1// SPDX-License-Identifier: GPL-2.0
2/*  Copyright(c) 2016-20 Intel Corporation. */
3
4#include <linux/lockdep.h>
5#include <linux/mm.h>
6#include <linux/mman.h>
7#include <linux/shmem_fs.h>
8#include <linux/suspend.h>
9#include <linux/sched/mm.h>
10#include <asm/sgx.h>
11#include "encl.h"
12#include "encls.h"
13#include "sgx.h"
14
15static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
16			    struct sgx_backing *backing);
17
18#define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
19/*
20 * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
21 * determine the page index associated with the first PCMD entry
22 * within a PCMD page.
23 */
24#define PCMD_FIRST_MASK GENMASK(4, 0)
25
26/**
27 * reclaimer_writing_to_pcmd() - Query if any enclave page associated with
28 *                               a PCMD page is in process of being reclaimed.
29 * @encl:        Enclave to which PCMD page belongs
30 * @start_addr:  Address of enclave page using first entry within the PCMD page
31 *
32 * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
33 * stored. The PCMD data of a reclaimed enclave page contains enough
34 * information for the processor to verify the page at the time
35 * it is loaded back into the Enclave Page Cache (EPC).
36 *
37 * The backing storage to which enclave pages are reclaimed is laid out as
38 * follows:
39 * Encrypted enclave pages:SECS page:PCMD pages
40 *
41 * Each PCMD page contains the PCMD metadata of
42 * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
43 *
44 * A PCMD page can only be truncated if it is (a) empty, and (b) not in the
45 * process of getting data (and thus soon being non-empty). (b) is tested with
46 * a check if an enclave page sharing the PCMD page is in the process of being
47 * reclaimed.
48 *
49 * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
50 * intends to reclaim that enclave page - it means that the PCMD page
51 * associated with that enclave page is about to get some data and thus
52 * even if the PCMD page is empty, it should not be truncated.
53 *
54 * Context: Enclave mutex (&sgx_encl->lock) must be held.
55 * Return: 1 if the reclaimer is about to write to the PCMD page
56 *         0 if the reclaimer has no intention to write to the PCMD page
57 */
58static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
59				     unsigned long start_addr)
60{
61	int reclaimed = 0;
62	int i;
63
64	/*
65	 * PCMD_FIRST_MASK is based on number of PCMD entries within
66	 * PCMD page being 32.
67	 */
68	BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
69
70	for (i = 0; i < PCMDS_PER_PAGE; i++) {
71		struct sgx_encl_page *entry;
72		unsigned long addr;
73
74		addr = start_addr + i * PAGE_SIZE;
75
76		/*
77		 * Stop when reaching the SECS page - it does not
78		 * have a page_array entry and its reclaim is
79		 * started and completed with enclave mutex held so
80		 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
81		 * flag.
82		 */
83		if (addr == encl->base + encl->size)
84			break;
85
86		entry = xa_load(&encl->page_array, PFN_DOWN(addr));
87		if (!entry)
88			continue;
89
90		/*
91		 * VA page slot ID uses same bit as the flag so it is important
92		 * to ensure that the page is not already in backing store.
93		 */
94		if (entry->epc_page &&
95		    (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
96			reclaimed = 1;
97			break;
98		}
99	}
100
101	return reclaimed;
102}
103
104/*
105 * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
106 * follow right after the EPC data in the backing storage. In addition to the
107 * visible enclave pages, there's one extra page slot for SECS, before PCMD
108 * structs.
109 */
110static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
111							    unsigned long page_index)
112{
113	pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
114
115	return epc_end_off + page_index * sizeof(struct sgx_pcmd);
116}
117
118/*
119 * Free a page from the backing storage in the given page index.
120 */
121static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
122{
123	struct inode *inode = file_inode(encl->backing);
124
125	shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
126}
127
128/*
129 * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
130 * Pages" in the SDM.
131 */
132static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
133			   struct sgx_epc_page *epc_page,
134			   struct sgx_epc_page *secs_page)
135{
136	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
137	struct sgx_encl *encl = encl_page->encl;
138	pgoff_t page_index, page_pcmd_off;
139	unsigned long pcmd_first_page;
140	struct sgx_pageinfo pginfo;
141	struct sgx_backing b;
142	bool pcmd_page_empty;
143	u8 *pcmd_page;
144	int ret;
145
146	if (secs_page)
147		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
148	else
149		page_index = PFN_DOWN(encl->size);
150
151	/*
152	 * Address of enclave page using the first entry within the PCMD page.
