1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 *   Yaniv Kamay  <yaniv@qumranet.com>
12 *   Avi Kivity   <avi@qumranet.com>
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/kvm_types.h>
18#include <linux/hashtable.h>
19#include <linux/amd-iommu.h>
20#include <linux/kvm_host.h>
21
22#include <asm/irq_remapping.h>
23
24#include "trace.h"
25#include "lapic.h"
26#include "x86.h"
27#include "irq.h"
28#include "svm.h"
29
30/*
31 * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID,
32 * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry
33 * if an interrupt can't be delivered, e.g. because the vCPU isn't running.
34 *
35 * For the vCPU ID, use however many bits are currently allowed for the max
36 * guest physical APIC ID (limited by the size of the physical ID table), and
37 * use whatever bits remain to assign arbitrary AVIC IDs to VMs.  Note, the
38 * size of the GATag is defined by hardware (32 bits), but is an opaque value
39 * as far as hardware is concerned.
40 */
41#define AVIC_VCPU_ID_MASK		AVIC_PHYSICAL_MAX_INDEX_MASK
42
43#define AVIC_VM_ID_SHIFT		HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK)
44#define AVIC_VM_ID_MASK			(GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT)
45
46#define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK)
47#define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
48
49#define __AVIC_GATAG(vm_id, vcpu_id)	((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \
50					 ((vcpu_id) & AVIC_VCPU_ID_MASK))
51#define AVIC_GATAG(vm_id, vcpu_id)					\
52({									\
53	u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id);			\
54									\
55	WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id));	\
56	WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id));		\
57	ga_tag;								\
58})
59
60static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u);
61
62static bool force_avic;
63module_param_unsafe(force_avic, bool, 0444);
64
65/* Note:
66 * This hash table is used to map VM_ID to a struct kvm_svm,
67 * when handling AMD IOMMU GALOG notification to schedule in
68 * a particular vCPU.
69 */
70#define SVM_VM_DATA_HASH_BITS	8
71static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
72static u32 next_vm_id = 0;
73static bool next_vm_id_wrapped = 0;
74static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
75bool x2avic_enabled;
76
77/*
78 * This is a wrapper of struct amd_iommu_ir_data.
79 */
80struct amd_svm_iommu_ir {
81	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
82	void *data;		/* Storing pointer to struct amd_ir_data */
83};
84
85static void avic_activate_vmcb(struct vcpu_svm *svm)
86{
87	struct vmcb *vmcb = svm->vmcb01.ptr;
88
89	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
90	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
91
92	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
93
94	/*
95	 * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR
96	 * accesses, while interrupt injection to a running vCPU can be
97	 * achieved using AVIC doorbell.  KVM disables the APIC access page
98	 * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling
99	 * AVIC in hybrid mode activates only the doorbell mechanism.
100	 */
101	if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) {
102		vmcb->control.int_ctl |= X2APIC_MODE_MASK;
103		vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID;
104		/* Disabling MSR intercept for x2APIC registers */
105		svm_set_x2apic_msr_interception(svm, false);
106	} else {
107		/*
108		 * Flush the TLB, the guest may have inserted a non-APIC
109		 * mapping into the TLB while AVIC was disabled.
110		 */
111		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu);
112
113		/* For xAVIC and hybrid-xAVIC modes */
114		vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID;
115		/* Enabling MSR intercept for x2APIC registers */
116		svm_set_x2apic_msr_interception(svm, true);
117	}
118}
119
120static void avic_deactivate_vmcb(struct vcpu_svm *svm)
121{
122	struct vmcb *vmcb = svm->vmcb01.ptr;
123
124	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
125	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
126
127	/*
128	 * If running nested and the guest uses its own MSR bitmap, there
129	 * is no need to update L0's msr bitmap
130	 */
131	if (is_guest_mode(&svm->vcpu) &&
132	    vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))
133		return;
134
135	/* Enabling MSR intercept for x2APIC registers */
136	svm_set_x2apic_msr_interception(svm, true);
137}
138
139/* Note:
140 * This function is called from IOMMU driver to notify
141 * SVM to schedule in a particular vCPU of a particular VM.
