1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
9 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
10 */
11
12#ifndef _ASM_X86_UV_UV_HUB_H
13#define _ASM_X86_UV_UV_HUB_H
14
15#ifdef CONFIG_X86_64
16#include <linux/numa.h>
17#include <linux/percpu.h>
18#include <linux/timer.h>
19#include <linux/io.h>
20#include <linux/topology.h>
21#include <asm/types.h>
22#include <asm/percpu.h>
23#include <asm/uv/uv.h>
24#include <asm/uv/uv_mmrs.h>
25#include <asm/uv/bios.h>
26#include <asm/irq_vectors.h>
27#include <asm/io_apic.h>
28
29
30/*
31 * Addressing Terminology
32 *
33 *	M       - The low M bits of a physical address represent the offset
34 *		  into the blade local memory. RAM memory on a blade is physically
35 *		  contiguous (although various IO spaces may punch holes in
36 *		  it)..
37 *
38 *	N	- Number of bits in the node portion of a socket physical
39 *		  address.
40 *
41 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
42 *		  routers always have low bit of 1, C/MBricks have low bit
43 *		  equal to 0. Most addressing macros that target UV hub chips
44 *		  right shift the NASID by 1 to exclude the always-zero bit.
45 *		  NASIDs contain up to 15 bits.
46 *
47 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
48 *		  of nasids.
49 *
50 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
51 *		  of the nasid for socket usage.
52 *
53 *	GPA	- (global physical address) a socket physical address converted
54 *		  so that it can be used by the GRU as a global address. Socket
55 *		  physical addresses 1) need additional NASID (node) bits added
56 *		  to the high end of the address, and 2) unaliased if the
57 *		  partition does not have a physical address 0. In addition, on
58 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
59 *
60 *
61 *  NumaLink Global Physical Address Format:
62 *  +--------------------------------+---------------------+
63 *  |00..000|      GNODE             |      NodeOffset     |
64 *  +--------------------------------+---------------------+
65 *          |<-------53 - M bits --->|<--------M bits ----->
66 *
67 *	M - number of node offset bits (35 .. 40)
68 *
69 *
70 *  Memory/UV-HUB Processor Socket Address Format:
71 *  +----------------+---------------+---------------------+
72 *  |00..000000000000|   PNODE       |      NodeOffset     |
73 *  +----------------+---------------+---------------------+
74 *                   <--- N bits --->|<--------M bits ----->
75 *
76 *	M - number of node offset bits (35 .. 40)
77 *	N - number of PNODE bits (0 .. 10)
78 *
79 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
80 *		The actual values are configuration dependent and are set at
81 *		boot time. M & N values are set by the hardware/BIOS at boot.
82 *
83 *
84 * APICID format
85 *	NOTE!!!!!! This is the current format of the APICID. However, code
86 *	should assume that this will change in the future. Use functions
87 *	in this file for all APICID bit manipulations and conversion.
88 *
89 *		1111110000000000
90 *		5432109876543210
91 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
92 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
93 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
94 *		sssssssssss
95 *
96 *			p  = pnode bits
97 *			l =  socket number on board
98 *			c  = core
99 *			h  = hyperthread
100 *			s  = bits that are in the SOCKET_ID CSR
101 *
102 *	Note: Processor may support fewer bits in the APICID register. The ACPI
103 *	      tables hold all 16 bits. Software needs to be aware of this.
104 *
105 *	      Unless otherwise specified, all references to APICID refer to
106 *	      the FULL value contained in ACPI tables, not the subset in the
107 *	      processor APICID register.
108 */
109
110/*
111 * Maximum number of bricks in all partitions and in all coherency domains.
112 * This is the total number of bricks accessible in the numalink fabric. It
113 * includes all C & M bricks. Routers are NOT included.
114 *
115 * This value is also the value of the maximum number of non-router NASIDs
116 * in the numalink fabric.
117 *
118 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
119 */
120#define UV_MAX_NUMALINK_BLADES	16384
121
122/*
123 * Maximum number of C/Mbricks within a software SSI (hardware may support
124 * more).
125 */
126#define UV_MAX_SSI_BLADES	256
127
128/*
129 * The largest possible NASID of a C or M brick (+ 2)
130 */
131#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
132
133/* GAM (globally addressed memory) range table */
134struct uv_gam_range_s {
135	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
136	u16	nasid;		/* node's global physical address */
137	s8	base;		/* entry index of node's base addr */
138	u8	reserved;
139};
140
141/*
142 * The following defines attributes of the HUB chip. These attributes are
143 * frequently referenced and are kept in a common per hub struct.
144 * After setup, the struct is read only, so it should be readily
145 * available in the L3 cache on the cpu socket for the node.