153	 */
154	pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
155
156	page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
157
158	ret = sgx_encl_lookup_backing(encl, page_index, &b);
159	if (ret)
160		return ret;
161
162	pginfo.addr = encl_page->desc & PAGE_MASK;
163	pginfo.contents = (unsigned long)kmap_local_page(b.contents);
164	pcmd_page = kmap_local_page(b.pcmd);
165	pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
166
167	if (secs_page)
168		pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
169	else
170		pginfo.secs = 0;
171
172	ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
173		     sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
174	if (ret) {
175		if (encls_failed(ret))
176			ENCLS_WARN(ret, "ELDU");
177
178		ret = -EFAULT;
179	}
180
181	memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
182	set_page_dirty(b.pcmd);
183
184	/*
185	 * The area for the PCMD in the page was zeroed above.  Check if the
186	 * whole page is now empty meaning that all PCMD's have been zeroed:
187	 */
188	pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
189
190	kunmap_local(pcmd_page);
191	kunmap_local((void *)(unsigned long)pginfo.contents);
192
193	get_page(b.pcmd);
194	sgx_encl_put_backing(&b);
195
196	sgx_encl_truncate_backing_page(encl, page_index);
197
198	if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
199		sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
200		pcmd_page = kmap_local_page(b.pcmd);
201		if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
202			pr_warn("PCMD page not empty after truncate.\n");
203		kunmap_local(pcmd_page);
204	}
205
206	put_page(b.pcmd);
207
208	return ret;
209}
210
211static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
212					  struct sgx_epc_page *secs_page)
213{
214
215	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
216	struct sgx_encl *encl = encl_page->encl;
217	struct sgx_epc_page *epc_page;
218	int ret;
219
220	epc_page = sgx_alloc_epc_page(encl_page, false);
221	if (IS_ERR(epc_page))
222		return epc_page;
223
224	ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
225	if (ret) {
226		sgx_encl_free_epc_page(epc_page);
227		return ERR_PTR(ret);
228	}
229
230	sgx_free_va_slot(encl_page->va_page, va_offset);
231	list_move(&encl_page->va_page->list, &encl->va_pages);
232	encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
233	encl_page->epc_page = epc_page;
234
235	return epc_page;
236}
237
238/*
239 * Ensure the SECS page is not swapped out.  Must be called with encl->lock
240 * to protect the enclave states including SECS and ensure the SECS page is
241 * not swapped out again while being used.
242 */
243static struct sgx_epc_page *sgx_encl_load_secs(struct sgx_encl *encl)
244{
245	struct sgx_epc_page *epc_page = encl->secs.epc_page;
246
247	if (!epc_page)
248		epc_page = sgx_encl_eldu(&encl->secs, NULL);
249
250	return epc_page;
251}
252
253static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl,
254						  struct sgx_encl_page *entry)
255{
256	struct sgx_epc_page *epc_page;
257
258	/* Entry successfully located. */
259	if (entry->epc_page) {
260		if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
261			return ERR_PTR(-EBUSY);
262
263		return entry;
264	}
265
266	epc_page = sgx_encl_load_secs(encl);
267	if (IS_ERR(epc_page))
268		return ERR_CAST(epc_page);
269
270	epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
271	if (IS_ERR(epc_page))
272		return ERR_CAST(epc_page);
273
274	encl->secs_child_cnt++;
275	sgx_mark_page_reclaimable(entry->epc_page);
276
277	return entry;
278}
279
280static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl,
281						       unsigned long addr,
282						       unsigned long vm_flags)
283{
284	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
285	struct sgx_encl_page *entry;
286
287	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
288	if (!entry)
289		return ERR_PTR(-EFAULT);
290
291	/*
292	 * Verify that the page has equal or higher build time
293	 * permissions than the VMA permissions (i.e. the subset of {VM_READ,
294	 * VM_WRITE, VM_EXECUTE} in vma->vm_flags).
295	 */
296	if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
297		return ERR_PTR(-EFAULT);
298
299	return __sgx_encl_load_page(encl, entry);
300}
301
302struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
303					 unsigned long addr)
304{
305	struct sgx_encl_page *entry;
306
307	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
308	if (!entry)
309		return ERR_PTR(-EFAULT);
310
311	return __sgx_encl_load_page(encl, entry);
312}
313
314/**
315 * sgx_encl_eaug_page() - Dynamically add page to initialized enclave
316 * @vma:	VMA obtained from fault info from where page is accessed
317 * @encl:	enclave accessing the page
318 * @addr:	address that triggered the page fault
319 *
320 * When an initialized enclave accesses a page with no backing EPC page
321 * on a SGX2 system then the EPC can be added dynamically via the SGX2
322 * ENCLS[EAUG] instruction.
323 *
324 * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed
325 * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise.
326 */
327static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma,
328				     struct sgx_encl *encl, unsigned long addr)
329{
330	vm_fault_t vmret = VM_FAULT_SIGBUS;
331	struct sgx_pageinfo pginfo = {0};
332	struct sgx_encl_page *encl_page;
333	struct sgx_epc_page *epc_page;
334	struct sgx_va_page *va_page;
335	unsigned long phys_addr;
336	u64 secinfo_flags;
337	int ret;
338
339	if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags))
340		return VM_FAULT_SIGBUS;
341
342	/*
343	 * Ignore internal permission checking for dynamically added pages.
