1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * Macros and functions to access KVM PTEs (also known as SPTEs)
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9 */
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/kvm_host.h>
13#include "mmu.h"
14#include "mmu_internal.h"
15#include "x86.h"
16#include "spte.h"
17
18#include <asm/e820/api.h>
19#include <asm/memtype.h>
20#include <asm/vmx.h>
21
22bool __read_mostly enable_mmio_caching = true;
23static bool __ro_after_init allow_mmio_caching;
24module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
25EXPORT_SYMBOL_GPL(enable_mmio_caching);
26
27u64 __read_mostly shadow_host_writable_mask;
28u64 __read_mostly shadow_mmu_writable_mask;
29u64 __read_mostly shadow_nx_mask;
30u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
31u64 __read_mostly shadow_user_mask;
32u64 __read_mostly shadow_accessed_mask;
33u64 __read_mostly shadow_dirty_mask;
34u64 __read_mostly shadow_mmio_value;
35u64 __read_mostly shadow_mmio_mask;
36u64 __read_mostly shadow_mmio_access_mask;
37u64 __read_mostly shadow_present_mask;
38u64 __read_mostly shadow_memtype_mask;
39u64 __read_mostly shadow_me_value;
40u64 __read_mostly shadow_me_mask;
41u64 __read_mostly shadow_acc_track_mask;
42
43u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
44u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
45
46u8 __read_mostly shadow_phys_bits;
47
48void __init kvm_mmu_spte_module_init(void)
49{
50	/*
51	 * Snapshot userspace's desire to allow MMIO caching.  Whether or not
52	 * KVM can actually enable MMIO caching depends on vendor-specific
53	 * hardware capabilities and other module params that can't be resolved
54	 * until the vendor module is loaded, i.e. enable_mmio_caching can and
55	 * will change when the vendor module is (re)loaded.
56	 */
57	allow_mmio_caching = enable_mmio_caching;
58}
59
60static u64 generation_mmio_spte_mask(u64 gen)
61{
62	u64 mask;
63
64	WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK);
65
66	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
67	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
68	return mask;
69}
70
71u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
72{
73	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
74	u64 spte = generation_mmio_spte_mask(gen);
75	u64 gpa = gfn << PAGE_SHIFT;
76
77	WARN_ON_ONCE(!shadow_mmio_value);
78
79	access &= shadow_mmio_access_mask;
80	spte |= shadow_mmio_value | access;
81	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
82	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
83		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
84
85	return spte;
86}
87
88static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
89{
90	if (pfn_valid(pfn))
91		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
92			/*
93			 * Some reserved pages, such as those from NVDIMM
94			 * DAX devices, are not for MMIO, and can be mapped
95			 * with cached memory type for better performance.
96			 * However, the above check misconceives those pages
97			 * as MMIO, and results in KVM mapping them with UC
98			 * memory type, which would hurt the performance.
99			 * Therefore, we check the host memory type in addition
100			 * and only treat UC/UC-/WC pages as MMIO.
101			 */
102			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
103
104	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
105				     pfn_to_hpa(pfn + 1) - 1,
106				     E820_TYPE_RAM);
107}
108
109/*
110 * Returns true if the SPTE has bits that may be set without holding mmu_lock.
111 * The caller is responsible for checking if the SPTE is shadow-present, and
112 * for determining whether or not the caller cares about non-leaf SPTEs.
113 */
114bool spte_has_volatile_bits(u64 spte)
115{
116	/*
117	 * Always atomically update spte if it can be updated
118	 * out of mmu-lock, it can ensure dirty bit is not lost,
119	 * also, it can help us to get a stable is_writable_pte()
120	 * to ensure tlb flush is not missed.