142 */
143int avic_ga_log_notifier(u32 ga_tag)
144{
145	unsigned long flags;
146	struct kvm_svm *kvm_svm;
147	struct kvm_vcpu *vcpu = NULL;
148	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
149	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
150
151	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
152	trace_kvm_avic_ga_log(vm_id, vcpu_id);
153
154	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
155	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
156		if (kvm_svm->avic_vm_id != vm_id)
157			continue;
158		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
159		break;
160	}
161	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
162
163	/* Note:
164	 * At this point, the IOMMU should have already set the pending
165	 * bit in the vAPIC backing page. So, we just need to schedule
166	 * in the vcpu.
167	 */
168	if (vcpu)
169		kvm_vcpu_wake_up(vcpu);
170
171	return 0;
172}
173
174void avic_vm_destroy(struct kvm *kvm)
175{
176	unsigned long flags;
177	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
178
179	if (!enable_apicv)
180		return;
181
182	if (kvm_svm->avic_logical_id_table_page)
183		__free_page(kvm_svm->avic_logical_id_table_page);
184	if (kvm_svm->avic_physical_id_table_page)
185		__free_page(kvm_svm->avic_physical_id_table_page);
186
187	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
188	hash_del(&kvm_svm->hnode);
189	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
190}
191
192int avic_vm_init(struct kvm *kvm)
193{
194	unsigned long flags;
195	int err = -ENOMEM;
196	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
197	struct kvm_svm *k2;
198	struct page *p_page;
199	struct page *l_page;
200	u32 vm_id;
201
202	if (!enable_apicv)
203		return 0;
204
205	/* Allocating physical APIC ID table (4KB) */
206	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
207	if (!p_page)
208		goto free_avic;
209
210	kvm_svm->avic_physical_id_table_page = p_page;
211
212	/* Allocating logical APIC ID table (4KB) */
213	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
214	if (!l_page)
215		goto free_avic;
216
217	kvm_svm->avic_logical_id_table_page = l_page;
218
219	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
220 again:
221	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
222	if (vm_id == 0) { /* id is 1-based, zero is not okay */
223		next_vm_id_wrapped = 1;
224		goto again;
225	}
226	/* Is it still in use? Only possible if wrapped at least once */
227	if (next_vm_id_wrapped) {
228		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
229			if (k2->avic_vm_id == vm_id)
230				goto again;
231		}
232	}
233	kvm_svm->avic_vm_id = vm_id;
234	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
235	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
236
237	return 0;
238
239free_avic:
240	avic_vm_destroy(kvm);
241	return err;
242}
243
244void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
245{
246	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
247	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
248	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
249	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
250
251	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
252	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
253	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
254	vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
255
256	if (kvm_apicv_activated(svm->vcpu.kvm))
257		avic_activate_vmcb(svm);
258	else
259		avic_deactivate_vmcb(svm);
260}
261
262static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
263				       unsigned int index)
264{
265	u64 *avic_physical_id_table;
266	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
267
268	if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) ||
269	    (index > X2AVIC_MAX_PHYSICAL_ID))
270		return NULL;
271
272	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
273
274	return &avic_physical_id_table[index];
275}
276
277static int avic_init_backing_page(struct kvm_vcpu *vcpu)
278{
279	u64 *entry, new_entry;
280	int id = vcpu->vcpu_id;
281	struct vcpu_svm *svm = to_svm(vcpu);
282
283	if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) ||
284	    (id > X2AVIC_MAX_PHYSICAL_ID))
285		return -EINVAL;
286
287	if (!vcpu->arch.apic->regs)
288		return -EINVAL;
289
290	if (kvm_apicv_activated(vcpu->kvm)) {
291		int ret;
292
293		/*
294		 * Note, AVIC hardware walks the nested page table to check
295		 * permissions, but does not use the SPA address specified in
296		 * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE
297		 * pointer field of the VMCB.
298		 */
299		ret = kvm_alloc_apic_access_page(vcpu->kvm);
300		if (ret)
301			return ret;
302	}
303
304	svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
305
306	/* Setting AVIC backing page address in the phy APIC ID table */
307	entry = avic_get_physical_id_entry(vcpu, id);
308	if (!entry)
309		return -EINVAL;
310
311	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
312			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
313			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
314	WRITE_ONCE(*entry, new_entry);
315
316	svm->avic_physical_id_cache = entry;
317
318	return 0;
319}
320
321void avic_ring_doorbell(struct kvm_vcpu *vcpu)
322{
323	/*
324	 * Note, the vCPU could get migrated to a different pCPU at any point,
325	 * which could result in signalling the wrong/previous pCPU.  But if
326	 * that happens the vCPU is guaranteed to do a VMRUN (after being
327	 * migrated) and thus will process pending interrupts, i.e. a doorbell
328	 * is not needed (and the spurious one is harmless).
