1/*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 *   Sheng Yang <sheng.yang@intel.com>
30 *   Based on QEMU and Xen.
31 */
32
33#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35#include <linux/kvm_host.h>
36#include <linux/slab.h>
37
38#include "ioapic.h"
39#include "irq.h"
40#include "i8254.h"
41#include "x86.h"
42
43#ifndef CONFIG_X86_64
44#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45#else
46#define mod_64(x, y) ((x) % (y))
47#endif
48
49#define RW_STATE_LSB 1
50#define RW_STATE_MSB 2
51#define RW_STATE_WORD0 3
52#define RW_STATE_WORD1 4
53
54static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
55{
56	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
57
58	switch (c->mode) {
59	default:
60	case 0:
61	case 4:
62		/* XXX: just disable/enable counting */
63		break;
64	case 1:
65	case 2:
66	case 3:
67	case 5:
68		/* Restart counting on rising edge. */
69		if (c->gate < val)
70			c->count_load_time = ktime_get();
71		break;
72	}
73
74	c->gate = val;
75}
76
77static int pit_get_gate(struct kvm_pit *pit, int channel)
78{
79	return pit->pit_state.channels[channel].gate;
80}
81
82static s64 __kpit_elapsed(struct kvm_pit *pit)
83{
84	s64 elapsed;
85	ktime_t remaining;
86	struct kvm_kpit_state *ps = &pit->pit_state;
87
88	if (!ps->period)
89		return 0;
90
91	/*
92	 * The Counter does not stop when it reaches zero. In
93	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
94	 * the highest count, either FFFF hex for binary counting
95	 * or 9999 for BCD counting, and continues counting.
96	 * Modes 2 and 3 are periodic; the Counter reloads
97	 * itself with the initial count and continues counting
98	 * from there.
99	 */
100	remaining = hrtimer_get_remaining(&ps->timer);
101	elapsed = ps->period - ktime_to_ns(remaining);
102
103	return elapsed;
104}
105
106static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
107			int channel)
108{
109	if (channel == 0)
110		return __kpit_elapsed(pit);
111
112	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
113}
114
115static int pit_get_count(struct kvm_pit *pit, int channel)
116{
117	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
118	s64 d, t;
119	int counter;
120
121	t = kpit_elapsed(pit, c, channel);
122	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
123
124	switch (c->mode) {
125	case 0:
126	case 1:
127	case 4:
128	case 5:
129		counter = (c->count - d) & 0xffff;
130		break;
131	case 3:
132		/* XXX: may be incorrect for odd counts */
133		counter = c->count - (mod_64((2 * d), c->count));
134		break;
135	default:
136		counter = c->count - mod_64(d, c->count);
137		break;
138	}
139	return counter;
140}
141
142static int pit_get_out(struct kvm_pit *pit, int channel)
143{
144	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
145	s64 d, t;
146	int out;
147
148	t = kpit_elapsed(pit, c, channel);
149	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151	switch (c->mode) {
152	default:
153	case 0:
154		out = (d >= c->count);
155		break;
156	case 1:
157		out = (d < c->count);
158		break;
159	case 2:
160		out = ((mod_64(d, c->count) == 0) && (d != 0));
161		break;
162	case 3:
163		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
164		break;
165	case 4:
166	case 5:
167		out = (d == c->count);
168		break;
169	}
170
171	return out;
172}
173
174static void pit_latch_count(struct kvm_pit *pit, int channel)
175{
176	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
177
178	if (!c->count_latched) {
179		c->latched_count = pit_get_count(pit, channel);
180		c->count_latched = c->rw_mode;
181	}
182}
183
184static void pit_latch_status(struct kvm_pit *pit, int channel)
185{
186	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
187
188	if (!c->status_latched) {
189		/* TODO: Return NULL COUNT (bit 6). */
190		c->status = ((pit_get_out(pit, channel) << 7) |
191				(c->rw_mode << 4) |
192				(c->mode << 1) |
193				c->bcd);
194		c->status_latched = 1;
195	}
196}
197
198static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
199{
200	return container_of(ps, struct kvm_pit, pit_state);
201}
202
203static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
204{
205	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
206						 irq_ack_notifier);
207	struct kvm_pit *pit = pit_state_to_pit(ps);
208
209	atomic_set(&ps->irq_ack, 1);
210	/* irq_ack should be set before pending is read.  Order accesses with