121	 */
122	if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
123		return true;
124
125	if (is_access_track_spte(spte))
126		return true;
127
128	if (spte_ad_enabled(spte)) {
129		if (!(spte & shadow_accessed_mask) ||
130		    (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
131			return true;
132	}
133
134	return false;
135}
136
137bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
138	       const struct kvm_memory_slot *slot,
139	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
140	       u64 old_spte, bool prefetch, bool can_unsync,
141	       bool host_writable, u64 *new_spte)
142{
143	int level = sp->role.level;
144	u64 spte = SPTE_MMU_PRESENT_MASK;
145	bool wrprot = false;
146
147	WARN_ON_ONCE(!pte_access && !shadow_present_mask);
148
149	if (sp->role.ad_disabled)
150		spte |= SPTE_TDP_AD_DISABLED;
151	else if (kvm_mmu_page_ad_need_write_protect(sp))
152		spte |= SPTE_TDP_AD_WRPROT_ONLY;
153
154	/*
155	 * For the EPT case, shadow_present_mask is 0 if hardware
156	 * supports exec-only page table entries.  In that case,
157	 * ACC_USER_MASK and shadow_user_mask are used to represent
158	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
159	 */
160	spte |= shadow_present_mask;
161	if (!prefetch)
162		spte |= spte_shadow_accessed_mask(spte);
163
164	/*
165	 * For simplicity, enforce the NX huge page mitigation even if not
166	 * strictly necessary.  KVM could ignore the mitigation if paging is
167	 * disabled in the guest, as the guest doesn't have any page tables to
168	 * abuse.  But to safely ignore the mitigation, KVM would have to
169	 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG
170	 * is toggled on, and that's a net negative for performance when TDP is
171	 * enabled.  When TDP is disabled, KVM will always switch to a new MMU
172	 * when CR0.PG is toggled, but leveraging that to ignore the mitigation
173	 * would tie make_spte() further to vCPU/MMU state, and add complexity
174	 * just to optimize a mode that is anything but performance critical.
175	 */
176	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
177	    is_nx_huge_page_enabled(vcpu->kvm)) {
178		pte_access &= ~ACC_EXEC_MASK;
179	}
180
181	if (pte_access & ACC_EXEC_MASK)
182		spte |= shadow_x_mask;
183	else
184		spte |= shadow_nx_mask;
185
186	if (pte_access & ACC_USER_MASK)
187		spte |= shadow_user_mask;
188
189	if (level > PG_LEVEL_4K)
190		spte |= PT_PAGE_SIZE_MASK;
191
192	if (shadow_memtype_mask)
193		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
194							 kvm_is_mmio_pfn(pfn));
195	if (host_writable)
196		spte |= shadow_host_writable_mask;
197	else
198		pte_access &= ~ACC_WRITE_MASK;
199
200	if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
201		spte |= shadow_me_value;
202
203	spte |= (u64)pfn << PAGE_SHIFT;
204
205	if (pte_access & ACC_WRITE_MASK) {
206		spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
207
208		/*
209		 * Optimization: for pte sync, if spte was writable the hash
210		 * lookup is unnecessary (and expensive). Write protection
211		 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
212		 * Same reasoning can be applied to dirty page accounting.
213		 */
214		if (is_writable_pte(old_spte))
215			goto out;
216
217		/*
218		 * Unsync shadow pages that are reachable by the new, writable
219		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
220		 * e.g. it's write-tracked (upper-level SPs) or has one or more
221		 * shadow pages and unsync'ing pages is not allowed.
