1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8 *		Probes initial implementation ( includes contributions from
9 *		Rusty Russell).
10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11 *		interface to access function arguments.
12 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
13 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
14 * 2005-Mar	Roland McGrath <roland@redhat.com>
15 *		Fixed to handle %rip-relative addressing mode correctly.
16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18 *		<prasanna@in.ibm.com> added function-return probes.
19 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
20 *		Added function return probes functionality
21 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
22 *		kprobe-booster and kretprobe-booster for i386.
23 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
24 *		and kretprobe-booster for x86-64
25 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
26 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
27 *		unified x86 kprobes code.
28 */
29#include <linux/kprobes.h>
30#include <linux/ptrace.h>
31#include <linux/string.h>
32#include <linux/slab.h>
33#include <linux/hardirq.h>
34#include <linux/preempt.h>
35#include <linux/sched/debug.h>
36#include <linux/perf_event.h>
37#include <linux/extable.h>
38#include <linux/kdebug.h>
39#include <linux/kallsyms.h>
40#include <linux/kgdb.h>
41#include <linux/ftrace.h>
42#include <linux/kasan.h>
43#include <linux/moduleloader.h>
44#include <linux/objtool.h>
45#include <linux/vmalloc.h>
46#include <linux/pgtable.h>
47#include <linux/set_memory.h>
48#include <linux/cfi.h>
49
50#include <asm/text-patching.h>
51#include <asm/cacheflush.h>
52#include <asm/desc.h>
53#include <linux/uaccess.h>
54#include <asm/alternative.h>
55#include <asm/insn.h>
56#include <asm/debugreg.h>
57#include <asm/ibt.h>
58
59#include "common.h"
60
61DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
62DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
63
64#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
65	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
66	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
67	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
68	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
69	 << (row % 32))
70	/*
71	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
72	 * Groups, and some special opcodes can not boost.
73	 * This is non-const and volatile to keep gcc from statically
74	 * optimizing it out, as variable_test_bit makes gcc think only
75	 * *(unsigned long*) is used.
76	 */
77static volatile u32 twobyte_is_boostable[256 / 32] = {
78	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
79	/*      ----------------------------------------------          */
80	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
81	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
82	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
83	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
84	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
85	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
86	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
87	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
88	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
89	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
90	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
91	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
92	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
93	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
94	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
95	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
96	/*      -----------------------------------------------         */
97	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
98};
99#undef W
100
101struct kretprobe_blackpoint kretprobe_blacklist[] = {
102	{"__switch_to", }, /* This function switches only current task, but
103			      doesn't switch kernel stack.*/
104	{NULL, NULL}	/* Terminator */
105};
106
107const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
108
109static nokprobe_inline void
110__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
111{
112	struct __arch_relative_insn {
113		u8 op;
114		s32 raddr;
115	} __packed *insn;
116
117	insn = (struct __arch_relative_insn *)dest;
118	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
119	insn->op = op;
120}
121
122/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
123void synthesize_reljump(void *dest, void *from, void *to)
124{
125	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
126}
127NOKPROBE_SYMBOL(synthesize_reljump);
128
129/* Insert a call instruction at address 'from', which calls address 'to'.*/
130void synthesize_relcall(void *dest, void *from, void *to)
131{
132	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
133}
134NOKPROBE_SYMBOL(synthesize_relcall);
135
136/*
137 * Returns non-zero if INSN is boostable.
138 * RIP relative instructions are adjusted at copying time in 64 bits mode
139 */
140bool can_boost(struct insn *insn, void *addr)
141{
142	kprobe_opcode_t opcode;
143	insn_byte_t prefix;
144	int i;
145
146	if (search_exception_tables((unsigned long)addr))
147		return false;	/* Page fault may occur on this address. */
148
149	/* 2nd-byte opcode */
150	if (insn->opcode.nbytes == 2)
151		return test_bit(insn->opcode.bytes[1],
152				(unsigned long *)twobyte_is_boostable);
153
154	if (insn->opcode.nbytes != 1)
155		return false;
156
157	for_each_insn_prefix(insn, i, prefix) {
158		insn_attr_t attr;
159
160		attr = inat_get_opcode_attribute(prefix);
161		/* Can't boost Address-size override prefix and CS override prefix */
162		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
163			return false;
164	}
165
166	opcode = insn->opcode.bytes[0];
167
168	switch (opcode) {
169	case 0x62:		/* bound */
170	case 0x70 ... 0x7f:	/* Conditional jumps */
171	case 0x9a:		/* Call far */
172	case 0xcc ... 0xce:	/* software exceptions */
173	case 0xd6:		/* (UD) */
174	case 0xd8 ... 0xdf:	/* ESC */
175	case 0xe0 ... 0xe3:	/* LOOP*, JCXZ */
176	case 0xe8 ... 0xe9:	/* near Call, JMP */
177	case 0xeb:		/* Short JMP */
178	case 0xf0 ... 0xf4:	/* LOCK/REP, HLT */
179		/* ... are not boostable */
180		return false;
181	case 0xc0 ... 0xc1:	/* Grp2 */
182	case 0xd0 ... 0xd3:	/* Grp2 */
183		/*
184		 * AMD uses nnn == 110 as SHL/SAL, but Intel makes it reserved.