344	 * They matter only for data added during the pre-initialization
345	 * phase. The enclave decides the permissions by the means of
346	 * EACCEPT, EACCEPTCOPY and EMODPE.
347	 */
348	secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X;
349	encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags);
350	if (IS_ERR(encl_page))
351		return VM_FAULT_OOM;
352
353	mutex_lock(&encl->lock);
354
355	epc_page = sgx_encl_load_secs(encl);
356	if (IS_ERR(epc_page)) {
357		if (PTR_ERR(epc_page) == -EBUSY)
358			vmret = VM_FAULT_NOPAGE;
359		goto err_out_unlock;
360	}
361
362	epc_page = sgx_alloc_epc_page(encl_page, false);
363	if (IS_ERR(epc_page)) {
364		if (PTR_ERR(epc_page) == -EBUSY)
365			vmret =  VM_FAULT_NOPAGE;
366		goto err_out_unlock;
367	}
368
369	va_page = sgx_encl_grow(encl, false);
370	if (IS_ERR(va_page)) {
371		if (PTR_ERR(va_page) == -EBUSY)
372			vmret = VM_FAULT_NOPAGE;
373		goto err_out_epc;
374	}
375
376	if (va_page)
377		list_add(&va_page->list, &encl->va_pages);
378
379	ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc),
380			encl_page, GFP_KERNEL);
381	/*
382	 * If ret == -EBUSY then page was created in another flow while
383	 * running without encl->lock
384	 */
385	if (ret)
386		goto err_out_shrink;
387
388	pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page);
389	pginfo.addr = encl_page->desc & PAGE_MASK;
390	pginfo.metadata = 0;
391
392	ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page));
393	if (ret)
394		goto err_out;
395
396	encl_page->encl = encl;
397	encl_page->epc_page = epc_page;
398	encl_page->type = SGX_PAGE_TYPE_REG;
399	encl->secs_child_cnt++;
400
401	sgx_mark_page_reclaimable(encl_page->epc_page);
402
403	phys_addr = sgx_get_epc_phys_addr(epc_page);
404	/*
405	 * Do not undo everything when creating PTE entry fails - next #PF
406	 * would find page ready for a PTE.
407	 */
408	vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
409	if (vmret != VM_FAULT_NOPAGE) {
410		mutex_unlock(&encl->lock);
411		return VM_FAULT_SIGBUS;
412	}
413	mutex_unlock(&encl->lock);
414	return VM_FAULT_NOPAGE;
415
416err_out:
417	xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc));
418
419err_out_shrink:
420	sgx_encl_shrink(encl, va_page);
421err_out_epc:
422	sgx_encl_free_epc_page(epc_page);
423err_out_unlock:
424	mutex_unlock(&encl->lock);
425	kfree(encl_page);
426
427	return vmret;
428}
429
430static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
431{
432	unsigned long addr = (unsigned long)vmf->address;
433	struct vm_area_struct *vma = vmf->vma;
434	struct sgx_encl_page *entry;
435	unsigned long phys_addr;
436	struct sgx_encl *encl;
437	vm_fault_t ret;
438
439	encl = vma->vm_private_data;
440
441	/*
442	 * It's very unlikely but possible that allocating memory for the
443	 * mm_list entry of a forked process failed in sgx_vma_open(). When
444	 * this happens, vm_private_data is set to NULL.
445	 */
446	if (unlikely(!encl))
447		return VM_FAULT_SIGBUS;
448
449	/*
450	 * The page_array keeps track of all enclave pages, whether they
451	 * are swapped out or not. If there is no entry for this page and
452	 * the system supports SGX2 then it is possible to dynamically add
453	 * a new enclave page. This is only possible for an initialized
454	 * enclave that will be checked for right away.
455	 */
456	if (cpu_feature_enabled(X86_FEATURE_SGX2) &&
457	    (!xa_load(&encl->page_array, PFN_DOWN(addr))))
458		return sgx_encl_eaug_page(vma, encl, addr);
459
460	mutex_lock(&encl->lock);
461
462	entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags);
463	if (IS_ERR(entry)) {
464		mutex_unlock(&encl->lock);
465
466		if (PTR_ERR(entry) == -EBUSY)
467			return VM_FAULT_NOPAGE;
468
469		return VM_FAULT_SIGBUS;
470	}
471
472	phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
473
474	ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
475	if (ret != VM_FAULT_NOPAGE) {
476		mutex_unlock(&encl->lock);
477
478		return VM_FAULT_SIGBUS;
479	}
480
481	sgx_encl_test_and_clear_young(vma->vm_mm, entry);
482	mutex_unlock(&encl->lock);
483
484	return VM_FAULT_NOPAGE;
485}
486
487static void sgx_vma_open(struct vm_area_struct *vma)
488{
489	struct sgx_encl *encl = vma->vm_private_data;
490
491	/*
492	 * It's possible but unlikely that vm_private_data is NULL. This can
493	 * happen in a grandchild of a process, when sgx_encl_mm_add() had
494	 * failed to allocate memory in this callback.