222		 */
223		if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
224			wrprot = true;
225			pte_access &= ~ACC_WRITE_MASK;
226			spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
227		}
228	}
229
230	if (pte_access & ACC_WRITE_MASK)
231		spte |= spte_shadow_dirty_mask(spte);
232
233out:
234	if (prefetch)
235		spte = mark_spte_for_access_track(spte);
236
237	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
238		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
239		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
240
241	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
242		/* Enforced by kvm_mmu_hugepage_adjust. */
243		WARN_ON_ONCE(level > PG_LEVEL_4K);
244		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
245	}
246
247	*new_spte = spte;
248	return wrprot;
249}
250
251static u64 make_spte_executable(u64 spte)
252{
253	bool is_access_track = is_access_track_spte(spte);
254
255	if (is_access_track)
256		spte = restore_acc_track_spte(spte);
257
258	spte &= ~shadow_nx_mask;
259	spte |= shadow_x_mask;
260
261	if (is_access_track)
262		spte = mark_spte_for_access_track(spte);
263
264	return spte;
265}
266
267/*
268 * Construct an SPTE that maps a sub-page of the given huge page SPTE where
269 * `index` identifies which sub-page.
270 *
271 * This is used during huge page splitting to build the SPTEs that make up the
272 * new page table.
273 */
274u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role,
275			      int index)
276{
277	u64 child_spte;
278
279	if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte)))
280		return 0;
281
282	if (WARN_ON_ONCE(!is_large_pte(huge_spte)))
283		return 0;
284
285	child_spte = huge_spte;
286
287	/*
288	 * The child_spte already has the base address of the huge page being
289	 * split. So we just have to OR in the offset to the page at the next
290	 * lower level for the given index.
291	 */
292	child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
293
294	if (role.level == PG_LEVEL_4K) {
295		child_spte &= ~PT_PAGE_SIZE_MASK;
296
297		/*
298		 * When splitting to a 4K page where execution is allowed, mark
299		 * the page executable as the NX hugepage mitigation no longer
300		 * applies.
301		 */
302		if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
303			child_spte = make_spte_executable(child_spte);
304	}
305
306	return child_spte;
307}
308
309
310u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
311{
312	u64 spte = SPTE_MMU_PRESENT_MASK;
313
314	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
315		shadow_user_mask | shadow_x_mask | shadow_me_value;
316
317	if (ad_disabled)
318		spte |= SPTE_TDP_AD_DISABLED;
319	else
320		spte |= shadow_accessed_mask;
321
322	return spte;
323}
324
325u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
326{
327	u64 new_spte;
328
329	new_spte = old_spte & ~SPTE_BASE_ADDR_MASK;
330	new_spte |= (u64)new_pfn << PAGE_SHIFT;
331
332	new_spte &= ~PT_WRITABLE_MASK;
333	new_spte &= ~shadow_host_writable_mask;
334	new_spte &= ~shadow_mmu_writable_mask;
335
336	new_spte = mark_spte_for_access_track(new_spte);
337
338	return new_spte;
339}
340
341u64 mark_spte_for_access_track(u64 spte)
342{
343	if (spte_ad_enabled(spte))
344		return spte & ~shadow_accessed_mask;
345
346	if (is_access_track_spte(spte))
347		return spte;
348
349	check_spte_writable_invariants(spte);
350
351	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
352			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
353		  "Access Tracking saved bit locations are not zero\n");
354
355	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
356		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
357	spte &= ~shadow_acc_track_mask;
358
359	return spte;
360}
361
362void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
363{
364	BUG_ON((u64)(unsigned)access_mask != access_mask);
365	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
366
367	/*
368	 * Reset to the original module param value to honor userspace's desire
369	 * to (dis)allow MMIO caching.  Update the param itself so that
370	 * userspace can see whether or not KVM is actually using MMIO caching.
371	 */
372	enable_mmio_caching = allow_mmio_caching;
373	if (!enable_mmio_caching)
374		mmio_value = 0;
375
376	/*
377	 * The mask must contain only bits that are carved out specifically for
378	 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
379	 * generation.
380	 */
381	if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
382		mmio_value = 0;
383
384	/*
385	 * Disable MMIO caching if the MMIO value collides with the bits that
386	 * are used to hold the relocated GFN when the L1TF mitigation is
387	 * enabled.  This should never fire as there is no known hardware that
388	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
389	 * MMIO value are not susceptible to L1TF.