185		 */
186		return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b110;
187	case 0xf6 ... 0xf7:	/* Grp3 */
188		/* AMD uses nnn == 001 as TEST, but Intel makes it reserved. */
189		return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b001;
190	case 0xfe:		/* Grp4 */
191		/* Only INC and DEC are boostable */
192		return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 ||
193		       X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001;
194	case 0xff:		/* Grp5 */
195		/* Only INC, DEC, and indirect JMP are boostable */
196		return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 ||
197		       X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001 ||
198		       X86_MODRM_REG(insn->modrm.bytes[0]) == 0b100;
199	default:
200		return true;
201	}
202}
203
204static unsigned long
205__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
206{
207	struct kprobe *kp;
208	bool faddr;
209
210	kp = get_kprobe((void *)addr);
211	faddr = ftrace_location(addr) == addr;
212	/*
213	 * Use the current code if it is not modified by Kprobe
214	 * and it cannot be modified by ftrace.
215	 */
216	if (!kp && !faddr)
217		return addr;
218
219	/*
220	 * Basically, kp->ainsn.insn has an original instruction.
221	 * However, RIP-relative instruction can not do single-stepping
222	 * at different place, __copy_instruction() tweaks the displacement of
223	 * that instruction. In that case, we can't recover the instruction
224	 * from the kp->ainsn.insn.
225	 *
226	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
227	 * of the first byte of the probed instruction, which is overwritten
228	 * by int3. And the instruction at kp->addr is not modified by kprobes
229	 * except for the first byte, we can recover the original instruction
230	 * from it and kp->opcode.
231	 *
232	 * In case of Kprobes using ftrace, we do not have a copy of
233	 * the original instruction. In fact, the ftrace location might
234	 * be modified at anytime and even could be in an inconsistent state.
235	 * Fortunately, we know that the original code is the ideal 5-byte
236	 * long NOP.
237	 */
238	if (copy_from_kernel_nofault(buf, (void *)addr,
239		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
240		return 0UL;
241
242	if (faddr)
243		memcpy(buf, x86_nops[5], 5);
244	else
245		buf[0] = kp->opcode;
246	return (unsigned long)buf;
247}
248
249/*
250 * Recover the probed instruction at addr for further analysis.
251 * Caller must lock kprobes by kprobe_mutex, or disable preemption
252 * for preventing to release referencing kprobes.
253 * Returns zero if the instruction can not get recovered (or access failed).
254 */
255unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
256{
257	unsigned long __addr;
258
259	__addr = __recover_optprobed_insn(buf, addr);
260	if (__addr != addr)
261		return __addr;
262
263	return __recover_probed_insn(buf, addr);
264}
265
266/* Check if insn is INT or UD */
267static inline bool is_exception_insn(struct insn *insn)
268{
269	/* UD uses 0f escape */
270	if (insn->opcode.bytes[0] == 0x0f) {
271		/* UD0 / UD1 / UD2 */
272		return insn->opcode.bytes[1] == 0xff ||
273		       insn->opcode.bytes[1] == 0xb9 ||
274		       insn->opcode.bytes[1] == 0x0b;
275	}
276
277	/* INT3 / INT n / INTO / INT1 */
278	return insn->opcode.bytes[0] == 0xcc ||
279	       insn->opcode.bytes[0] == 0xcd ||
280	       insn->opcode.bytes[0] == 0xce ||
281	       insn->opcode.bytes[0] == 0xf1;
282}
283
284/*
285 * Check if paddr is at an instruction boundary and that instruction can
286 * be probed
287 */
288static bool can_probe(unsigned long paddr)
289{
290	unsigned long addr, __addr, offset = 0;
291	struct insn insn;
292	kprobe_opcode_t buf[MAX_INSN_SIZE];
293
294	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
295		return false;
296
297	/* Decode instructions */
298	addr = paddr - offset;
299	while (addr < paddr) {
300		/*
301		 * Check if the instruction has been modified by another
302		 * kprobe, in which case we replace the breakpoint by the
303		 * original instruction in our buffer.