329	 */
330	int cpu = READ_ONCE(vcpu->cpu);
331
332	if (cpu != get_cpu()) {
333		wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
334		trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
335	}
336	put_cpu();
337}
338
339
340static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl)
341{
342	vcpu->arch.apic->irr_pending = true;
343	svm_complete_interrupt_delivery(vcpu,
344					icrl & APIC_MODE_MASK,
345					icrl & APIC_INT_LEVELTRIG,
346					icrl & APIC_VECTOR_MASK);
347}
348
349static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id,
350					  u32 icrl)
351{
352	/*
353	 * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID,
354	 * i.e. APIC ID == vCPU ID.
355	 */
356	struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id);
357
358	/* Once again, nothing to do if the target vCPU doesn't exist. */
359	if (unlikely(!target_vcpu))
360		return;
361
362	avic_kick_vcpu(target_vcpu, icrl);
363}
364
365static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table,
366					 u32 logid_index, u32 icrl)
367{
368	u32 physical_id;
369
370	if (avic_logical_id_table) {
371		u32 logid_entry = avic_logical_id_table[logid_index];
372
373		/* Nothing to do if the logical destination is invalid. */
374		if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
375			return;
376
377		physical_id = logid_entry &
378			      AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
379	} else {
380		/*
381		 * For x2APIC, the logical APIC ID is a read-only value that is
382		 * derived from the x2APIC ID, thus the x2APIC ID can be found
383		 * by reversing the calculation (stored in logid_index).  Note,
384		 * bits 31:20 of the x2APIC ID aren't propagated to the logical
385		 * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS.
386		 */
387		physical_id = logid_index;
388	}
389
390	avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl);
391}
392
393/*
394 * A fast-path version of avic_kick_target_vcpus(), which attempts to match
395 * destination APIC ID to vCPU without looping through all vCPUs.
396 */
397static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
398				       u32 icrl, u32 icrh, u32 index)
399{
400	int dest_mode = icrl & APIC_DEST_MASK;
401	int shorthand = icrl & APIC_SHORT_MASK;
402	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
403	u32 dest;
404
405	if (shorthand != APIC_DEST_NOSHORT)
406		return -EINVAL;
407
408	if (apic_x2apic_mode(source))
409		dest = icrh;
410	else
411		dest = GET_XAPIC_DEST_FIELD(icrh);
412
413	if (dest_mode == APIC_DEST_PHYSICAL) {
414		/* broadcast destination, use slow path */
415		if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
416			return -EINVAL;
417		if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
418			return -EINVAL;
419
420		if (WARN_ON_ONCE(dest != index))
421			return -EINVAL;
422
423		avic_kick_vcpu_by_physical_id(kvm, dest, icrl);
424	} else {
425		u32 *avic_logical_id_table;
426		unsigned long bitmap, i;
427		u32 cluster;
428
429		if (apic_x2apic_mode(source)) {
430			/* 16 bit dest mask, 16 bit cluster id */
431			bitmap = dest & 0xFFFF;
432			cluster = (dest >> 16) << 4;
433		} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
434			/* 8 bit dest mask*/
435			bitmap = dest;
436			cluster = 0;
437		} else {
438			/* 4 bit desk mask, 4 bit cluster id */
439			bitmap = dest & 0xF;
440			cluster = (dest >> 4) << 2;
441		}
442
443		/* Nothing to do if there are no destinations in the cluster. */
444		if (unlikely(!bitmap))
445			return 0;
446
447		if (apic_x2apic_mode(source))
448			avic_logical_id_table = NULL;
449		else
450			avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page);
451
452		/*
453		 * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical
454		 * IDs, thus each bit in the destination is guaranteed to map
455		 * to at most one vCPU.
456		 */
457		for_each_set_bit(i, &bitmap, 16)
458			avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table,
459						     cluster + i, icrl);
460	}
461
462	return 0;
463}
464
465static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
466				   u32 icrl, u32 icrh, u32 index)
467{
468	u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh);
469	unsigned long i;
470	struct kvm_vcpu *vcpu;
471
472	if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
473		return;
474
475	trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
476
477	/*
478	 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
479	 * event.  There's no need to signal doorbells, as hardware has handled
480	 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
481	 * since entered the guest will have processed pending IRQs at VMRUN.