495	 */
496	if (unlikely(!encl))
497		return;
498
499	if (sgx_encl_mm_add(encl, vma->vm_mm))
500		vma->vm_private_data = NULL;
501}
502
503
504/**
505 * sgx_encl_may_map() - Check if a requested VMA mapping is allowed
506 * @encl:		an enclave pointer
507 * @start:		lower bound of the address range, inclusive
508 * @end:		upper bound of the address range, exclusive
509 * @vm_flags:		VMA flags
510 *
511 * Iterate through the enclave pages contained within [@start, @end) to verify
512 * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
513 * do not contain any permissions that are not contained in the build time
514 * permissions of any of the enclave pages within the given address range.
515 *
516 * An enclave creator must declare the strongest permissions that will be
517 * needed for each enclave page. This ensures that mappings have the identical
518 * or weaker permissions than the earlier declared permissions.
519 *
520 * Return: 0 on success, -EACCES otherwise
521 */
522int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
523		     unsigned long end, unsigned long vm_flags)
524{
525	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
526	struct sgx_encl_page *page;
527	unsigned long count = 0;
528	int ret = 0;
529
530	XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
531
532	/* Disallow mapping outside enclave's address range. */
533	if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) &&
534	    (start < encl->base || end > encl->base + encl->size))
535		return -EACCES;
536
537	/*
538	 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
539	 * conflict with the enclave page permissions.
540	 */
541	if (current->personality & READ_IMPLIES_EXEC)
542		return -EACCES;
543
544	mutex_lock(&encl->lock);
545	xas_lock(&xas);
546	xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
547		if (~page->vm_max_prot_bits & vm_prot_bits) {
548			ret = -EACCES;
549			break;
550		}
551
552		/* Reschedule on every XA_CHECK_SCHED iteration. */
553		if (!(++count % XA_CHECK_SCHED)) {
554			xas_pause(&xas);
555			xas_unlock(&xas);
556			mutex_unlock(&encl->lock);
557
558			cond_resched();
559
560			mutex_lock(&encl->lock);
561			xas_lock(&xas);
562		}
563	}
564	xas_unlock(&xas);
565	mutex_unlock(&encl->lock);
566
567	return ret;
568}
569
570static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
571			    unsigned long end, unsigned long newflags)
572{
573	return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
574}
575
576static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
577			       unsigned long addr, void *data)
578{
579	unsigned long offset = addr & ~PAGE_MASK;
580	int ret;
581
582
583	ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
584	if (ret)
585		return -EIO;
586
587	return 0;
588}
589
590static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
591				unsigned long addr, void *data)
592{
593	unsigned long offset = addr & ~PAGE_MASK;
594	int ret;
595
596	ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
597	if (ret)
598		return -EIO;
599
600	return 0;
601}
602
603/*
604 * Load an enclave page to EPC if required, and take encl->lock.
605 */
606static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
607						   unsigned long addr,
608						   unsigned long vm_flags)
609{
610	struct sgx_encl_page *entry;
611
612	for ( ; ; ) {
613		mutex_lock(&encl->lock);
614
615		entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags);
616		if (PTR_ERR(entry) != -EBUSY)
617			break;
618
619		mutex_unlock(&encl->lock);
620	}
621
622	if (IS_ERR(entry))
623		mutex_unlock(&encl->lock);
624
625	return entry;
626}
627
628static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
629			  void *buf, int len, int write)
630{
631	struct sgx_encl *encl = vma->vm_private_data;
632	struct sgx_encl_page *entry = NULL;
633	char data[sizeof(unsigned long)];
634	unsigned long align;
635	int offset;
636	int cnt;
637	int ret = 0;
638	int i;
639
640	/*
641	 * If process was forked, VMA is still there but vm_private_data is set
642	 * to NULL.
643	 */
644	if (!encl)
645		return -EFAULT;
646
647	if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
648		return -EFAULT;
649
650	for (i = 0; i < len; i += cnt) {
651		entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
652					      vma->vm_flags);
653		if (IS_ERR(entry)) {
654			ret = PTR_ERR(entry);
655			break;
656		}
657
658		align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
659		offset = (addr + i) & (sizeof(unsigned long) - 1);
660		cnt = sizeof(unsigned long) - offset;
661		cnt = min(cnt, len - i);
662
663		ret = sgx_encl_debug_read(encl, entry, align, data);
664		if (ret)
665			goto out;
666
667		if (write) {
668			memcpy(data + offset, buf + i, cnt);
669			ret = sgx_encl_debug_write(encl, entry, align, data);
670			if (ret)
671				goto out;
672		} else {
673			memcpy(buf + i, data + offset, cnt);
674		}
675
676out:
677		mutex_unlock(&encl->lock);
678
679		if (ret)
680			break;
681	}
682
683	return ret < 0 ? ret : i;
684}
685
686const struct vm_operations_struct sgx_vm_ops = {
687	.fault = sgx_vma_fault,
688	.mprotect = sgx_vma_mprotect,
689	.open = sgx_vma_open,
690	.access = sgx_vma_access,
691};
692
693/**
694 * sgx_encl_release - Destroy an enclave instance
695 * @ref:	address of a kref inside &sgx_encl
696 *
697 * Used together with kref_put(). Frees all the resources associated with the
698 * enclave and the instance itself.