304		 * Also, jump optimization will change the breakpoint to
305		 * relative-jump. Since the relative-jump itself is
306		 * normally used, we just go through if there is no kprobe.
307		 */
308		__addr = recover_probed_instruction(buf, addr);
309		if (!__addr)
310			return false;
311
312		if (insn_decode_kernel(&insn, (void *)__addr) < 0)
313			return false;
314
315#ifdef CONFIG_KGDB
316		/*
317		 * If there is a dynamically installed kgdb sw breakpoint,
318		 * this function should not be probed.
319		 */
320		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE &&
321		    kgdb_has_hit_break(addr))
322			return false;
323#endif
324		addr += insn.length;
325	}
326
327	/* Check if paddr is at an instruction boundary */
328	if (addr != paddr)
329		return false;
330
331	__addr = recover_probed_instruction(buf, addr);
332	if (!__addr)
333		return false;
334
335	if (insn_decode_kernel(&insn, (void *)__addr) < 0)
336		return false;
337
338	/* INT and UD are special and should not be kprobed */
339	if (is_exception_insn(&insn))
340		return false;
341
342	if (IS_ENABLED(CONFIG_CFI_CLANG)) {
343		/*
344		 * The compiler generates the following instruction sequence
345		 * for indirect call checks and cfi.c decodes this;
346		 *
347		 *��  movl    -<id>, %r10d       ; 6 bytes
348		 *   addl    -4(%reg), %r10d    ; 4 bytes
349		 *   je      .Ltmp1             ; 2 bytes
350		 *   ud2                        ; <- regs->ip
351		 *   .Ltmp1:
352		 *
353		 * Also, these movl and addl are used for showing expected
354		 * type. So those must not be touched.
355		 */
356		if (insn.opcode.value == 0xBA)
357			offset = 12;
358		else if (insn.opcode.value == 0x3)
359			offset = 6;
360		else
361			goto out;
362
363		/* This movl/addl is used for decoding CFI. */
364		if (is_cfi_trap(addr + offset))
365			return false;
366	}
367
368out:
369	return true;
370}
371
372/* If x86 supports IBT (ENDBR) it must be skipped. */
373kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
374					 bool *on_func_entry)
375{
376	u32 insn;
377
378	/*
379	 * Since 'addr' is not guaranteed to be safe to access, use
380	 * copy_from_kernel_nofault() to read the instruction:
381	 */
382	if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(u32)))
383		return NULL;
384
385	if (is_endbr(insn)) {
386		*on_func_entry = !offset || offset == 4;
387		if (*on_func_entry)
388			offset = 4;
389
390	} else {
391		*on_func_entry = !offset;
392	}
393
394	return (kprobe_opcode_t *)(addr + offset);
395}
396
397/*
398 * Copy an instruction with recovering modified instruction by kprobes
399 * and adjust the displacement if the instruction uses the %rip-relative
400 * addressing mode. Note that since @real will be the final place of copied
401 * instruction, displacement must be adjust by @real, not @dest.
402 * This returns the length of copied instruction, or 0 if it has an error.
403 */
404int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
405{
406	kprobe_opcode_t buf[MAX_INSN_SIZE];
407	unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
408	int ret;
409
410	if (!recovered_insn || !insn)
411		return 0;
412
413	/* This can access kernel text if given address is not recovered */
414	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
415			MAX_INSN_SIZE))
416		return 0;
417
418	ret = insn_decode_kernel(insn, dest);
419	if (ret < 0)
420		return 0;
421
422	/* We can not probe force emulate prefixed instruction */
423	if (insn_has_emulate_prefix(insn))
424		return 0;
425
426	/* Another subsystem puts a breakpoint, failed to recover */
427	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
428		return 0;
429
430	/* We should not singlestep on the exception masking instructions */
431	if (insn_masking_exception(insn))
432		return 0;
433
434#ifdef CONFIG_X86_64
435	/* Only x86_64 has RIP relative instructions */
436	if (insn_rip_relative(insn)) {
437		s64 newdisp;
438		u8 *disp;
439		/*
440		 * The copied instruction uses the %rip-relative addressing
441		 * mode.  Adjust the displacement for the difference between
442		 * the original location of this instruction and the location
443		 * of the copy that will actually be run.  The tricky bit here
444		 * is making sure that the sign extension happens correctly in
445		 * this calculation, since we need a signed 32-bit result to
446		 * be sign-extended to 64 bits when it's added to the %rip
447		 * value and yield the same 64-bit result that the sign-
448		 * extension of the original signed 32-bit displacement would
449		 * have given.