482	 */
483	kvm_for_each_vcpu(i, vcpu, kvm) {
484		if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
485					dest, icrl & APIC_DEST_MASK))
486			avic_kick_vcpu(vcpu, icrl);
487	}
488}
489
490int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
491{
492	struct vcpu_svm *svm = to_svm(vcpu);
493	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
494	u32 icrl = svm->vmcb->control.exit_info_1;
495	u32 id = svm->vmcb->control.exit_info_2 >> 32;
496	u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
497	struct kvm_lapic *apic = vcpu->arch.apic;
498
499	trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
500
501	switch (id) {
502	case AVIC_IPI_FAILURE_INVALID_TARGET:
503	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
504		/*
505		 * Emulate IPIs that are not handled by AVIC hardware, which
506		 * only virtualizes Fixed, Edge-Triggered INTRs, and falls over
507		 * if _any_ targets are invalid, e.g. if the logical mode mask
508		 * is a superset of running vCPUs.
509		 *
510		 * The exit is a trap, e.g. ICR holds the correct value and RIP
511		 * has been advanced, KVM is responsible only for emulating the
512		 * IPI.  Sadly, hardware may sometimes leave the BUSY flag set,
513		 * in which case KVM needs to emulate the ICR write as well in
514		 * order to clear the BUSY flag.
515		 */
516		if (icrl & APIC_ICR_BUSY)
517			kvm_apic_write_nodecode(vcpu, APIC_ICR);
518		else
519			kvm_apic_send_ipi(apic, icrl, icrh);
520		break;
521	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
522		/*
523		 * At this point, we expect that the AVIC HW has already
524		 * set the appropriate IRR bits on the valid target
525		 * vcpus. So, we just need to kick the appropriate vcpu.
526		 */
527		avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
528		break;
529	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
530		WARN_ONCE(1, "Invalid backing page\n");
531		break;
532	case AVIC_IPI_FAILURE_INVALID_IPI_VECTOR:
533		/* Invalid IPI with vector < 16 */
534		break;
535	default:
536		vcpu_unimpl(vcpu, "Unknown avic incomplete IPI interception\n");
537	}
538
539	return 1;
540}
541
542unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
543{
544	if (is_guest_mode(vcpu))
545		return APICV_INHIBIT_REASON_NESTED;
546	return 0;
547}
548
549static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
550{
551	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
552	u32 *logical_apic_id_table;
553	u32 cluster, index;
554
555	ldr = GET_APIC_LOGICAL_ID(ldr);
556
557	if (flat) {
558		cluster = 0;
559	} else {
560		cluster = (ldr >> 4);
561		if (cluster >= 0xf)
562			return NULL;
563		ldr &= 0xf;
564	}
565	if (!ldr || !is_power_of_2(ldr))
566		return NULL;
567
568	index = __ffs(ldr);
569	if (WARN_ON_ONCE(index > 7))
570		return NULL;
571	index += (cluster << 2);
572
573	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
574
575	return &logical_apic_id_table[index];
576}
577
578static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
579{
580	bool flat;
581	u32 *entry, new_entry;
582
583	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
584	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
585	if (!entry)
586		return;
587
588	new_entry = READ_ONCE(*entry);
589	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
590	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
591	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
592	WRITE_ONCE(*entry, new_entry);
593}
594
595static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
596{
597	struct vcpu_svm *svm = to_svm(vcpu);
598	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
599	u32 *entry;
600
601	/* Note: x2AVIC does not use logical APIC ID table */
602	if (apic_x2apic_mode(vcpu->arch.apic))
603		return;
604
605	entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
606	if (entry)
607		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
608}
609
610static void avic_handle_ldr_update(struct kvm_vcpu *vcpu)
611{
612	struct vcpu_svm *svm = to_svm(vcpu);
613	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
614	u32 id = kvm_xapic_id(vcpu->arch.apic);
615
616	/* AVIC does not support LDR update for x2APIC */
617	if (apic_x2apic_mode(vcpu->arch.apic))
618		return;
619
620	if (ldr == svm->ldr_reg)
621		return;
622
623	avic_invalidate_logical_id_entry(vcpu);
624
625	svm->ldr_reg = ldr;