390	 */
391	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
392				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
393		mmio_value = 0;
394
395	/*
396	 * The masked MMIO value must obviously match itself and a removed SPTE
397	 * must not get a false positive.  Removed SPTEs and MMIO SPTEs should
398	 * never collide as MMIO must set some RWX bits, and removed SPTEs must
399	 * not set any RWX bits.
400	 */
401	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
402	    WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
403		mmio_value = 0;
404
405	if (!mmio_value)
406		enable_mmio_caching = false;
407
408	shadow_mmio_value = mmio_value;
409	shadow_mmio_mask  = mmio_mask;
410	shadow_mmio_access_mask = access_mask;
411}
412EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
413
414void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
415{
416	/* shadow_me_value must be a subset of shadow_me_mask */
417	if (WARN_ON(me_value & ~me_mask))
418		me_value = me_mask = 0;
419
420	shadow_me_value = me_value;
421	shadow_me_mask = me_mask;
422}
423EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
424
425void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
426{
427	shadow_user_mask	= VMX_EPT_READABLE_MASK;
428	shadow_accessed_mask	= has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
429	shadow_dirty_mask	= has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
430	shadow_nx_mask		= 0ull;
431	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
432	shadow_present_mask	= has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
433	/*
434	 * EPT overrides the host MTRRs, and so KVM must program the desired
435	 * memtype directly into the SPTEs.  Note, this mask is just the mask
436	 * of all bits that factor into the memtype, the actual memtype must be
437	 * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
438	 */
439	shadow_memtype_mask	= VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
440	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
441	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
442	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
443
444	/*
445	 * EPT Misconfigurations are generated if the value of bits 2:0
446	 * of an EPT paging-structure entry is 110b (write/execute).
447	 */
448	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
449				   VMX_EPT_RWX_MASK, 0);
450}
451EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
452
453void kvm_mmu_reset_all_pte_masks(void)
454{
455	u8 low_phys_bits;
456	u64 mask;
457
458	shadow_phys_bits = kvm_get_shadow_phys_bits();
459
460	/*
461	 * If the CPU has 46 or less physical address bits, then set an
462	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
463	 * assumed that the CPU is not vulnerable to L1TF.
464	 *
465	 * Some Intel CPUs address the L1 cache using more PA bits than are
466	 * reported by CPUID. Use the PA width of the L1 cache when possible
467	 * to achieve more effective mitigation, e.g. if system RAM overlaps
468	 * the most significant bits of legal physical address space.
469	 */
470	shadow_nonpresent_or_rsvd_mask = 0;
471	low_phys_bits = boot_cpu_data.x86_phys_bits;
472	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
473	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
474			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
475		low_phys_bits = boot_cpu_data.x86_cache_bits
476			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
477		shadow_nonpresent_or_rsvd_mask =
478			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
479	}
480
481	shadow_nonpresent_or_rsvd_lower_gfn_mask =
482		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
483
484	shadow_user_mask	= PT_USER_MASK;
485	shadow_accessed_mask	= PT_ACCESSED_MASK;
486	shadow_dirty_mask	= PT_DIRTY_MASK;
487	shadow_nx_mask		= PT64_NX_MASK;
488	shadow_x_mask		= 0;
489	shadow_present_mask	= PT_PRESENT_MASK;
490
491	/*
492	 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
493	 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
494	 * correct memtype (WB is the "weakest" memtype).
495	 */
496	shadow_memtype_mask	= 0;
497	shadow_acc_track_mask	= 0;
498	shadow_me_mask		= 0;
499	shadow_me_value		= 0;
500
501	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
502	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
503
504	/*
505	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
506	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
507	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
508	 * 52-bit physical addresses then there are no reserved PA bits in the
509	 * PTEs and so the reserved PA approach must be disabled.
510	 */
511	if (shadow_phys_bits < 52)
512		mask = BIT_ULL(51) | PT_PRESENT_MASK;
513	else
514		mask = 0;
515
516	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
517}
518