450		 */
451		newdisp = (u8 *) src + (s64) insn->displacement.value
452			  - (u8 *) real;
453		if ((s64) (s32) newdisp != newdisp) {
454			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
455			return 0;
456		}
457		disp = (u8 *) dest + insn_offset_displacement(insn);
458		*(s32 *) disp = (s32) newdisp;
459	}
460#endif
461	return insn->length;
462}
463
464/* Prepare reljump or int3 right after instruction */
465static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
466			      struct insn *insn)
467{
468	int len = insn->length;
469
470	if (!IS_ENABLED(CONFIG_PREEMPTION) &&
471	    !p->post_handler && can_boost(insn, p->addr) &&
472	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
473		/*
474		 * These instructions can be executed directly if it
475		 * jumps back to correct address.
476		 */
477		synthesize_reljump(buf + len, p->ainsn.insn + len,
478				   p->addr + insn->length);
479		len += JMP32_INSN_SIZE;
480		p->ainsn.boostable = 1;
481	} else {
482		/* Otherwise, put an int3 for trapping singlestep */
483		if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
484			return -ENOSPC;
485
486		buf[len] = INT3_INSN_OPCODE;
487		len += INT3_INSN_SIZE;
488	}
489
490	return len;
491}
492
493/* Make page to RO mode when allocate it */
494void *alloc_insn_page(void)
495{
496	void *page;
497
498	page = module_alloc(PAGE_SIZE);
499	if (!page)
500		return NULL;
501
502	/*
503	 * TODO: Once additional kernel code protection mechanisms are set, ensure
504	 * that the page was not maliciously altered and it is still zeroed.
505	 */
506	set_memory_rox((unsigned long)page, 1);
507
508	return page;
509}
510
511/* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
512
513static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
514{
515	switch (p->ainsn.opcode) {
516	case 0xfa:	/* cli */
517		regs->flags &= ~(X86_EFLAGS_IF);
518		break;
519	case 0xfb:	/* sti */
520		regs->flags |= X86_EFLAGS_IF;
521		break;
522	case 0x9c:	/* pushf */
523		int3_emulate_push(regs, regs->flags);
524		break;
525	case 0x9d:	/* popf */
526		regs->flags = int3_emulate_pop(regs);
527		break;
528	}
529	regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
530}
531NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
532
533static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
534{
535	int3_emulate_ret(regs);
536}
537NOKPROBE_SYMBOL(kprobe_emulate_ret);
538
539static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
540{
541	unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
542
543	func += p->ainsn.rel32;
544	int3_emulate_call(regs, func);
545}
546NOKPROBE_SYMBOL(kprobe_emulate_call);
547
548static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
549{
550	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
551
552	ip += p->ainsn.rel32;
553	int3_emulate_jmp(regs, ip);
554}
555NOKPROBE_SYMBOL(kprobe_emulate_jmp);
556
557static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
558{
559	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
560
561	int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32);
562}
563NOKPROBE_SYMBOL(kprobe_emulate_jcc);
564
565static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
566{
567	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
568	bool match;
569
570	if (p->ainsn.loop.type != 3) {	/* LOOP* */
571		if (p->ainsn.loop.asize == 32)
572			match = ((*(u32 *)&regs->cx)--) != 0;
573#ifdef CONFIG_X86_64
574		else if (p->ainsn.loop.asize == 64)
575			match = ((*(u64 *)&regs->cx)--) != 0;
576#endif
577		else
578			match = ((*(u16 *)&regs->cx)--) != 0;
579	} else {			/* JCXZ */
580		if (p->ainsn.loop.asize == 32)
581			match = *(u32 *)(&regs->cx) == 0;
582#ifdef CONFIG_X86_64
583		else if (p->ainsn.loop.asize == 64)
584			match = *(u64 *)(&regs->cx) == 0;
585#endif
586		else
587			match = *(u16 *)(&regs->cx) == 0;
588	}
589
590	if (p->ainsn.loop.type == 0)	/* LOOPNE */
591		match = match && !(regs->flags & X86_EFLAGS_ZF);
592	else if (p->ainsn.loop.type == 1)	/* LOOPE */
593		match = match && (regs->flags & X86_EFLAGS_ZF);
594
595	if (match)
596		ip += p->ainsn.rel32;
597	int3_emulate_jmp(regs, ip);