211	 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
212	 */
213	smp_mb();
214	if (atomic_dec_if_positive(&ps->pending) > 0)
215		kthread_queue_work(pit->worker, &pit->expired);
216}
217
218void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
219{
220	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
221	struct hrtimer *timer;
222
223	/* Somewhat arbitrarily make vcpu0 the owner of the PIT. */
224	if (vcpu->vcpu_id || !pit)
225		return;
226
227	timer = &pit->pit_state.timer;
228	mutex_lock(&pit->pit_state.lock);
229	if (hrtimer_cancel(timer))
230		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
231	mutex_unlock(&pit->pit_state.lock);
232}
233
234static void destroy_pit_timer(struct kvm_pit *pit)
235{
236	hrtimer_cancel(&pit->pit_state.timer);
237	kthread_flush_work(&pit->expired);
238}
239
240static void pit_do_work(struct kthread_work *work)
241{
242	struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
243	struct kvm *kvm = pit->kvm;
244	struct kvm_vcpu *vcpu;
245	unsigned long i;
246	struct kvm_kpit_state *ps = &pit->pit_state;
247
248	if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
249		return;
250
251	kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
252	kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
253
254	/*
255	 * Provides NMI watchdog support via Virtual Wire mode.
256	 * The route is: PIT -> LVT0 in NMI mode.
257	 *
258	 * Note: Our Virtual Wire implementation does not follow
259	 * the MP specification.  We propagate a PIT interrupt to all
260	 * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
261	 * also be simultaneously delivered through PIC and IOAPIC.
262	 */
263	if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
264		kvm_for_each_vcpu(i, vcpu, kvm)
265			kvm_apic_nmi_wd_deliver(vcpu);
266}
267
268static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
269{
270	struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
271	struct kvm_pit *pt = pit_state_to_pit(ps);
272
273	if (atomic_read(&ps->reinject))
274		atomic_inc(&ps->pending);
275
276	kthread_queue_work(pt->worker, &pt->expired);
277
278	if (ps->is_periodic) {
279		hrtimer_add_expires_ns(&ps->timer, ps->period);
280		return HRTIMER_RESTART;
281	} else
282		return HRTIMER_NORESTART;
283}
284
285static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
286{
287	atomic_set(&pit->pit_state.pending, 0);
288	atomic_set(&pit->pit_state.irq_ack, 1);
289}
290
291void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
292{
293	struct kvm_kpit_state *ps = &pit->pit_state;
294	struct kvm *kvm = pit->kvm;
295
296	if (atomic_read(&ps->reinject) == reinject)
297		return;
298
299	/*
300	 * AMD SVM AVIC accelerates EOI write and does not trap.
301	 * This cause in-kernel PIT re-inject mode to fail
302	 * since it checks ps->irq_ack before kvm_set_irq()
303	 * and relies on the ack notifier to timely queue
304	 * the pt->worker work iterm and reinject the missed tick.
305	 * So, deactivate APICv when PIT is in reinject mode.
306	 */
307	if (reinject) {
308		kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ);
309		/* The initial state is preserved while ps->reinject == 0. */
310		kvm_pit_reset_reinject(pit);
311		kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
312		kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
313	} else {
314		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_PIT_REINJ);
315		kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
316		kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
317	}
318
319	atomic_set(&ps->reinject, reinject);
320}
321
322static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
323{
324	struct kvm_kpit_state *ps = &pit->pit_state;
325	struct kvm *kvm = pit->kvm;
326	s64 interval;
327
328	if (!ioapic_in_kernel(kvm) ||
329	    ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
330		return;
331
332	interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
333
334	pr_debug("create pit timer, interval is %llu nsec\n", interval);
335
336	/* TODO The new value only affected after the retriggered */
337	hrtimer_cancel(&ps->timer);
338	kthread_flush_work(&pit->expired);
339	ps->period = interval;
340	ps->is_periodic = is_period;
341
342	kvm_pit_reset_reinject(pit);
343
344	/*
345	 * Do not allow the guest to program periodic timers with small
346	 * interval, since the hrtimers are not throttled by the host
347	 * scheduler.
