1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Fast user context implementation of clock_gettime, gettimeofday, and time.
4 *
5 * Copyright (C) 2019 ARM Limited.
6 * Copyright 2006 Andi Kleen, SUSE Labs.
7 * 32 Bit compat layer by Stefani Seibold <stefani@seibold.net>
8 *  sponsored by Rohde & Schwarz GmbH & Co. KG Munich/Germany
9 */
10#ifndef __ASM_VDSO_GETTIMEOFDAY_H
11#define __ASM_VDSO_GETTIMEOFDAY_H
12
13#ifndef __ASSEMBLY__
14
15#include <uapi/linux/time.h>
16#include <asm/vgtod.h>
17#include <asm/vvar.h>
18#include <asm/unistd.h>
19#include <asm/msr.h>
20#include <asm/pvclock.h>
21#include <clocksource/hyperv_timer.h>
22
23#define __vdso_data (VVAR(_vdso_data))
24#define __timens_vdso_data (TIMENS(_vdso_data))
25
26#define VDSO_HAS_TIME 1
27
28#define VDSO_HAS_CLOCK_GETRES 1
29
30/*
31 * Declare the memory-mapped vclock data pages.  These come from hypervisors.
32 * If we ever reintroduce something like direct access to an MMIO clock like
33 * the HPET again, it will go here as well.
34 *
35 * A load from any of these pages will segfault if the clock in question is
36 * disabled, so appropriate compiler barriers and checks need to be used
37 * to prevent stray loads.
38 *
39 * These declarations MUST NOT be const.  The compiler will assume that
40 * an extern const variable has genuinely constant contents, and the
41 * resulting code won't work, since the whole point is that these pages
42 * change over time, possibly while we're accessing them.
43 */
44
45#ifdef CONFIG_PARAVIRT_CLOCK
46/*
47 * This is the vCPU 0 pvclock page.  We only use pvclock from the vDSO
48 * if the hypervisor tells us that all vCPUs can get valid data from the
49 * vCPU 0 page.
50 */
51extern struct pvclock_vsyscall_time_info pvclock_page
52	__attribute__((visibility("hidden")));
53#endif
54
55#ifdef CONFIG_HYPERV_TIMER
56extern struct ms_hyperv_tsc_page hvclock_page
57	__attribute__((visibility("hidden")));
58#endif
59
60#ifdef CONFIG_TIME_NS
61static __always_inline
62const struct vdso_data *__arch_get_timens_vdso_data(const struct vdso_data *vd)
63{
64	return __timens_vdso_data;
65}
66#endif
67
68#ifndef BUILD_VDSO32
69
70static __always_inline
71long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
72{
73	long ret;
74
75	asm ("syscall" : "=a" (ret), "=m" (*_ts) :
76	     "0" (__NR_clock_gettime), "D" (_clkid), "S" (_ts) :
77	     "rcx", "r11");
78
79	return ret;
80}
81
82static __always_inline
83long gettimeofday_fallback(struct __kernel_old_timeval *_tv,
84			   struct timezone *_tz)
85{
86	long ret;
87
88	asm("syscall" : "=a" (ret) :
89	    "0" (__NR_gettimeofday), "D" (_tv), "S" (_tz) : "memory");
90
91	return ret;
92}
93
94static __always_inline
95long clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
96{
97	long ret;
98
99	asm ("syscall" : "=a" (ret), "=m" (*_ts) :
100	     "0" (__NR_clock_getres), "D" (_clkid), "S" (_ts) :
101	     "rcx", "r11");
102
103	return ret;
104}
105
106#else
107
108static __always_inline
109long clock_gettime_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