598}
599NOKPROBE_SYMBOL(kprobe_emulate_loop);
600
601static const int addrmode_regoffs[] = {
602	offsetof(struct pt_regs, ax),
603	offsetof(struct pt_regs, cx),
604	offsetof(struct pt_regs, dx),
605	offsetof(struct pt_regs, bx),
606	offsetof(struct pt_regs, sp),
607	offsetof(struct pt_regs, bp),
608	offsetof(struct pt_regs, si),
609	offsetof(struct pt_regs, di),
610#ifdef CONFIG_X86_64
611	offsetof(struct pt_regs, r8),
612	offsetof(struct pt_regs, r9),
613	offsetof(struct pt_regs, r10),
614	offsetof(struct pt_regs, r11),
615	offsetof(struct pt_regs, r12),
616	offsetof(struct pt_regs, r13),
617	offsetof(struct pt_regs, r14),
618	offsetof(struct pt_regs, r15),
619#endif
620};
621
622static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
623{
624	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
625
626	int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + p->ainsn.size);
627	int3_emulate_jmp(regs, regs_get_register(regs, offs));
628}
629NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
630
631static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
632{
633	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
634
635	int3_emulate_jmp(regs, regs_get_register(regs, offs));
636}
637NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
638
639static int prepare_emulation(struct kprobe *p, struct insn *insn)
640{
641	insn_byte_t opcode = insn->opcode.bytes[0];
642
643	switch (opcode) {
644	case 0xfa:		/* cli */
645	case 0xfb:		/* sti */
646	case 0x9c:		/* pushfl */
647	case 0x9d:		/* popf/popfd */
648		/*
649		 * IF modifiers must be emulated since it will enable interrupt while
650		 * int3 single stepping.
651		 */
652		p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
653		p->ainsn.opcode = opcode;
654		break;
655	case 0xc2:	/* ret/lret */
656	case 0xc3:
657	case 0xca:
658	case 0xcb:
659		p->ainsn.emulate_op = kprobe_emulate_ret;
660		break;
661	case 0x9a:	/* far call absolute -- segment is not supported */
662	case 0xea:	/* far jmp absolute -- segment is not supported */
663	case 0xcc:	/* int3 */
664	case 0xcf:	/* iret -- in-kernel IRET is not supported */
665		return -EOPNOTSUPP;
666		break;
667	case 0xe8:	/* near call relative */
668		p->ainsn.emulate_op = kprobe_emulate_call;
669		if (insn->immediate.nbytes == 2)
670			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
671		else
672			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
673		break;
674	case 0xeb:	/* short jump relative */
675	case 0xe9:	/* near jump relative */
676		p->ainsn.emulate_op = kprobe_emulate_jmp;
677		if (insn->immediate.nbytes == 1)
678			p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
679		else if (insn->immediate.nbytes == 2)
680			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
681		else
682			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
683		break;
684	case 0x70 ... 0x7f:
685		/* 1 byte conditional jump */
686		p->ainsn.emulate_op = kprobe_emulate_jcc;
687		p->ainsn.jcc.type = opcode & 0xf;
688		p->ainsn.rel32 = insn->immediate.value;
689		break;
690	case 0x0f:
691		opcode = insn->opcode.bytes[1];
692		if ((opcode & 0xf0) == 0x80) {
693			/* 2 bytes Conditional Jump */
694			p->ainsn.emulate_op = kprobe_emulate_jcc;
695			p->ainsn.jcc.type = opcode & 0xf;
696			if (insn->immediate.nbytes == 2)
697				p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
698			else
699				p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
700		} else if (opcode == 0x01 &&
701			   X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
702			   X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
703			/* VM extensions - not supported */
704			return -EOPNOTSUPP;
705		}
706		break;
707	case 0xe0:	/* Loop NZ */
708	case 0xe1:	/* Loop */
709	case 0xe2:	/* Loop */
710	case 0xe3:	/* J*CXZ */
711		p->ainsn.emulate_op = kprobe_emulate_loop;
712		p->ainsn.loop.type = opcode & 0x3;
713		p->ainsn.loop.asize = insn->addr_bytes * 8;
714		p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
715		break;
716	case 0xff:
717		/*
718		 * Since the 0xff is an extended group opcode, the instruction
719		 * is determined by the MOD/RM byte.
