283				cachemode2protval(_PAGE_CACHE_MODE_WT));
284		break;
285	case _PAGE_CACHE_MODE_WB:
286		break;
287	}
288
289	/*
290	 * Ok, go for it..
291	 */
292	area = get_vm_area_caller(size, VM_IOREMAP, caller);
293	if (!area)
294		goto err_free_memtype;
295	area->phys_addr = phys_addr;
296	vaddr = (unsigned long) area->addr;
297
298	if (memtype_kernel_map_sync(phys_addr, size, pcm))
299		goto err_free_area;
300
301	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
302		goto err_free_area;
303
304	ret_addr = (void __iomem *) (vaddr + offset);
305	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
306
307	/*
308	 * Check if the request spans more than any BAR in the iomem resource
309	 * tree.
310	 */
311	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
312		pr_warn("caller %pS mapping multiple BARs\n", caller);
313
314	return ret_addr;
315err_free_area:
316	free_vm_area(area);
317err_free_memtype:
318	memtype_free(phys_addr, phys_addr + size);
319	return NULL;
320}
321
322/**
323 * ioremap     -   map bus memory into CPU space
324 * @phys_addr:    bus address of the memory
325 * @size:      size of the resource to map
326 *
327 * ioremap performs a platform specific sequence of operations to
328 * make bus memory CPU accessible via the readb/readw/readl/writeb/
329 * writew/writel functions and the other mmio helpers. The returned
330 * address is not guaranteed to be usable directly as a virtual
331 * address.
332 *
333 * This version of ioremap ensures that the memory is marked uncachable
334 * on the CPU as well as honouring existing caching rules from things like
335 * the PCI bus. Note that there are other caches and buffers on many
336 * busses. In particular driver authors should read up on PCI writes
337 *
338 * It's useful if some control registers are in such an area and
339 * write combining or read caching is not desirable:
340 *
341 * Must be freed with iounmap.
342 */
343void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
344{
345	/*
346	 * Ideally, this should be:
347	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
348	 *
349	 * Till we fix all X drivers to use ioremap_wc(), we will use
350	 * UC MINUS. Drivers that are certain they need or can already
351	 * be converted over to strong UC can use ioremap_uc().
352	 */
353	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
354
355	return __ioremap_caller(phys_addr, size, pcm,
356				__builtin_return_address(0), false);
357}
358EXPORT_SYMBOL(ioremap);
359
360/**
361 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
362 * @phys_addr:    bus address of the memory
363 * @size:      size of the resource to map
364 *
365 * ioremap_uc performs a platform specific sequence of operations to
366 * make bus memory CPU accessible via the readb/readw/readl/writeb/
367 * writew/writel functions and the other mmio helpers. The returned
368 * address is not guaranteed to be usable directly as a virtual
369 * address.
370 *
371 * This version of ioremap ensures that the memory is marked with a strong
372 * preference as completely uncachable on the CPU when possible. For non-PAT
373 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
374 * systems this will set the PAT entry for the pages as strong UC.  This call
375 * will honor existing caching rules from things like the PCI bus. Note that
376 * there are other caches and buffers on many busses. In particular driver
377 * authors should read up on PCI writes.
378 *
379 * It's useful if some control registers are in such an area and
380 * write combining or read caching is not desirable:
381 *
382 * Must be freed with iounmap.
383 */
384void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
385{
386	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
387
388	return __ioremap_caller(phys_addr, size, pcm,
389				__builtin_return_address(0), false);
390}
391EXPORT_SYMBOL_GPL(ioremap_uc);
392
393/**
394 * ioremap_wc	-	map memory into CPU space write combined
395 * @phys_addr:	bus address of the memory
396 * @size:	size of the resource to map
397 *
398 * This version of ioremap ensures that the memory is marked write combining.
399 * Write combining allows faster writes to some hardware devices.
400 *
401 * Must be freed with iounmap.
402 */
403void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
404{
405	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
406					__builtin_return_address(0), false);
407}
408EXPORT_SYMBOL(ioremap_wc);
409
410/**
411 * ioremap_wt	-	map memory into CPU space write through
412 * @phys_addr:	bus address of the memory
413 * @size:	size of the resource to map
414 *
415 * This version of ioremap ensures that the memory is marked write through.
416 * Write through stores data into memory while keeping the cache up-to-date.
417 *
418 * Must be freed with iounmap.