348	 */
349	if (ps->is_periodic) {
350		s64 min_period = min_timer_period_us * 1000LL;
351
352		if (ps->period < min_period) {
353			pr_info_ratelimited(
354			    "requested %lld ns "
355			    "i8254 timer period limited to %lld ns\n",
356			    ps->period, min_period);
357			ps->period = min_period;
358		}
359	}
360
361	hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
362		      HRTIMER_MODE_ABS);
363}
364
365static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
366{
367	struct kvm_kpit_state *ps = &pit->pit_state;
368
369	pr_debug("load_count val is %u, channel is %d\n", val, channel);
370
371	/*
372	 * The largest possible initial count is 0; this is equivalent
373	 * to 216 for binary counting and 104 for BCD counting.
374	 */
375	if (val == 0)
376		val = 0x10000;
377
378	ps->channels[channel].count = val;
379
380	if (channel != 0) {
381		ps->channels[channel].count_load_time = ktime_get();
382		return;
383	}
384
385	/* Two types of timer
386	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
387	switch (ps->channels[0].mode) {
388	case 0:
389	case 1:
390        /* FIXME: enhance mode 4 precision */
391	case 4:
392		create_pit_timer(pit, val, 0);
393		break;
394	case 2:
395	case 3:
396		create_pit_timer(pit, val, 1);
397		break;
398	default:
399		destroy_pit_timer(pit);
400	}
401}
402
403void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
404		int hpet_legacy_start)
405{
406	u8 saved_mode;
407
408	WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
409
410	if (hpet_legacy_start) {
411		/* save existing mode for later reenablement */
412		WARN_ON(channel != 0);
413		saved_mode = pit->pit_state.channels[0].mode;
414		pit->pit_state.channels[0].mode = 0xff; /* disable timer */
415		pit_load_count(pit, channel, val);
416		pit->pit_state.channels[0].mode = saved_mode;
417	} else {
418		pit_load_count(pit, channel, val);
419	}
420}
421
422static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
423{
424	return container_of(dev, struct kvm_pit, dev);
425}
426
427static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
428{
429	return container_of(dev, struct kvm_pit, speaker_dev);
430}
431
432static inline int pit_in_range(gpa_t addr)
433{
434	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
435		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
436}
437
438static int pit_ioport_write(struct kvm_vcpu *vcpu,
439				struct kvm_io_device *this,
440			    gpa_t addr, int len, const void *data)
441{
442	struct kvm_pit *pit = dev_to_pit(this);
443	struct kvm_kpit_state *pit_state = &pit->pit_state;
444	int channel, access;
445	struct kvm_kpit_channel_state *s;
446	u32 val = *(u32 *) data;
447	if (!pit_in_range(addr))
448		return -EOPNOTSUPP;
449
450	val  &= 0xff;
451	addr &= KVM_PIT_CHANNEL_MASK;
452
453	mutex_lock(&pit_state->lock);
454
455	if (val != 0)
456		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
457			 (unsigned int)addr, len, val);
458
459	if (addr == 3) {
460		channel = val >> 6;
461		if (channel == 3) {
462			/* Read-Back Command. */
463			for (channel = 0; channel < 3; channel++) {
464				if (val & (2 << channel)) {
465					if (!(val & 0x20))
466						pit_latch_count(pit, channel);
467					if (!(val & 0x10))
468						pit_latch_status(pit, channel);
469				}
470			}
471		} else {
472			/* Select Counter <channel>. */
473			s = &pit_state->channels[channel];
474			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
475			if (access == 0) {
476				pit_latch_count(pit, channel);
477			} else {
478				s->rw_mode = access;
479				s->read_state = access;
480				s->write_state = access;