626	avic_ldr_write(vcpu, id, ldr);
627}
628
629static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
630{
631	struct vcpu_svm *svm = to_svm(vcpu);
632	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
633
634	if (svm->dfr_reg == dfr)
635		return;
636
637	avic_invalidate_logical_id_entry(vcpu);
638	svm->dfr_reg = dfr;
639}
640
641static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
642{
643	u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
644				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
645
646	switch (offset) {
647	case APIC_LDR:
648		avic_handle_ldr_update(vcpu);
649		break;
650	case APIC_DFR:
651		avic_handle_dfr_update(vcpu);
652		break;
653	case APIC_RRR:
654		/* Ignore writes to Read Remote Data, it's read-only. */
655		return 1;
656	default:
657		break;
658	}
659
660	kvm_apic_write_nodecode(vcpu, offset);
661	return 1;
662}
663
664static bool is_avic_unaccelerated_access_trap(u32 offset)
665{
666	bool ret = false;
667
668	switch (offset) {
669	case APIC_ID:
670	case APIC_EOI:
671	case APIC_RRR:
672	case APIC_LDR:
673	case APIC_DFR:
674	case APIC_SPIV:
675	case APIC_ESR:
676	case APIC_ICR:
677	case APIC_LVTT:
678	case APIC_LVTTHMR:
679	case APIC_LVTPC:
680	case APIC_LVT0:
681	case APIC_LVT1:
682	case APIC_LVTERR:
683	case APIC_TMICT:
684	case APIC_TDCR:
685		ret = true;
686		break;
687	default:
688		break;
689	}
690	return ret;
691}
692
693int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
694{
695	struct vcpu_svm *svm = to_svm(vcpu);
696	int ret = 0;
697	u32 offset = svm->vmcb->control.exit_info_1 &
698		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
699	u32 vector = svm->vmcb->control.exit_info_2 &
700		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
701	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
702		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
703	bool trap = is_avic_unaccelerated_access_trap(offset);
704
705	trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
706					    trap, write, vector);
707	if (trap) {
708		/* Handling Trap */
709		WARN_ONCE(!write, "svm: Handling trap read.\n");
710		ret = avic_unaccel_trap_write(vcpu);
711	} else {
712		/* Handling Fault */
713		ret = kvm_emulate_instruction(vcpu, 0);
714	}
715
716	return ret;
717}
718
719int avic_init_vcpu(struct vcpu_svm *svm)
720{
721	int ret;
722	struct kvm_vcpu *vcpu = &svm->vcpu;
723
724	if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
725		return 0;
726
727	ret = avic_init_backing_page(vcpu);
728	if (ret)
729		return ret;
730
731	INIT_LIST_HEAD(&svm->ir_list);
732	spin_lock_init(&svm->ir_list_lock);
733	svm->dfr_reg = APIC_DFR_FLAT;
734
735	return ret;
736}
737
738void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
739{
740	avic_handle_dfr_update(vcpu);
741	avic_handle_ldr_update(vcpu);
742}
743
744static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
745{
746	int ret = 0;
747	unsigned long flags;
748	struct amd_svm_iommu_ir *ir;
749	struct vcpu_svm *svm = to_svm(vcpu);
750
751	if (!kvm_arch_has_assigned_device(vcpu->kvm))
752		return 0;
753
754	/*
755	 * Here, we go through the per-vcpu ir_list to update all existing
756	 * interrupt remapping table entry targeting this vcpu.
757	 */
758	spin_lock_irqsave(&svm->ir_list_lock, flags);
759
760	if (list_empty(&svm->ir_list))
761		goto out;
762
763	list_for_each_entry(ir, &svm->ir_list, node) {
764		if (activate)
765			ret = amd_iommu_activate_guest_mode(ir->data);
766		else
767			ret = amd_iommu_deactivate_guest_mode(ir->data);
768		if (ret)
769			break;
770	}
771out:
772	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
773	return ret;
774}
775
776static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
777{
778	unsigned long flags;
779	struct amd_svm_iommu_ir *cur;
780
781	spin_lock_irqsave(&svm->ir_list_lock, flags);
782	list_for_each_entry(cur, &svm->ir_list, node) {
783		if (cur->data != pi->ir_data)
784			continue;
785		list_del(&cur->node);
786		kfree(cur);
787		break;
788	}
789	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
790}
791
792static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
793{
794	int ret = 0;
795	unsigned long flags;
796	struct amd_svm_iommu_ir *ir;
797	u64 entry;
798
799	/**
800	 * In some cases, the existing irte is updated and re-set,
801	 * so we need to check here if it's already been * added
802	 * to the ir_list.