699 */
700void sgx_encl_release(struct kref *ref)
701{
702	struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
703	unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1);
704	struct sgx_va_page *va_page;
705	struct sgx_encl_page *entry;
706	unsigned long count = 0;
707
708	XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base));
709
710	xas_lock(&xas);
711	xas_for_each(&xas, entry, max_page_index) {
712		if (entry->epc_page) {
713			/*
714			 * The page and its radix tree entry cannot be freed
715			 * if the page is being held by the reclaimer.
716			 */
717			if (sgx_unmark_page_reclaimable(entry->epc_page))
718				continue;
719
720			sgx_encl_free_epc_page(entry->epc_page);
721			encl->secs_child_cnt--;
722			entry->epc_page = NULL;
723		}
724
725		kfree(entry);
726		/*
727		 * Invoke scheduler on every XA_CHECK_SCHED iteration
728		 * to prevent soft lockups.
729		 */
730		if (!(++count % XA_CHECK_SCHED)) {
731			xas_pause(&xas);
732			xas_unlock(&xas);
733
734			cond_resched();
735
736			xas_lock(&xas);
737		}
738	}
739	xas_unlock(&xas);
740
741	xa_destroy(&encl->page_array);
742
743	if (!encl->secs_child_cnt && encl->secs.epc_page) {
744		sgx_encl_free_epc_page(encl->secs.epc_page);
745		encl->secs.epc_page = NULL;
746	}
747
748	while (!list_empty(&encl->va_pages)) {
749		va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
750					   list);
751		list_del(&va_page->list);
752		sgx_encl_free_epc_page(va_page->epc_page);
753		kfree(va_page);
754	}
755
756	if (encl->backing)
757		fput(encl->backing);
758
759	cleanup_srcu_struct(&encl->srcu);
760
761	WARN_ON_ONCE(!list_empty(&encl->mm_list));
762
763	/* Detect EPC page leak's. */
764	WARN_ON_ONCE(encl->secs_child_cnt);
765	WARN_ON_ONCE(encl->secs.epc_page);
766
767	kfree(encl);
768}
769
770/*
771 * 'mm' is exiting and no longer needs mmu notifications.
772 */
773static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
774				     struct mm_struct *mm)
775{
776	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
777	struct sgx_encl_mm *tmp = NULL;
778	bool found = false;
779
780	/*
781	 * The enclave itself can remove encl_mm.  Note, objects can't be moved
782	 * off an RCU protected list, but deletion is ok.
783	 */
784	spin_lock(&encl_mm->encl->mm_lock);
785	list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
786		if (tmp == encl_mm) {
787			list_del_rcu(&encl_mm->list);
788			found = true;
789			break;
790		}
791	}
792	spin_unlock(&encl_mm->encl->mm_lock);
793
794	if (found) {
795		synchronize_srcu(&encl_mm->encl->srcu);
796		mmu_notifier_put(mn);
797	}
798}
799
800static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
801{
802	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
803
804	/* 'encl_mm' is going away, put encl_mm->encl reference: */
805	kref_put(&encl_mm->encl->refcount, sgx_encl_release);
806
807	kfree(encl_mm);
808}
809
810static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
811	.release		= sgx_mmu_notifier_release,
812	.free_notifier		= sgx_mmu_notifier_free,
813};
814
815static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
816					    struct mm_struct *mm)
817{
818	struct sgx_encl_mm *encl_mm = NULL;
819	struct sgx_encl_mm *tmp;
820	int idx;
821
822	idx = srcu_read_lock(&encl->srcu);
823
824	list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
825		if (tmp->mm == mm) {
826			encl_mm = tmp;
827			break;
828		}
829	}
830
831	srcu_read_unlock(&encl->srcu, idx);
832
833	return encl_mm;
834}
835
836int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
837{
838	struct sgx_encl_mm *encl_mm;
839	int ret;
840
841	/*
842	 * Even though a single enclave may be mapped into an mm more than once,
843	 * each 'mm' only appears once on encl->mm_list. This is guaranteed by
844	 * holding the mm's mmap lock for write before an mm can be added or
845	 * remove to an encl->mm_list.
846	 */
847	mmap_assert_write_locked(mm);
848
849	/*
850	 * It's possible that an entry already exists in the mm_list, because it
851	 * is removed only on VFS release or process exit.