720		 */
721		opcode = insn->modrm.bytes[0];
722		switch (X86_MODRM_REG(opcode)) {
723		case 0b010:	/* FF /2, call near, absolute indirect */
724			p->ainsn.emulate_op = kprobe_emulate_call_indirect;
725			break;
726		case 0b100:	/* FF /4, jmp near, absolute indirect */
727			p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
728			break;
729		case 0b011:	/* FF /3, call far, absolute indirect */
730		case 0b101:	/* FF /5, jmp far, absolute indirect */
731			return -EOPNOTSUPP;
732		}
733
734		if (!p->ainsn.emulate_op)
735			break;
736
737		if (insn->addr_bytes != sizeof(unsigned long))
738			return -EOPNOTSUPP;	/* Don't support different size */
739		if (X86_MODRM_MOD(opcode) != 3)
740			return -EOPNOTSUPP;	/* TODO: support memory addressing */
741
742		p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
743#ifdef CONFIG_X86_64
744		if (X86_REX_B(insn->rex_prefix.value))
745			p->ainsn.indirect.reg += 8;
746#endif
747		break;
748	default:
749		break;
750	}
751	p->ainsn.size = insn->length;
752
753	return 0;
754}
755
756static int arch_copy_kprobe(struct kprobe *p)
757{
758	struct insn insn;
759	kprobe_opcode_t buf[MAX_INSN_SIZE];
760	int ret, len;
761
762	/* Copy an instruction with recovering if other optprobe modifies it.*/
763	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
764	if (!len)
765		return -EINVAL;
766
767	/* Analyze the opcode and setup emulate functions */
768	ret = prepare_emulation(p, &insn);
769	if (ret < 0)
770		return ret;
771
772	/* Add int3 for single-step or booster jmp */
773	len = prepare_singlestep(buf, p, &insn);
774	if (len < 0)
775		return len;
776
777	/* Also, displacement change doesn't affect the first byte */
778	p->opcode = buf[0];
779
780	p->ainsn.tp_len = len;
781	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
782
783	/* OK, write back the instruction(s) into ROX insn buffer */
784	text_poke(p->ainsn.insn, buf, len);
785
786	return 0;
787}
788
789int arch_prepare_kprobe(struct kprobe *p)
790{
791	int ret;
792
793	if (alternatives_text_reserved(p->addr, p->addr))
794		return -EINVAL;
795
796	if (!can_probe((unsigned long)p->addr))
797		return -EILSEQ;
798
799	memset(&p->ainsn, 0, sizeof(p->ainsn));
800
801	/* insn: must be on special executable page on x86. */
802	p->ainsn.insn = get_insn_slot();
803	if (!p->ainsn.insn)
804		return -ENOMEM;
805
806	ret = arch_copy_kprobe(p);
807	if (ret) {
808		free_insn_slot(p->ainsn.insn, 0);
809		p->ainsn.insn = NULL;
810	}
811
812	return ret;
813}
814
815void arch_arm_kprobe(struct kprobe *p)
816{
817	u8 int3 = INT3_INSN_OPCODE;
818
819	text_poke(p->addr, &int3, 1);
820	text_poke_sync();
821	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
822}
823
824void arch_disarm_kprobe(struct kprobe *p)
825{
826	u8 int3 = INT3_INSN_OPCODE;
827
828	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
829	text_poke(p->addr, &p->opcode, 1);
830	text_poke_sync();
831}
832
833void arch_remove_kprobe(struct kprobe *p)
834{
835	if (p->ainsn.insn) {
836		/* Record the perf event before freeing the slot */
837		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
838				     p->ainsn.tp_len, NULL, 0);
839		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
840		p->ainsn.insn = NULL;
841	}
842}
843
844static nokprobe_inline void
845save_previous_kprobe(struct kprobe_ctlblk *kcb)
846{
847	kcb->prev_kprobe.kp = kprobe_running();
848	kcb->prev_kprobe.status = kcb->kprobe_status;
849	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
850	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
851}
852
853static nokprobe_inline void
854restore_previous_kprobe(struct kprobe_ctlblk *kcb)
855{
856	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
857	kcb->kprobe_status = kcb->prev_kprobe.status;
858	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
859	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
860}
861
862static nokprobe_inline void
863set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
864		   struct kprobe_ctlblk *kcb)
865{
866	__this_cpu_write(current_kprobe, p);
867	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
868		= (regs->flags & X86_EFLAGS_IF);
869}
870
871static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
872			       struct kprobe_ctlblk *kcb)
873{
874	/* Restore back the original saved kprobes variables and continue. */
875	if (kcb->kprobe_status == KPROBE_REENTER) {
876		/* This will restore both kcb and current_kprobe */
877		restore_previous_kprobe(kcb);
878	} else {
879		/*
880		 * Always update the kcb status because
881		 * reset_curent_kprobe() doesn't update kcb.