419 */
420void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
421{
422	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
423					__builtin_return_address(0), false);
424}
425EXPORT_SYMBOL(ioremap_wt);
426
427void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
428{
429	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
430				__builtin_return_address(0), true);
431}
432EXPORT_SYMBOL(ioremap_encrypted);
433
434void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
435{
436	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
437				__builtin_return_address(0), false);
438}
439EXPORT_SYMBOL(ioremap_cache);
440
441void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
442				unsigned long prot_val)
443{
444	return __ioremap_caller(phys_addr, size,
445				pgprot2cachemode(__pgprot(prot_val)),
446				__builtin_return_address(0), false);
447}
448EXPORT_SYMBOL(ioremap_prot);
449
450/**
451 * iounmap - Free a IO remapping
452 * @addr: virtual address from ioremap_*
453 *
454 * Caller must ensure there is only one unmapping for the same pointer.
455 */
456void iounmap(volatile void __iomem *addr)
457{
458	struct vm_struct *p, *o;
459
460	if ((void __force *)addr <= high_memory)
461		return;
462
463	/*
464	 * The PCI/ISA range special-casing was removed from __ioremap()
465	 * so this check, in theory, can be removed. However, there are
466	 * cases where iounmap() is called for addresses not obtained via
467	 * ioremap() (vga16fb for example). Add a warning so that these
468	 * cases can be caught and fixed.
469	 */
470	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
471	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
472		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
473		return;
474	}
475
476	mmiotrace_iounmap(addr);
477
478	addr = (volatile void __iomem *)
479		(PAGE_MASK & (unsigned long __force)addr);
480
481	/* Use the vm area unlocked, assuming the caller
482	   ensures there isn't another iounmap for the same address
483	   in parallel. Reuse of the virtual address is prevented by
484	   leaving it in the global lists until we're done with it.
485	   cpa takes care of the direct mappings. */
486	p = find_vm_area((void __force *)addr);
487
488	if (!p) {
489		printk(KERN_ERR "iounmap: bad address %p\n", addr);
490		dump_stack();
491		return;
492	}
493
494	kmsan_iounmap_page_range((unsigned long)addr,
495		(unsigned long)addr + get_vm_area_size(p));
496	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
497
498	/* Finally remove it */
499	o = remove_vm_area((void __force *)addr);
500	BUG_ON(p != o || o == NULL);
501	kfree(p);
502}
503EXPORT_SYMBOL(iounmap);
504
505/*
506 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
507 * access
508 */
509void *xlate_dev_mem_ptr(phys_addr_t phys)
510{
511	unsigned long start  = phys &  PAGE_MASK;
512	unsigned long offset = phys & ~PAGE_MASK;
513	void *vaddr;
514
515	/* memremap() maps if RAM, otherwise falls back to ioremap() */
516	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
517
518	/* Only add the offset on success and return NULL if memremap() failed */
519	if (vaddr)
520		vaddr += offset;
521
522	return vaddr;
523}
524
525void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
526{
527	memunmap((void *)((unsigned long)addr & PAGE_MASK));
528}
529
530#ifdef CONFIG_AMD_MEM_ENCRYPT
531/*
532 * Examine the physical address to determine if it is an area of memory
533 * that should be mapped decrypted.  If the memory is not part of the
534 * kernel usable area it was accessed and created decrypted, so these
535 * areas should be mapped decrypted. And since the encryption key can
536 * change across reboots, persistent memory should also be mapped
537 * decrypted.
538 *
539 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
540 * only persistent memory should be mapped decrypted.
541 */
542static bool memremap_should_map_decrypted(resource_size_t phys_addr,
543					  unsigned long size)
544{
545	int is_pmem;
546
547	/*
548	 * Check if the address is part of a persistent memory region.
549	 * This check covers areas added by E820, EFI and ACPI.
550	 */
551	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
552				    IORES_DESC_PERSISTENT_MEMORY);
553	if (is_pmem != REGION_DISJOINT)
554		return true;
555
556	/*
557	 * Check if the non-volatile attribute is set for an EFI
558	 * reserved area.
559	 */
560	if (efi_enabled(EFI_BOOT)) {
561		switch (efi_mem_type(phys_addr)) {
562		case EFI_RESERVED_TYPE:
563			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
564				return true;
565			break;
566		default:
567			break;
568		}
569	}
570
571	/* Check if the address is outside kernel usable area */
572	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
573	case E820_TYPE_RESERVED:
574	case E820_TYPE_ACPI:
575	case E820_TYPE_NVS:
576	case E820_TYPE_UNUSABLE:
577		/* For SEV, these areas are encrypted */
578		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
579			break;
580		fallthrough;
581
582	case E820_TYPE_PRAM:
583		return true;
584	default:
585		break;
586	}
587
588	return false;
589}
590
591/*
592 * Examine the physical address to determine if it is EFI data. Check
593 * it against the boot params structure and EFI tables and memory types.