110{
111	long ret;
112
113	asm (
114		"mov %%ebx, %%edx \n"
115		"mov %[clock], %%ebx \n"
116		"call __kernel_vsyscall \n"
117		"mov %%edx, %%ebx \n"
118		: "=a" (ret), "=m" (*_ts)
119		: "0" (__NR_clock_gettime64), [clock] "g" (_clkid), "c" (_ts)
120		: "edx");
121
122	return ret;
123}
124
125static __always_inline
126long clock_gettime32_fallback(clockid_t _clkid, struct old_timespec32 *_ts)
127{
128	long ret;
129
130	asm (
131		"mov %%ebx, %%edx \n"
132		"mov %[clock], %%ebx \n"
133		"call __kernel_vsyscall \n"
134		"mov %%edx, %%ebx \n"
135		: "=a" (ret), "=m" (*_ts)
136		: "0" (__NR_clock_gettime), [clock] "g" (_clkid), "c" (_ts)
137		: "edx");
138
139	return ret;
140}
141
142static __always_inline
143long gettimeofday_fallback(struct __kernel_old_timeval *_tv,
144			   struct timezone *_tz)
145{
146	long ret;
147
148	asm(
149		"mov %%ebx, %%edx \n"
150		"mov %2, %%ebx \n"
151		"call __kernel_vsyscall \n"
152		"mov %%edx, %%ebx \n"
153		: "=a" (ret)
154		: "0" (__NR_gettimeofday), "g" (_tv), "c" (_tz)
155		: "memory", "edx");
156
157	return ret;
158}
159
160static __always_inline long
161clock_getres_fallback(clockid_t _clkid, struct __kernel_timespec *_ts)
162{
163	long ret;
164
165	asm (
166		"mov %%ebx, %%edx \n"
167		"mov %[clock], %%ebx \n"
168		"call __kernel_vsyscall \n"
169		"mov %%edx, %%ebx \n"
170		: "=a" (ret), "=m" (*_ts)
171		: "0" (__NR_clock_getres_time64), [clock] "g" (_clkid), "c" (_ts)
172		: "edx");
173
174	return ret;
175}
176
177static __always_inline
178long clock_getres32_fallback(clockid_t _clkid, struct old_timespec32 *_ts)
179{
180	long ret;
181
182	asm (
183		"mov %%ebx, %%edx \n"
184		"mov %[clock], %%ebx \n"
185		"call __kernel_vsyscall \n"
186		"mov %%edx, %%ebx \n"
187		: "=a" (ret), "=m" (*_ts)
188		: "0" (__NR_clock_getres), [clock] "g" (_clkid), "c" (_ts)
189		: "edx");
190
191	return ret;
192}
193
194#endif
195
196#ifdef CONFIG_PARAVIRT_CLOCK
197static u64 vread_pvclock(void)
198{
199	const struct pvclock_vcpu_time_info *pvti = &pvclock_page.pvti;
200	u32 version;
201	u64 ret;
202
203	/*
204	 * Note: The kernel and hypervisor must guarantee that cpu ID
205	 * number maps 1:1 to per-CPU pvclock time info.
206	 *
207	 * Because the hypervisor is entirely unaware of guest userspace
208	 * preemption, it cannot guarantee that per-CPU pvclock time
209	 * info is updated if the underlying CPU changes or that that
210	 * version is increased whenever underlying CPU changes.
211	 *
212	 * On KVM, we are guaranteed that pvti updates for any vCPU are
213	 * atomic as seen by *all* vCPUs.  This is an even stronger
214	 * guarantee than we get with a normal seqlock.
215	 *
216	 * On Xen, we don't appear to have that guarantee, but Xen still
217	 * supplies a valid seqlock using the version field.
218	 *
219	 * We only do pvclock vdso timing at all if
220	 * PVCLOCK_TSC_STABLE_BIT is set, and we interpret that bit to
221	 * mean that all vCPUs have matching pvti and that the TSC is
222	 * synced, so we can just look at vCPU 0's pvti.