852	 */
853	if (sgx_encl_find_mm(encl, mm))
854		return 0;
855
856	encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
857	if (!encl_mm)
858		return -ENOMEM;
859
860	/* Grab a refcount for the encl_mm->encl reference: */
861	kref_get(&encl->refcount);
862	encl_mm->encl = encl;
863	encl_mm->mm = mm;
864	encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
865
866	ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
867	if (ret) {
868		kfree(encl_mm);
869		return ret;
870	}
871
872	spin_lock(&encl->mm_lock);
873	list_add_rcu(&encl_mm->list, &encl->mm_list);
874	/* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */
875	smp_wmb();
876	encl->mm_list_version++;
877	spin_unlock(&encl->mm_lock);
878
879	return 0;
880}
881
882/**
883 * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave
884 * @encl: the enclave
885 *
886 * Some SGX functions require that no cached linear-to-physical address
887 * mappings are present before they can succeed. For example, ENCLS[EWB]
888 * copies a page from the enclave page cache to regular main memory but
889 * it fails if it cannot ensure that there are no cached
890 * linear-to-physical address mappings referring to the page.
891 *
892 * SGX hardware flushes all cached linear-to-physical mappings on a CPU
893 * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave
894 * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical
895 * address mappings are cleared but coordination with the tracking done within
896 * the SGX hardware is needed to support the SGX functions that depend on this
897 * cache clearing.
898 *
899 * When the ENCLS[ETRACK] function is issued on an enclave the hardware
900 * tracks threads operating inside the enclave at that time. The SGX
901 * hardware tracking require that all the identified threads must have
902 * exited the enclave in order to flush the mappings before a function such
903 * as ENCLS[EWB] will be permitted
904 *
905 * The following flow is used to support SGX functions that require that
906 * no cached linear-to-physical address mappings are present:
907 * 1) Execute ENCLS[ETRACK] to initiate hardware tracking.
908 * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be
909 *    accessing the enclave.
910 * 3) Send IPI to identified CPUs, kicking them out of the enclave and
911 *    thus flushing all locally cached linear-to-physical address mappings.
912 * 4) Execute SGX function.
913 *
914 * Context: It is required to call this function after ENCLS[ETRACK].
915 *          This will ensure that if any new mm appears (racing with
916 *          sgx_encl_mm_add()) then the new mm will enter into the
917 *          enclave with fresh linear-to-physical address mappings.
918 *
919 *          It is required that all IPIs are completed before a new
920 *          ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3
921 *          of the above flow with the enclave's mutex.
922 *
923 * Return: cpumask of CPUs that might be accessing @encl
924 */
925const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl)
926{
927	cpumask_t *cpumask = &encl->cpumask;
928	struct sgx_encl_mm *encl_mm;
929	int idx;
930
931	cpumask_clear(cpumask);
932
933	idx = srcu_read_lock(&encl->srcu);
934
935	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
936		if (!mmget_not_zero(encl_mm->mm))
937			continue;
938
939		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
940
941		mmput_async(encl_mm->mm);
942	}
943
944	srcu_read_unlock(&encl->srcu, idx);
945
946	return cpumask;
947}
948
949static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
950					      pgoff_t index)
951{
952	struct address_space *mapping = encl->backing->f_mapping;
953	gfp_t gfpmask = mapping_gfp_mask(mapping);
954
955	return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
956}
957
958/**
959 * __sgx_encl_get_backing() - Pin the backing storage
960 * @encl:	an enclave pointer
961 * @page_index:	enclave page index
962 * @backing:	data for accessing backing storage for the page
963 *
964 * Pin the backing storage pages for storing the encrypted contents and Paging
965 * Crypto MetaData (PCMD) of an enclave page.
966 *
967 * Return:
968 *   0 on success,
969 *   -errno otherwise.
970 */
971static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
972			 struct sgx_backing *backing)
973{
974	pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
975	struct page *contents;
976	struct page *pcmd;
977
978	contents = sgx_encl_get_backing_page(encl, page_index);
979	if (IS_ERR(contents))
980		return PTR_ERR(contents);
981
982	pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
983	if (IS_ERR(pcmd)) {
984		put_page(contents);
985		return PTR_ERR(pcmd);
986	}
987
988	backing->contents = contents;
989	backing->pcmd = pcmd;
990	backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
991
992	return 0;
993}
994
995/*
996 * When called from ksgxd, returns the mem_cgroup of a struct mm stored
997 * in the enclave's mm_list. When not called from ksgxd, just returns
998 * the mem_cgroup of the current task.
999 */
1000static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
1001{
1002	struct mem_cgroup *memcg = NULL;
1003	struct sgx_encl_mm *encl_mm;
1004	int idx;
1005
1006	/*
1007	 * If called from normal task context, return the mem_cgroup
1008	 * of the current task's mm. The remainder of the handling is for
1009	 * ksgxd.
1010	 */
1011	if (!current_is_ksgxd())
1012		return get_mem_cgroup_from_mm(current->mm);
1013
1014	/*
1015	 * Search the enclave's mm_list to find an mm associated with
1016	 * this enclave to charge the allocation to.