594 */
595static bool memremap_is_efi_data(resource_size_t phys_addr,
596				 unsigned long size)
597{
598	u64 paddr;
599
600	/* Check if the address is part of EFI boot/runtime data */
601	if (!efi_enabled(EFI_BOOT))
602		return false;
603
604	paddr = boot_params.efi_info.efi_memmap_hi;
605	paddr <<= 32;
606	paddr |= boot_params.efi_info.efi_memmap;
607	if (phys_addr == paddr)
608		return true;
609
610	paddr = boot_params.efi_info.efi_systab_hi;
611	paddr <<= 32;
612	paddr |= boot_params.efi_info.efi_systab;
613	if (phys_addr == paddr)
614		return true;
615
616	if (efi_is_table_address(phys_addr))
617		return true;
618
619	switch (efi_mem_type(phys_addr)) {
620	case EFI_BOOT_SERVICES_DATA:
621	case EFI_RUNTIME_SERVICES_DATA:
622		return true;
623	default:
624		break;
625	}
626
627	return false;
628}
629
630/*
631 * Examine the physical address to determine if it is boot data by checking
632 * it against the boot params setup_data chain.
633 */
634static bool memremap_is_setup_data(resource_size_t phys_addr,
635				   unsigned long size)
636{
637	struct setup_indirect *indirect;
638	struct setup_data *data;
639	u64 paddr, paddr_next;
640
641	paddr = boot_params.hdr.setup_data;
642	while (paddr) {
643		unsigned int len;
644
645		if (phys_addr == paddr)
646			return true;
647
648		data = memremap(paddr, sizeof(*data),
649				MEMREMAP_WB | MEMREMAP_DEC);
650		if (!data) {
651			pr_warn("failed to memremap setup_data entry\n");
652			return false;
653		}
654
655		paddr_next = data->next;
656		len = data->len;
657
658		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
659			memunmap(data);
660			return true;
661		}
662
663		if (data->type == SETUP_INDIRECT) {
664			memunmap(data);
665			data = memremap(paddr, sizeof(*data) + len,
666					MEMREMAP_WB | MEMREMAP_DEC);
667			if (!data) {
668				pr_warn("failed to memremap indirect setup_data\n");
669				return false;
670			}
671
672			indirect = (struct setup_indirect *)data->data;
673
674			if (indirect->type != SETUP_INDIRECT) {
675				paddr = indirect->addr;
676				len = indirect->len;
677			}
678		}
679
680		memunmap(data);
681
682		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
683			return true;
684
685		paddr = paddr_next;
686	}
687
688	return false;
689}
690
691/*
692 * Examine the physical address to determine if it is boot data by checking
693 * it against the boot params setup_data chain (early boot version).
694 */
695static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
696						unsigned long size)
697{
698	struct setup_indirect *indirect;
699	struct setup_data *data;
700	u64 paddr, paddr_next;
701
702	paddr = boot_params.hdr.setup_data;
703	while (paddr) {
704		unsigned int len, size;
705
706		if (phys_addr == paddr)
707			return true;
708
709		data = early_memremap_decrypted(paddr, sizeof(*data));
710		if (!data) {
711			pr_warn("failed to early memremap setup_data entry\n");
712			return false;
713		}
714
715		size = sizeof(*data);
716
717		paddr_next = data->next;
718		len = data->len;
719
720		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
721			early_memunmap(data, sizeof(*data));
722			return true;
723		}
724
725		if (data->type == SETUP_INDIRECT) {
726			size += len;
727			early_memunmap(data, sizeof(*data));
728			data = early_memremap_decrypted(paddr, size);
729			if (!data) {
730				pr_warn("failed to early memremap indirect setup_data\n");
731				return false;
732			}
733
734			indirect = (struct setup_indirect *)data->data;
735
736			if (indirect->type != SETUP_INDIRECT) {
737				paddr = indirect->addr;
738				len = indirect->len;
739			}
740		}
741
742		early_memunmap(data, size);
743
744		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
745			return true;
746
747		paddr = paddr_next;
748	}
749
750	return false;
751}
752
753/*
754 * Architecture function to determine if RAM remap is allowed. By default, a
755 * RAM remap will map the data as encrypted. Determine if a RAM remap should
756 * not be done so that the data will be mapped decrypted.