223	 */
224
225	do {
226		version = pvclock_read_begin(pvti);
227
228		if (unlikely(!(pvti->flags & PVCLOCK_TSC_STABLE_BIT)))
229			return U64_MAX;
230
231		ret = __pvclock_read_cycles(pvti, rdtsc_ordered());
232	} while (pvclock_read_retry(pvti, version));
233
234	return ret & S64_MAX;
235}
236#endif
237
238#ifdef CONFIG_HYPERV_TIMER
239static u64 vread_hvclock(void)
240{
241	u64 tsc, time;
242
243	if (hv_read_tsc_page_tsc(&hvclock_page, &tsc, &time))
244		return time & S64_MAX;
245
246	return U64_MAX;
247}
248#endif
249
250static inline u64 __arch_get_hw_counter(s32 clock_mode,
251					const struct vdso_data *vd)
252{
253	if (likely(clock_mode == VDSO_CLOCKMODE_TSC))
254		return (u64)rdtsc_ordered() & S64_MAX;
255	/*
256	 * For any memory-mapped vclock type, we need to make sure that gcc
257	 * doesn't cleverly hoist a load before the mode check.  Otherwise we
258	 * might end up touching the memory-mapped page even if the vclock in
259	 * question isn't enabled, which will segfault.  Hence the barriers.
260	 */
261#ifdef CONFIG_PARAVIRT_CLOCK
262	if (clock_mode == VDSO_CLOCKMODE_PVCLOCK) {
263		barrier();
264		return vread_pvclock();
265	}
266#endif
267#ifdef CONFIG_HYPERV_TIMER
268	if (clock_mode == VDSO_CLOCKMODE_HVCLOCK) {
269		barrier();
270		return vread_hvclock();
271	}
272#endif
273	return U64_MAX;
274}
275
276static __always_inline const struct vdso_data *__arch_get_vdso_data(void)
277{
278	return __vdso_data;
279}
280
281static inline bool arch_vdso_clocksource_ok(const struct vdso_data *vd)
282{
283	return true;
284}
285#define vdso_clocksource_ok arch_vdso_clocksource_ok
286
287/*
288 * Clocksource read value validation to handle PV and HyperV clocksources
289 * which can be invalidated asynchronously and indicate invalidation by
290 * returning U64_MAX, which can be effectively tested by checking for a
291 * negative value after casting it to s64.
292 *
293 * This effectively forces a S64_MAX mask on the calculations, unlike the
294 * U64_MAX mask normally used by x86 clocksources.
295 */
296static inline bool arch_vdso_cycles_ok(u64 cycles)
297{
298	return (s64)cycles >= 0;
299}
300#define vdso_cycles_ok arch_vdso_cycles_ok
301
302/*
303 * x86 specific delta calculation.
304 *
305 * The regular implementation assumes that clocksource reads are globally
306 * monotonic. The TSC can be slightly off across sockets which can cause
307 * the regular delta calculation (@cycles - @last) to return a huge time
308 * jump.
309 *
310 * Therefore it needs to be verified that @cycles are greater than
311 * @last. If not then use @last, which is the base time of the current
312 * conversion period.
313 *
314 * This variant also uses a custom mask because while the clocksource mask of
315 * all the VDSO capable clocksources on x86 is U64_MAX, the above code uses
316 * U64_MASK as an exception value, additionally arch_vdso_cycles_ok() above
317 * declares everything with the MSB/Sign-bit set as invalid. Therefore the
318 * effective mask is S64_MAX.
319 */
320static __always_inline
321u64 vdso_calc_delta(u64 cycles, u64 last, u64 mask, u32 mult)
322{
323	/*
324	 * Due to the MSB/Sign-bit being used as invalid marker (see
325	 * arch_vdso_cycles_valid() above), the effective mask is S64_MAX.
326	 */
327	u64 delta = (cycles - last) & S64_MAX;
328
329	/*
330	 * Due to the above mentioned TSC wobbles, filter out negative motion.
331	 * Per the above masking, the effective sign bit is now bit 62.
332	 */
333	if (unlikely(delta & (1ULL << 62)))
334		return 0;
335
336	return delta * mult;
337}
338#define vdso_calc_delta vdso_calc_delta
339
340#endif /* !__ASSEMBLY__ */
341
342#endif /* __ASM_VDSO_GETTIMEOFDAY_H */
343