803	 */
804	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
805		struct kvm *kvm = svm->vcpu.kvm;
806		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
807		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
808		struct vcpu_svm *prev_svm;
809
810		if (!prev_vcpu) {
811			ret = -EINVAL;
812			goto out;
813		}
814
815		prev_svm = to_svm(prev_vcpu);
816		svm_ir_list_del(prev_svm, pi);
817	}
818
819	/**
820	 * Allocating new amd_iommu_pi_data, which will get
821	 * add to the per-vcpu ir_list.
822	 */
823	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
824	if (!ir) {
825		ret = -ENOMEM;
826		goto out;
827	}
828	ir->data = pi->ir_data;
829
830	spin_lock_irqsave(&svm->ir_list_lock, flags);
831
832	/*
833	 * Update the target pCPU for IOMMU doorbells if the vCPU is running.
834	 * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM
835	 * will update the pCPU info when the vCPU awkened and/or scheduled in.
836	 * See also avic_vcpu_load().
837	 */
838	entry = READ_ONCE(*(svm->avic_physical_id_cache));
839	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
840		amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK,
841				    true, pi->ir_data);
842
843	list_add(&ir->node, &svm->ir_list);
844	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
845out:
846	return ret;
847}
848
849/*
850 * Note:
851 * The HW cannot support posting multicast/broadcast
852 * interrupts to a vCPU. So, we still use legacy interrupt
853 * remapping for these kind of interrupts.
854 *
855 * For lowest-priority interrupts, we only support
856 * those with single CPU as the destination, e.g. user
857 * configures the interrupts via /proc/irq or uses
858 * irqbalance to make the interrupts single-CPU.
859 */
860static int
861get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
862		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
863{
864	struct kvm_lapic_irq irq;
865	struct kvm_vcpu *vcpu = NULL;
866
867	kvm_set_msi_irq(kvm, e, &irq);
868
869	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
870	    !kvm_irq_is_postable(&irq)) {
871		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
872			 __func__, irq.vector);
873		return -1;
874	}
875
876	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
877		 irq.vector);
878	*svm = to_svm(vcpu);
879	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
880	vcpu_info->vector = irq.vector;
881
882	return 0;
883}
884
885/*
886 * avic_pi_update_irte - set IRTE for Posted-Interrupts
887 *
888 * @kvm: kvm
889 * @host_irq: host irq of the interrupt
890 * @guest_irq: gsi of the interrupt
891 * @set: set or unset PI
892 * returns 0 on success, < 0 on failure
893 */
894int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
895			uint32_t guest_irq, bool set)
896{
897	struct kvm_kernel_irq_routing_entry *e;
898	struct kvm_irq_routing_table *irq_rt;
899	int idx, ret = 0;
900
901	if (!kvm_arch_has_assigned_device(kvm) ||
902	    !irq_remapping_cap(IRQ_POSTING_CAP))
903		return 0;
904
905	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
906		 __func__, host_irq, guest_irq, set);
907
908	idx = srcu_read_lock(&kvm->irq_srcu);
909	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
910
911	if (guest_irq >= irq_rt->nr_rt_entries ||
912		hlist_empty(&irq_rt->map[guest_irq])) {
913		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
914			     guest_irq, irq_rt->nr_rt_entries);
915		goto out;
916	}
917
918	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
919		struct vcpu_data vcpu_info;
920		struct vcpu_svm *svm = NULL;
921
922		if (e->type != KVM_IRQ_ROUTING_MSI)
923			continue;
924
925		/**
926		 * Here, we setup with legacy mode in the following cases:
927		 * 1. When cannot target interrupt to a specific vcpu.
928		 * 2. Unsetting posted interrupt.
929		 * 3. APIC virtualization is disabled for the vcpu.
930		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
931		 */
932		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
933		    kvm_vcpu_apicv_active(&svm->vcpu)) {
934			struct amd_iommu_pi_data pi;
935
936			/* Try to enable guest_mode in IRTE */
937			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
938					    AVIC_HPA_MASK);
939			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
940						     svm->vcpu.vcpu_id);
941			pi.is_guest_mode = true;
942			pi.vcpu_data = &vcpu_info;
943			ret = irq_set_vcpu_affinity(host_irq, &pi);
944
945			/**
946			 * Here, we successfully setting up vcpu affinity in
947			 * IOMMU guest mode. Now, we need to store the posted
948			 * interrupt information in a per-vcpu ir_list so that
949			 * we can reference to them directly when we update vcpu
950			 * scheduling information in IOMMU irte.