146 */
147struct uv_hub_info_s {
148	unsigned int		hub_type;
149	unsigned char		hub_revision;
150	unsigned long		global_mmr_base;
151	unsigned long		global_mmr_shift;
152	unsigned long		gpa_mask;
153	unsigned short		*socket_to_node;
154	unsigned short		*socket_to_pnode;
155	unsigned short		*pnode_to_socket;
156	struct uv_gam_range_s	*gr_table;
157	unsigned short		min_socket;
158	unsigned short		min_pnode;
159	unsigned char		m_val;
160	unsigned char		n_val;
161	unsigned char		gr_table_len;
162	unsigned char		apic_pnode_shift;
163	unsigned char		gpa_shift;
164	unsigned char		nasid_shift;
165	unsigned char		m_shift;
166	unsigned char		n_lshift;
167	unsigned int		gnode_extra;
168	unsigned long		gnode_upper;
169	unsigned long		lowmem_remap_top;
170	unsigned long		lowmem_remap_base;
171	unsigned long		global_gru_base;
172	unsigned long		global_gru_shift;
173	unsigned short		pnode;
174	unsigned short		pnode_mask;
175	unsigned short		coherency_domain_number;
176	unsigned short		numa_blade_id;
177	unsigned short		nr_possible_cpus;
178	unsigned short		nr_online_cpus;
179	short			memory_nid;
180	unsigned short		*node_to_socket;
181};
182
183/* CPU specific info with a pointer to the hub common info struct */
184struct uv_cpu_info_s {
185	void			*p_uv_hub_info;
186	unsigned char		blade_cpu_id;
187	void			*reserved;
188};
189DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
190
191#define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
192#define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
193
194/* Node specific hub common info struct */
195extern void **__uv_hub_info_list;
196static inline struct uv_hub_info_s *uv_hub_info_list(int node)
197{
198	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
199}
200
201static inline struct uv_hub_info_s *_uv_hub_info(void)
202{
203	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
204}
205#define	uv_hub_info	_uv_hub_info()
206
207static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
208{
209	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
210}
211
212static inline int uv_hub_type(void)
213{
214	return uv_hub_info->hub_type;
215}
216
217static inline __init void uv_hub_type_set(int uvmask)
218{
219	uv_hub_info->hub_type = uvmask;
220}
221
222
223/*
224 * HUB revision ranges for each UV HUB architecture.
225 * This is a software convention - NOT the hardware revision numbers in
226 * the hub chip.
227 */
228#define UV2_HUB_REVISION_BASE		3
229#define UV3_HUB_REVISION_BASE		5
230#define UV4_HUB_REVISION_BASE		7
231#define UV4A_HUB_REVISION_BASE		8	/* UV4 (fixed) rev 2 */
232#define UV5_HUB_REVISION_BASE		9
233
234static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; }
235static inline int is_uv1_hub(void) { return 0; }
236static inline int is_uv2_hub(void) { return is_uv(UV2); }
237static inline int is_uv3_hub(void) { return is_uv(UV3); }
238static inline int is_uv4a_hub(void) { return is_uv(UV4A); }
239static inline int is_uv4_hub(void) { return is_uv(UV4); }
240static inline int is_uv5_hub(void) { return is_uv(UV5); }
241
242/*
243 * UV4A is a revision of UV4.  So on UV4A, both is_uv4_hub() and
244 * is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
245 * returns true.  So to get true results, first test if is UV4A,
246 * then test if is UV4.
247 */
248
249/* UVX class: UV2,3,4 */
250static inline int is_uvx_hub(void) { return is_uv(UVX); }
251
252/* UVY class: UV5,..? */
253static inline int is_uvy_hub(void) { return is_uv(UVY); }
254
255/* Any UV Hubbed System */
256static inline int is_uv_hub(void) { return is_uv(UV_ANY); }
257
258union uvh_apicid {
259    unsigned long       v;
260    struct uvh_apicid_s {
261        unsigned long   local_apic_mask  : 24;
262        unsigned long   local_apic_shift :  5;
263        unsigned long   unused1          :  3;
264        unsigned long   pnode_mask       : 24;
265        unsigned long   pnode_shift      :  5;
266        unsigned long   unused2          :  3;
267    } s;
268};
269
270/*
271 * Local & Global MMR space macros.
272 *	Note: macros are intended to be used ONLY by inline functions
273 *	in this file - not by other kernel code.