481				s->mode = (val >> 1) & 7;
482				if (s->mode > 5)
483					s->mode -= 4;
484				s->bcd = val & 1;
485			}
486		}
487	} else {
488		/* Write Count. */
489		s = &pit_state->channels[addr];
490		switch (s->write_state) {
491		default:
492		case RW_STATE_LSB:
493			pit_load_count(pit, addr, val);
494			break;
495		case RW_STATE_MSB:
496			pit_load_count(pit, addr, val << 8);
497			break;
498		case RW_STATE_WORD0:
499			s->write_latch = val;
500			s->write_state = RW_STATE_WORD1;
501			break;
502		case RW_STATE_WORD1:
503			pit_load_count(pit, addr, s->write_latch | (val << 8));
504			s->write_state = RW_STATE_WORD0;
505			break;
506		}
507	}
508
509	mutex_unlock(&pit_state->lock);
510	return 0;
511}
512
513static int pit_ioport_read(struct kvm_vcpu *vcpu,
514			   struct kvm_io_device *this,
515			   gpa_t addr, int len, void *data)
516{
517	struct kvm_pit *pit = dev_to_pit(this);
518	struct kvm_kpit_state *pit_state = &pit->pit_state;
519	int ret, count;
520	struct kvm_kpit_channel_state *s;
521	if (!pit_in_range(addr))
522		return -EOPNOTSUPP;
523
524	addr &= KVM_PIT_CHANNEL_MASK;
525	if (addr == 3)
526		return 0;
527
528	s = &pit_state->channels[addr];
529
530	mutex_lock(&pit_state->lock);
531
532	if (s->status_latched) {
533		s->status_latched = 0;
534		ret = s->status;
535	} else if (s->count_latched) {
536		switch (s->count_latched) {
537		default:
538		case RW_STATE_LSB:
539			ret = s->latched_count & 0xff;
540			s->count_latched = 0;
541			break;
542		case RW_STATE_MSB:
543			ret = s->latched_count >> 8;
544			s->count_latched = 0;
545			break;
546		case RW_STATE_WORD0:
547			ret = s->latched_count & 0xff;
548			s->count_latched = RW_STATE_MSB;
549			break;
550		}
551	} else {
552		switch (s->read_state) {
553		default:
554		case RW_STATE_LSB:
555			count = pit_get_count(pit, addr);
556			ret = count & 0xff;
557			break;
558		case RW_STATE_MSB:
559			count = pit_get_count(pit, addr);
560			ret = (count >> 8) & 0xff;
561			break;
562		case RW_STATE_WORD0:
563			count = pit_get_count(pit, addr);
564			ret = count & 0xff;
565			s->read_state = RW_STATE_WORD1;
566			break;
567		case RW_STATE_WORD1:
568			count = pit_get_count(pit, addr);
569			ret = (count >> 8) & 0xff;
570			s->read_state = RW_STATE_WORD0;
571			break;
572		}
573	}
574
575	if (len > sizeof(ret))
576		len = sizeof(ret);
577	memcpy(data, (char *)&ret, len);
578
579	mutex_unlock(&pit_state->lock);
580	return 0;
581}
582
583static int speaker_ioport_write(struct kvm_vcpu *vcpu,
584				struct kvm_io_device *this,
585				gpa_t addr, int len, const void *data)
586{
587	struct kvm_pit *pit = speaker_to_pit(this);
588	struct kvm_kpit_state *pit_state = &pit->pit_state;
589	u32 val = *(u32 *) data;
590	if (addr != KVM_SPEAKER_BASE_ADDRESS)
591		return -EOPNOTSUPP;
592
593	mutex_lock(&pit_state->lock);
594	if (val & (1 << 1))
595		pit_state->flags |= KVM_PIT_FLAGS_SPEAKER_DATA_ON;
596	else
597		pit_state->flags &= ~KVM_PIT_FLAGS_SPEAKER_DATA_ON;
598	pit_set_gate(pit, 2, val & 1);
599	mutex_unlock(&pit_state->lock);
600	return 0;
601}
602
603static int speaker_ioport_read(struct kvm_vcpu *vcpu,
604				   struct kvm_io_device *this,
605				   gpa_t addr, int len, void *data)
606{
607	struct kvm_pit *pit = speaker_to_pit(this);
608	struct kvm_kpit_state *pit_state = &pit->pit_state;
609	unsigned int refresh_clock;
610	int ret;
611	if (addr != KVM_SPEAKER_BASE_ADDRESS)
612		return -EOPNOTSUPP;
613
614	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
615	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
616
617	mutex_lock(&pit_state->lock);
618	ret = (!!(pit_state->flags & KVM_PIT_FLAGS_SPEAKER_DATA_ON) << 1) |