1017	 */
1018	idx = srcu_read_lock(&encl->srcu);
1019
1020	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1021		if (!mmget_not_zero(encl_mm->mm))
1022			continue;
1023
1024		memcg = get_mem_cgroup_from_mm(encl_mm->mm);
1025
1026		mmput_async(encl_mm->mm);
1027
1028		break;
1029	}
1030
1031	srcu_read_unlock(&encl->srcu, idx);
1032
1033	/*
1034	 * In the rare case that there isn't an mm associated with
1035	 * the enclave, set memcg to the current active mem_cgroup.
1036	 * This will be the root mem_cgroup if there is no active
1037	 * mem_cgroup.
1038	 */
1039	if (!memcg)
1040		return get_mem_cgroup_from_mm(NULL);
1041
1042	return memcg;
1043}
1044
1045/**
1046 * sgx_encl_alloc_backing() - create a new backing storage page
1047 * @encl:	an enclave pointer
1048 * @page_index:	enclave page index
1049 * @backing:	data for accessing backing storage for the page
1050 *
1051 * When called from ksgxd, sets the active memcg from one of the
1052 * mms in the enclave's mm_list prior to any backing page allocation,
1053 * in order to ensure that shmem page allocations are charged to the
1054 * enclave.  Create a backing page for loading data back into an EPC page with
1055 * ELDU.  This function takes a reference on a new backing page which
1056 * must be dropped with a corresponding call to sgx_encl_put_backing().
1057 *
1058 * Return:
1059 *   0 on success,
1060 *   -errno otherwise.
1061 */
1062int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
1063			   struct sgx_backing *backing)
1064{
1065	struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
1066	struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
1067	int ret;
1068
1069	ret = __sgx_encl_get_backing(encl, page_index, backing);
1070
1071	set_active_memcg(memcg);
1072	mem_cgroup_put(encl_memcg);
1073
1074	return ret;
1075}
1076
1077/**
1078 * sgx_encl_lookup_backing() - retrieve an existing backing storage page
1079 * @encl:	an enclave pointer
1080 * @page_index:	enclave page index
1081 * @backing:	data for accessing backing storage for the page
1082 *
1083 * Retrieve a backing page for loading data back into an EPC page with ELDU.
1084 * It is the caller's responsibility to ensure that it is appropriate to use
1085 * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
1086 * not used correctly, this will cause an allocation which is not accounted for.
1087 * This function takes a reference on an existing backing page which must be
1088 * dropped with a corresponding call to sgx_encl_put_backing().
1089 *
1090 * Return:
1091 *   0 on success,
1092 *   -errno otherwise.
1093 */
1094static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
1095			   struct sgx_backing *backing)
1096{
1097	return __sgx_encl_get_backing(encl, page_index, backing);
1098}
1099
1100/**
1101 * sgx_encl_put_backing() - Unpin the backing storage
1102 * @backing:	data for accessing backing storage for the page
1103 */
1104void sgx_encl_put_backing(struct sgx_backing *backing)
1105{
1106	put_page(backing->pcmd);
1107	put_page(backing->contents);
1108}
1109
1110static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
1111					    void *data)
1112{
1113	pte_t pte;
1114	int ret;
1115
1116	ret = pte_young(*ptep);
1117	if (ret) {
1118		pte = pte_mkold(*ptep);
1119		set_pte_at((struct mm_struct *)data, addr, ptep, pte);
1120	}
1121
1122	return ret;
1123}
1124
1125/**
1126 * sgx_encl_test_and_clear_young() - Test and reset the accessed bit
1127 * @mm:		mm_struct that is checked
1128 * @page:	enclave page to be tested for recent access
1129 *
1130 * Checks the Access (A) bit from the PTE corresponding to the enclave page and
1131 * clears it.
1132 *
1133 * Return: 1 if the page has been recently accessed and 0 if not.
1134 */
1135int sgx_encl_test_and_clear_young(struct mm_struct *mm,
1136				  struct sgx_encl_page *page)
1137{
1138	unsigned long addr = page->desc & PAGE_MASK;
1139	struct sgx_encl *encl = page->encl;
1140	struct vm_area_struct *vma;
1141	int ret;
1142
1143	ret = sgx_encl_find(mm, addr, &vma);
1144	if (ret)
1145		return 0;
1146
1147	if (encl != vma->vm_private_data)
1148		return 0;
1149
1150	ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
1151				  sgx_encl_test_and_clear_young_cb, vma->vm_mm);
1152	if (ret < 0)
1153		return 0;
1154
1155	return ret;
1156}
1157
1158struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl,
1159					  unsigned long offset,
1160					  u64 secinfo_flags)
1161{
1162	struct sgx_encl_page *encl_page;
1163	unsigned long prot;
1164
1165	encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL);
1166	if (!encl_page)
1167		return ERR_PTR(-ENOMEM);
1168
1169	encl_page->desc = encl->base + offset;
1170	encl_page->encl = encl;
1171
1172	prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ)  |
1173	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) |
1174	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC);
1175
1176	/*
1177	 * TCS pages must always RW set for CPU access while the SECINFO
1178	 * permissions are *always* zero - the CPU ignores the user provided
1179	 * values and silently overwrites them with zero permissions.