951			 */
952			if (!ret && pi.is_guest_mode)
953				svm_ir_list_add(svm, &pi);
954		} else {
955			/* Use legacy mode in IRTE */
956			struct amd_iommu_pi_data pi;
957
958			/**
959			 * Here, pi is used to:
960			 * - Tell IOMMU to use legacy mode for this interrupt.
961			 * - Retrieve ga_tag of prior interrupt remapping data.
962			 */
963			pi.prev_ga_tag = 0;
964			pi.is_guest_mode = false;
965			ret = irq_set_vcpu_affinity(host_irq, &pi);
966
967			/**
968			 * Check if the posted interrupt was previously
969			 * setup with the guest_mode by checking if the ga_tag
970			 * was cached. If so, we need to clean up the per-vcpu
971			 * ir_list.
972			 */
973			if (!ret && pi.prev_ga_tag) {
974				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
975				struct kvm_vcpu *vcpu;
976
977				vcpu = kvm_get_vcpu_by_id(kvm, id);
978				if (vcpu)
979					svm_ir_list_del(to_svm(vcpu), &pi);
980			}
981		}
982
983		if (!ret && svm) {
984			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
985						 e->gsi, vcpu_info.vector,
986						 vcpu_info.pi_desc_addr, set);
987		}
988
989		if (ret < 0) {
990			pr_err("%s: failed to update PI IRTE\n", __func__);
991			goto out;
992		}
993	}
994
995	ret = 0;
996out:
997	srcu_read_unlock(&kvm->irq_srcu, idx);
998	return ret;
999}
1000
1001static inline int
1002avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1003{
1004	int ret = 0;
1005	struct amd_svm_iommu_ir *ir;
1006	struct vcpu_svm *svm = to_svm(vcpu);
1007
1008	lockdep_assert_held(&svm->ir_list_lock);
1009
1010	if (!kvm_arch_has_assigned_device(vcpu->kvm))
1011		return 0;
1012
1013	/*
1014	 * Here, we go through the per-vcpu ir_list to update all existing
1015	 * interrupt remapping table entry targeting this vcpu.
1016	 */
1017	if (list_empty(&svm->ir_list))
1018		return 0;
1019
1020	list_for_each_entry(ir, &svm->ir_list, node) {
1021		ret = amd_iommu_update_ga(cpu, r, ir->data);
1022		if (ret)
1023			return ret;
1024	}
1025	return 0;
1026}
1027
1028void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1029{
1030	u64 entry;
1031	int h_physical_id = kvm_cpu_get_apicid(cpu);
1032	struct vcpu_svm *svm = to_svm(vcpu);
1033	unsigned long flags;
1034
1035	lockdep_assert_preemption_disabled();
1036
1037	if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
1038		return;
1039
1040	/*
1041	 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
1042	 * is being scheduled in after being preempted.  The CPU entries in the
1043	 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
1044	 * If the vCPU was migrated, its new CPU value will be stuffed when the
1045	 * vCPU unblocks.
1046	 */
1047	if (kvm_vcpu_is_blocking(vcpu))
1048		return;
1049
1050	/*
1051	 * Grab the per-vCPU interrupt remapping lock even if the VM doesn't
1052	 * _currently_ have assigned devices, as that can change.  Holding
1053	 * ir_list_lock ensures that either svm_ir_list_add() will consume
1054	 * up-to-date entry information, or that this task will wait until
1055	 * svm_ir_list_add() completes to set the new target pCPU.
1056	 */
1057	spin_lock_irqsave(&svm->ir_list_lock, flags);
1058
1059	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1060	WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1061
1062	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1063	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1064	entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1065
1066	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1067	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
1068
1069	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1070}
1071
1072void avic_vcpu_put(struct kvm_vcpu *vcpu)
1073{
1074	u64 entry;
1075	struct vcpu_svm *svm = to_svm(vcpu);
1076	unsigned long flags;
1077
1078	lockdep_assert_preemption_disabled();
1079
1080	/*
1081	 * Note, reading the Physical ID entry outside of ir_list_lock is safe
1082	 * as only the pCPU that has loaded (or is loading) the vCPU is allowed
1083	 * to modify the entry, and preemption is disabled.  I.e. the vCPU
1084	 * can't be scheduled out and thus avic_vcpu_{put,load}() can't run
1085	 * recursively.