757 */
758bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
759				 unsigned long flags)
760{
761	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
762		return true;
763
764	if (flags & MEMREMAP_ENC)
765		return true;
766
767	if (flags & MEMREMAP_DEC)
768		return false;
769
770	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
771		if (memremap_is_setup_data(phys_addr, size) ||
772		    memremap_is_efi_data(phys_addr, size))
773			return false;
774	}
775
776	return !memremap_should_map_decrypted(phys_addr, size);
777}
778
779/*
780 * Architecture override of __weak function to adjust the protection attributes
781 * used when remapping memory. By default, early_memremap() will map the data
782 * as encrypted. Determine if an encrypted mapping should not be done and set
783 * the appropriate protection attributes.
784 */
785pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
786					     unsigned long size,
787					     pgprot_t prot)
788{
789	bool encrypted_prot;
790
791	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
792		return prot;
793
794	encrypted_prot = true;
795
796	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
797		if (early_memremap_is_setup_data(phys_addr, size) ||
798		    memremap_is_efi_data(phys_addr, size))
799			encrypted_prot = false;
800	}
801
802	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
803		encrypted_prot = false;
804
805	return encrypted_prot ? pgprot_encrypted(prot)
806			      : pgprot_decrypted(prot);
807}
808
809bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
810{
811	return arch_memremap_can_ram_remap(phys_addr, size, 0);
812}
813
814/* Remap memory with encryption */
815void __init *early_memremap_encrypted(resource_size_t phys_addr,
816				      unsigned long size)
817{
818	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
819}
820
821/*
822 * Remap memory with encryption and write-protected - cannot be called
823 * before pat_init() is called
824 */
825void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
826					 unsigned long size)
827{
828	if (!x86_has_pat_wp())
829		return NULL;
830	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
831}
832
833/* Remap memory without encryption */
834void __init *early_memremap_decrypted(resource_size_t phys_addr,
835				      unsigned long size)
836{
837	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
838}
839
840/*
841 * Remap memory without encryption and write-protected - cannot be called
842 * before pat_init() is called
843 */
844void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
845					 unsigned long size)
846{
847	if (!x86_has_pat_wp())
848		return NULL;
849	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
850}
851#endif	/* CONFIG_AMD_MEM_ENCRYPT */
852
853static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
854
855static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
856{
857	/* Don't assume we're using swapper_pg_dir at this point */
858	pgd_t *base = __va(read_cr3_pa());
859	pgd_t *pgd = &base[pgd_index(addr)];
860	p4d_t *p4d = p4d_offset(pgd, addr);
861	pud_t *pud = pud_offset(p4d, addr);
862	pmd_t *pmd = pmd_offset(pud, addr);
863
864	return pmd;
865}
866
867static inline pte_t * __init early_ioremap_pte(unsigned long addr)
868{
869	return &bm_pte[pte_index(addr)];
870}
871
872bool __init is_early_ioremap_ptep(pte_t *ptep)
873{
874	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
875}
876
877void __init early_ioremap_init(void)
878{
879	pmd_t *pmd;
880
881#ifdef CONFIG_X86_64
882	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
883#else
884	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
885#endif
886
887	early_ioremap_setup();
888
889	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
890	memset(bm_pte, 0, sizeof(bm_pte));
891	pmd_populate_kernel(&init_mm, pmd, bm_pte);
892
893	/*
894	 * The boot-ioremap range spans multiple pmds, for which
895	 * we are not prepared:
896	 */
897#define __FIXADDR_TOP (-PAGE_SIZE)
898	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
899		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
900#undef __FIXADDR_TOP
901	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
902		WARN_ON(1);
903		printk(KERN_WARNING "pmd %p != %p\n",
904		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
905		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
906			fix_to_virt(FIX_BTMAP_BEGIN));
907		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
908			fix_to_virt(FIX_BTMAP_END));
909
910		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
911		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
912		       FIX_BTMAP_BEGIN);
913	}
914}
915
916void __init __early_set_fixmap(enum fixed_addresses idx,
917			       phys_addr_t phys, pgprot_t flags)
918{
919	unsigned long addr = __fix_to_virt(idx);
920	pte_t *pte;
921
922	if (idx >= __end_of_fixed_addresses) {
923		BUG();
924		return;
925	}
926	pte = early_ioremap_pte(addr);
927
928	/* Sanitize 'prot' against any unsupported bits: */
929	pgprot_val(flags) &= __supported_pte_mask;
930
931	if (pgprot_val(flags))
932		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
933	else
934		pte_clear(&init_mm, addr, pte);
935	flush_tlb_one_kernel(addr);
936}
937