882		 */
883		kcb->kprobe_status = KPROBE_HIT_SSDONE;
884		if (cur->post_handler)
885			cur->post_handler(cur, regs, 0);
886		reset_current_kprobe();
887	}
888}
889NOKPROBE_SYMBOL(kprobe_post_process);
890
891static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
892			     struct kprobe_ctlblk *kcb, int reenter)
893{
894	if (setup_detour_execution(p, regs, reenter))
895		return;
896
897#if !defined(CONFIG_PREEMPTION)
898	if (p->ainsn.boostable) {
899		/* Boost up -- we can execute copied instructions directly */
900		if (!reenter)
901			reset_current_kprobe();
902		/*
903		 * Reentering boosted probe doesn't reset current_kprobe,
904		 * nor set current_kprobe, because it doesn't use single
905		 * stepping.
906		 */
907		regs->ip = (unsigned long)p->ainsn.insn;
908		return;
909	}
910#endif
911	if (reenter) {
912		save_previous_kprobe(kcb);
913		set_current_kprobe(p, regs, kcb);
914		kcb->kprobe_status = KPROBE_REENTER;
915	} else
916		kcb->kprobe_status = KPROBE_HIT_SS;
917
918	if (p->ainsn.emulate_op) {
919		p->ainsn.emulate_op(p, regs);
920		kprobe_post_process(p, regs, kcb);
921		return;
922	}
923
924	/* Disable interrupt, and set ip register on trampoline */
925	regs->flags &= ~X86_EFLAGS_IF;
926	regs->ip = (unsigned long)p->ainsn.insn;
927}
928NOKPROBE_SYMBOL(setup_singlestep);
929
930/*
931 * Called after single-stepping.  p->addr is the address of the
932 * instruction whose first byte has been replaced by the "int3"
933 * instruction.  To avoid the SMP problems that can occur when we
934 * temporarily put back the original opcode to single-step, we
935 * single-stepped a copy of the instruction.  The address of this
936 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
937 * right after the copied instruction.
938 * Different from the trap single-step, "int3" single-step can not
939 * handle the instruction which changes the ip register, e.g. jmp,
940 * call, conditional jmp, and the instructions which changes the IF
941 * flags because interrupt must be disabled around the single-stepping.
942 * Such instructions are software emulated, but others are single-stepped
943 * using "int3".
944 *
945 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
946 * be adjusted, so that we can resume execution on correct code.
947 */
948static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
949			      struct kprobe_ctlblk *kcb)
950{
951	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
952	unsigned long orig_ip = (unsigned long)p->addr;
953
954	/* Restore saved interrupt flag and ip register */
955	regs->flags |= kcb->kprobe_saved_flags;
956	/* Note that regs->ip is executed int3 so must be a step back */
957	regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
958}
959NOKPROBE_SYMBOL(resume_singlestep);
960
961/*
962 * We have reentered the kprobe_handler(), since another probe was hit while
963 * within the handler. We save the original kprobes variables and just single
964 * step on the instruction of the new probe without calling any user handlers.