1086	 */
1087	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1088
1089	/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
1090	if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
1091		return;
1092
1093	/*
1094	 * Take and hold the per-vCPU interrupt remapping lock while updating
1095	 * the Physical ID entry even though the lock doesn't protect against
1096	 * multiple writers (see above).  Holding ir_list_lock ensures that
1097	 * either svm_ir_list_add() will consume up-to-date entry information,
1098	 * or that this task will wait until svm_ir_list_add() completes to
1099	 * mark the vCPU as not running.
1100	 */
1101	spin_lock_irqsave(&svm->ir_list_lock, flags);
1102
1103	avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1104
1105	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1106	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1107
1108	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1109
1110}
1111
1112void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
1113{
1114	struct vcpu_svm *svm = to_svm(vcpu);
1115	struct vmcb *vmcb = svm->vmcb01.ptr;
1116
1117	if (!lapic_in_kernel(vcpu) || !enable_apicv)
1118		return;
1119
1120	if (kvm_vcpu_apicv_active(vcpu)) {
1121		/**
1122		 * During AVIC temporary deactivation, guest could update
1123		 * APIC ID, DFR and LDR registers, which would not be trapped
1124		 * by avic_unaccelerated_access_interception(). In this case,
1125		 * we need to check and update the AVIC logical APIC ID table
1126		 * accordingly before re-activating.
1127		 */
1128		avic_apicv_post_state_restore(vcpu);
1129		avic_activate_vmcb(svm);
1130	} else {
1131		avic_deactivate_vmcb(svm);
1132	}
1133	vmcb_mark_dirty(vmcb, VMCB_AVIC);
1134}
1135
1136void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
1137{
1138	bool activated = kvm_vcpu_apicv_active(vcpu);
1139
1140	if (!enable_apicv)
1141		return;
1142
1143	avic_refresh_virtual_apic_mode(vcpu);
1144
1145	if (activated)
1146		avic_vcpu_load(vcpu, vcpu->cpu);
1147	else
1148		avic_vcpu_put(vcpu);
1149
1150	avic_set_pi_irte_mode(vcpu, activated);
1151}
1152
1153void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
1154{
1155	if (!kvm_vcpu_apicv_active(vcpu))
1156		return;
1157
1158       /*
1159        * Unload the AVIC when the vCPU is about to block, _before_
1160        * the vCPU actually blocks.
1161        *
1162        * Any IRQs that arrive before IsRunning=0 will not cause an
1163        * incomplete IPI vmexit on the source, therefore vIRR will also
1164        * be checked by kvm_vcpu_check_block() before blocking.  The
1165        * memory barrier implicit in set_current_state orders writing
1166        * IsRunning=0 before reading the vIRR.  The processor needs a
1167        * matching memory barrier on interrupt delivery between writing
1168        * IRR and reading IsRunning; the lack of this barrier might be
1169        * the cause of errata #1235).
1170        */
1171	avic_vcpu_put(vcpu);
1172}
1173
1174void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
1175{
1176	if (!kvm_vcpu_apicv_active(vcpu))
1177		return;
1178
1179	avic_vcpu_load(vcpu, vcpu->cpu);
1180}
1181
1182/*
1183 * Note:
1184 * - The module param avic enable both xAPIC and x2APIC mode.
1185 * - Hypervisor can support both xAVIC and x2AVIC in the same guest.
1186 * - The mode can be switched at run-time.
1187 */
1188bool avic_hardware_setup(void)
1189{
1190	if (!npt_enabled)
1191		return false;
1192
1193	/* AVIC is a prerequisite for x2AVIC. */
1194	if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) {
1195		if (boot_cpu_has(X86_FEATURE_X2AVIC)) {
1196			pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled");
1197			pr_warn(FW_BUG "Try enable AVIC using force_avic option");
1198		}
1199		return false;
1200	}
1201
1202	if (boot_cpu_has(X86_FEATURE_AVIC)) {
1203		pr_info("AVIC enabled\n");
1204	} else if (force_avic) {
1205		/*
1206		 * Some older systems does not advertise AVIC support.
1207		 * See Revision Guide for specific AMD processor for more detail.
1208		 */
1209		pr_warn("AVIC is not supported in CPUID but force enabled");
1210		pr_warn("Your system might crash and burn");
1211	}
1212
1213	/* AVIC is a prerequisite for x2AVIC. */
1214	x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC);
1215	if (x2avic_enabled)
1216		pr_info("x2AVIC enabled\n");
1217
1218	amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1219
1220	return true;
1221}
1222