619		pit_get_gate(pit, 2) | (pit_get_out(pit, 2) << 5) |
620		(refresh_clock << 4);
621	if (len > sizeof(ret))
622		len = sizeof(ret);
623	memcpy(data, (char *)&ret, len);
624	mutex_unlock(&pit_state->lock);
625	return 0;
626}
627
628static void kvm_pit_reset(struct kvm_pit *pit)
629{
630	int i;
631	struct kvm_kpit_channel_state *c;
632
633	pit->pit_state.flags = 0;
634	for (i = 0; i < 3; i++) {
635		c = &pit->pit_state.channels[i];
636		c->mode = 0xff;
637		c->gate = (i != 2);
638		pit_load_count(pit, i, 0);
639	}
640
641	kvm_pit_reset_reinject(pit);
642}
643
644static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
645{
646	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
647
648	if (!mask)
649		kvm_pit_reset_reinject(pit);
650}
651
652static const struct kvm_io_device_ops pit_dev_ops = {
653	.read     = pit_ioport_read,
654	.write    = pit_ioport_write,
655};
656
657static const struct kvm_io_device_ops speaker_dev_ops = {
658	.read     = speaker_ioport_read,
659	.write    = speaker_ioport_write,
660};
661
662struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
663{
664	struct kvm_pit *pit;
665	struct kvm_kpit_state *pit_state;
666	struct pid *pid;
667	pid_t pid_nr;
668	int ret;
669
670	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
671	if (!pit)
672		return NULL;
673
674	pit->irq_source_id = kvm_request_irq_source_id(kvm);
675	if (pit->irq_source_id < 0)
676		goto fail_request;
677
678	mutex_init(&pit->pit_state.lock);
679
680	pid = get_pid(task_tgid(current));
681	pid_nr = pid_vnr(pid);
682	put_pid(pid);
683
684	pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
685	if (IS_ERR(pit->worker))
686		goto fail_kthread;
687
688	kthread_init_work(&pit->expired, pit_do_work);
689
690	pit->kvm = kvm;
691
692	pit_state = &pit->pit_state;
693	hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
694	pit_state->timer.function = pit_timer_fn;
695
696	pit_state->irq_ack_notifier.gsi = 0;
697	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
698	pit->mask_notifier.func = pit_mask_notifer;
699
700	kvm_pit_reset(pit);
701
702	kvm_pit_set_reinject(pit, true);
703
704	mutex_lock(&kvm->slots_lock);
705	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
706	ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
707				      KVM_PIT_MEM_LENGTH, &pit->dev);
708	if (ret < 0)
709		goto fail_register_pit;
710
711	if (flags & KVM_PIT_SPEAKER_DUMMY) {
712		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
713		ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
714					      KVM_SPEAKER_BASE_ADDRESS, 4,
715					      &pit->speaker_dev);
716		if (ret < 0)
717			goto fail_register_speaker;
718	}
719	mutex_unlock(&kvm->slots_lock);
720
721	return pit;
722
723fail_register_speaker:
724	kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
725fail_register_pit:
726	mutex_unlock(&kvm->slots_lock);
727	kvm_pit_set_reinject(pit, false);
728	kthread_destroy_worker(pit->worker);
729fail_kthread:
730	kvm_free_irq_source_id(kvm, pit->irq_source_id);
731fail_request:
732	kfree(pit);
733	return NULL;
734}
735
736void kvm_free_pit(struct kvm *kvm)
737{
738	struct kvm_pit *pit = kvm->arch.vpit;
739
740	if (pit) {
741		mutex_lock(&kvm->slots_lock);
742		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
743		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
744		mutex_unlock(&kvm->slots_lock);
745		kvm_pit_set_reinject(pit, false);
746		hrtimer_cancel(&pit->pit_state.timer);
747		kthread_destroy_worker(pit->worker);
748		kvm_free_irq_source_id(kvm, pit->irq_source_id);
749		kfree(pit);
750	}
751}
752