965 */
966static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
967			  struct kprobe_ctlblk *kcb)
968{
969	switch (kcb->kprobe_status) {
970	case KPROBE_HIT_SSDONE:
971	case KPROBE_HIT_ACTIVE:
972	case KPROBE_HIT_SS:
973		kprobes_inc_nmissed_count(p);
974		setup_singlestep(p, regs, kcb, 1);
975		break;
976	case KPROBE_REENTER:
977		/* A probe has been hit in the codepath leading up to, or just
978		 * after, single-stepping of a probed instruction. This entire
979		 * codepath should strictly reside in .kprobes.text section.
980		 * Raise a BUG or we'll continue in an endless reentering loop
981		 * and eventually a stack overflow.
982		 */
983		pr_err("Unrecoverable kprobe detected.\n");
984		dump_kprobe(p);
985		BUG();
986	default:
987		/* impossible cases */
988		WARN_ON(1);
989		return 0;
990	}
991
992	return 1;
993}
994NOKPROBE_SYMBOL(reenter_kprobe);
995
996static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
997{
998	return (kcb->kprobe_status == KPROBE_HIT_SS ||
999		kcb->kprobe_status == KPROBE_REENTER);
1000}
1001
1002/*
1003 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
1004 * remain disabled throughout this function.
1005 */
1006int kprobe_int3_handler(struct pt_regs *regs)
1007{
1008	kprobe_opcode_t *addr;
1009	struct kprobe *p;
1010	struct kprobe_ctlblk *kcb;
1011
1012	if (user_mode(regs))
1013		return 0;
1014
1015	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
1016	/*
1017	 * We don't want to be preempted for the entire duration of kprobe
1018	 * processing. Since int3 and debug trap disables irqs and we clear
1019	 * IF while singlestepping, it must be no preemptible.
1020	 */
1021
1022	kcb = get_kprobe_ctlblk();
1023	p = get_kprobe(addr);
1024
1025	if (p) {
1026		if (kprobe_running()) {
1027			if (reenter_kprobe(p, regs, kcb))
1028				return 1;
1029		} else {
1030			set_current_kprobe(p, regs, kcb);
1031			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1032
1033			/*
1034			 * If we have no pre-handler or it returned 0, we
1035			 * continue with normal processing.  If we have a
1036			 * pre-handler and it returned non-zero, that means
1037			 * user handler setup registers to exit to another
1038			 * instruction, we must skip the single stepping.
1039			 */
1040			if (!p->pre_handler || !p->pre_handler(p, regs))
1041				setup_singlestep(p, regs, kcb, 0);
1042			else
1043				reset_current_kprobe();
1044			return 1;
1045		}
1046	} else if (kprobe_is_ss(kcb)) {
1047		p = kprobe_running();
1048		if ((unsigned long)p->ainsn.insn < regs->ip &&
1049		    (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
1050			/* Most provably this is the second int3 for singlestep */
1051			resume_singlestep(p, regs, kcb);
1052			kprobe_post_process(p, regs, kcb);
1053			return 1;
1054		}
1055	} /* else: not a kprobe fault; let the kernel handle it */
1056
1057	return 0;
1058}
1059NOKPROBE_SYMBOL(kprobe_int3_handler);
1060
1061int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1062{
1063	struct kprobe *cur = kprobe_running();
1064	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1065
1066	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1067		/* This must happen on single-stepping */
1068		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1069			kcb->kprobe_status != KPROBE_REENTER);
1070		/*
1071		 * We are here because the instruction being single
1072		 * stepped caused a page fault. We reset the current
1073		 * kprobe and the ip points back to the probe address
1074		 * and allow the page fault handler to continue as a
1075		 * normal page fault.
1076		 */
1077		regs->ip = (unsigned long)cur->addr;
1078
1079		/*
1080		 * If the IF flag was set before the kprobe hit,
1081		 * don't touch it:
1082		 */
1083		regs->flags |= kcb->kprobe_old_flags;
1084
1085		if (kcb->kprobe_status == KPROBE_REENTER)
1086			restore_previous_kprobe(kcb);
1087		else
1088			reset_current_kprobe();
1089	}
1090
1091	return 0;
1092}
1093NOKPROBE_SYMBOL(kprobe_fault_handler);
1094
1095int __init arch_populate_kprobe_blacklist(void)
1096{
1097	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1098					 (unsigned long)__entry_text_end);
1099}
1100
1101int __init arch_init_kprobes(void)
1102{
1103	return 0;
1104}
1105
1106int arch_trampoline_kprobe(struct kprobe *p)
1107{
1108	return 0;
1109}
1110