1180	 */
1181	if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS)
1182		prot |= PROT_READ | PROT_WRITE;
1183
1184	/* Calculate maximum of the VM flags for the page. */
1185	encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0);
1186
1187	return encl_page;
1188}
1189
1190/**
1191 * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave
1192 * @encl: the enclave
1193 * @addr: page aligned pointer to single page for which PTEs will be removed
1194 *
1195 * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping
1196 * @addr from each VMA. Ensure that page fault handler is ready to handle
1197 * new mappings of @addr before calling this function.
1198 */
1199void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr)
1200{
1201	unsigned long mm_list_version;
1202	struct sgx_encl_mm *encl_mm;
1203	struct vm_area_struct *vma;
1204	int idx, ret;
1205
1206	do {
1207		mm_list_version = encl->mm_list_version;
1208
1209		/* Pairs with smp_wmb() in sgx_encl_mm_add(). */
1210		smp_rmb();
1211
1212		idx = srcu_read_lock(&encl->srcu);
1213
1214		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1215			if (!mmget_not_zero(encl_mm->mm))
1216				continue;
1217
1218			mmap_read_lock(encl_mm->mm);
1219
1220			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
1221			if (!ret && encl == vma->vm_private_data)
1222				zap_vma_ptes(vma, addr, PAGE_SIZE);
1223
1224			mmap_read_unlock(encl_mm->mm);
1225
1226			mmput_async(encl_mm->mm);
1227		}
1228
1229		srcu_read_unlock(&encl->srcu, idx);
1230	} while (unlikely(encl->mm_list_version != mm_list_version));
1231}
1232
1233/**
1234 * sgx_alloc_va_page() - Allocate a Version Array (VA) page
1235 * @reclaim: Reclaim EPC pages directly if none available. Enclave
1236 *           mutex should not be held if this is set.
1237 *
1238 * Allocate a free EPC page and convert it to a Version Array (VA) page.
1239 *
1240 * Return:
1241 *   a VA page,
1242 *   -errno otherwise
1243 */
1244struct sgx_epc_page *sgx_alloc_va_page(bool reclaim)
1245{
1246	struct sgx_epc_page *epc_page;
1247	int ret;
1248
1249	epc_page = sgx_alloc_epc_page(NULL, reclaim);
1250	if (IS_ERR(epc_page))
1251		return ERR_CAST(epc_page);
1252
1253	ret = __epa(sgx_get_epc_virt_addr(epc_page));
1254	if (ret) {
1255		WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
1256		sgx_encl_free_epc_page(epc_page);
1257		return ERR_PTR(-EFAULT);
1258	}
1259
1260	return epc_page;
1261}
1262
1263/**
1264 * sgx_alloc_va_slot - allocate a VA slot
1265 * @va_page:	a &struct sgx_va_page instance
1266 *
1267 * Allocates a slot from a &struct sgx_va_page instance.
1268 *
1269 * Return: offset of the slot inside the VA page
1270 */
1271unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
1272{
1273	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1274
1275	if (slot < SGX_VA_SLOT_COUNT)
1276		set_bit(slot, va_page->slots);
1277
1278	return slot << 3;
1279}
1280
1281/**
1282 * sgx_free_va_slot - free a VA slot
1283 * @va_page:	a &struct sgx_va_page instance
1284 * @offset:	offset of the slot inside the VA page
1285 *
1286 * Frees a slot from a &struct sgx_va_page instance.
1287 */
1288void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
1289{
1290	clear_bit(offset >> 3, va_page->slots);
1291}
1292
1293/**
1294 * sgx_va_page_full - is the VA page full?
1295 * @va_page:	a &struct sgx_va_page instance
1296 *
1297 * Return: true if all slots have been taken
1298 */
1299bool sgx_va_page_full(struct sgx_va_page *va_page)
1300{
1301	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1302
1303	return slot == SGX_VA_SLOT_COUNT;
1304}
1305
1306/**
1307 * sgx_encl_free_epc_page - free an EPC page assigned to an enclave
1308 * @page:	EPC page to be freed
1309 *
1310 * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
1311 * only upon success, it puts the page back to free page list.  Otherwise, it
1312 * gives a WARNING to indicate page is leaked.
1313 */
1314void sgx_encl_free_epc_page(struct sgx_epc_page *page)
1315{
1316	int ret;
1317
1318	WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
1319
1320	ret = __eremove(sgx_get_epc_virt_addr(page));
1321	if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
1322		return;
1323
1324	sgx_free_epc_page(page);
1325}
1326