274 *		n -  NASID (full 15-bit global nasid)
275 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
276 *		p -  PNODE (local part of nsids, right shifted 1)
277 */
278#define UV_NASID_TO_PNODE(n)		\
279		(((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask)
280#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
281#define UV_PNODE_TO_NASID(p)		\
282		(UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift)
283
284#define UV2_LOCAL_MMR_BASE		0xfa000000UL
285#define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
286#define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
287#define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
288
289#define UV3_LOCAL_MMR_BASE		0xfa000000UL
290#define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
291#define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
292#define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
293
294#define UV4_LOCAL_MMR_BASE		0xfa000000UL
295#define UV4_GLOBAL_MMR32_BASE		0
296#define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
297#define UV4_GLOBAL_MMR32_SIZE		0
298
299#define UV5_LOCAL_MMR_BASE		0xfa000000UL
300#define UV5_GLOBAL_MMR32_BASE		0
301#define UV5_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
302#define UV5_GLOBAL_MMR32_SIZE		0
303
304#define UV_LOCAL_MMR_BASE		(				\
305					is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \
306					is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \
307					is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \
308					is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \
309					0)
310
311#define UV_GLOBAL_MMR32_BASE		(				\
312					is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \
313					is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \
314					is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \
315					is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \
316					0)
317
318#define UV_LOCAL_MMR_SIZE		(				\
319					is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \
320					is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \
321					is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \
322					is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \
323					0)
324
325#define UV_GLOBAL_MMR32_SIZE		(				\
326					is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \
327					is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \
328					is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \
329					is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \
330					0)
331
332#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
333
334#define UV_GLOBAL_GRU_MMR_BASE		0x4000000
335
336#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
337#define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
338#define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
339
340#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
341
342#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
343	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
344
345#define UVH_APICID		0x002D0E00L
346#define UV_APIC_PNODE_SHIFT	6
347
348/* Local Bus from cpu's perspective */
349#define LOCAL_BUS_BASE		0x1c00000
350#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
351
352/*
353 * System Controller Interface Reg
354 *
355 * Note there are NO leds on a UV system.  This register is only
356 * used by the system controller to monitor system-wide operation.
357 * There are 64 regs per node.  With Nehalem cpus (2 cores per node,
358 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
359 * a node.
360 *
361 * The window is located at top of ACPI MMR space
362 */
363#define SCIR_WINDOW_COUNT	64
364#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
365				 LOCAL_BUS_SIZE - \
366				 SCIR_WINDOW_COUNT)
367
368#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
369#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
370#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
371
372/* Loop through all installed blades */
373#define for_each_possible_blade(bid)		\
374	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
375
376/*
377 * Macros for converting between kernel virtual addresses, socket local physical
378 * addresses, and UV global physical addresses.
379 *	Note: use the standard __pa() & __va() macros for converting
380 *	      between socket virtual and socket physical addresses.
381 */
382
383/* global bits offset - number of local address bits in gpa for this UV arch */
384static inline unsigned int uv_gpa_shift(void)
385{
386	return uv_hub_info->gpa_shift;
387}
388#define	_uv_gpa_shift
389
390/* Find node that has the address range that contains global address  */
391static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
392{
393	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
394	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
395	int i, num = uv_hub_info->gr_table_len;
396
397	if (gr) {
398		for (i = 0; i < num; i++, gr++) {
399			if (pal < gr->limit)
400				return gr;
401		}
402	}
403	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
404	BUG();
405}
406
407/* Return base address of node that contains global address  */
408static inline unsigned long uv_gam_range_base(unsigned long pa)
409{
410	struct uv_gam_range_s *gr = uv_gam_range(pa);
411	int base = gr->base;
412
413	if (base < 0)
414		return 0UL;
415
416	return uv_hub_info->gr_table[base].limit;
417}
418
419/* socket phys RAM --> UV global NASID (UV4+) */
420static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
421{
422	return uv_gam_range(paddr)->nasid;
423}
424#define	_uv_soc_phys_ram_to_nasid
425
426/* socket virtual --> UV global NASID (UV4+) */
427static inline unsigned long uv_gpa_nasid(void *v)
428{
429	return uv_soc_phys_ram_to_nasid(__pa(v));
430}
431
432/* socket phys RAM --> UV global physical address */
433static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
434{
435	unsigned int m_val = uv_hub_info->m_val;
436
437	if (paddr < uv_hub_info->lowmem_remap_top)
438		paddr |= uv_hub_info->lowmem_remap_base;
439
440	if (m_val) {
441		paddr |= uv_hub_info->gnode_upper;
442		paddr = ((paddr << uv_hub_info->m_shift)
443						>> uv_hub_info->m_shift) |
444			((paddr >> uv_hub_info->m_val)
445						<< uv_hub_info->n_lshift);
446	} else {
447		paddr |= uv_soc_phys_ram_to_nasid(paddr)
448						<< uv_hub_info->gpa_shift;
449	}
450	return paddr;
451}
452
453/* socket virtual --> UV global physical address */
454static inline unsigned long uv_gpa(void *v)
455{
456	return uv_soc_phys_ram_to_gpa(__pa(v));
457}
458
459/* Top two bits indicate the requested address is in MMR space.  */
460static inline int
461uv_gpa_in_mmr_space(unsigned long gpa)
462{
463	return (gpa >> 62) == 0x3UL;
464}
465
466/* UV global physical address --> socket phys RAM */
467static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
468{
469	unsigned long paddr;
470	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
471	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
472	unsigned int m_val = uv_hub_info->m_val;
473
474	if (m_val)
475		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
476			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
477
478	paddr = gpa & uv_hub_info->gpa_mask;
479	if (paddr >= remap_base && paddr < remap_base + remap_top)
480		paddr -= remap_base;
481	return paddr;
482}
483
484/* gpa -> gnode */
485static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
486{
487	unsigned int n_lshift = uv_hub_info->n_lshift;
488
489	if (n_lshift)
490		return gpa >> n_lshift;
491
492	return uv_gam_range(gpa)->nasid >> 1;
493}
494
495/* gpa -> pnode */
496static inline int uv_gpa_to_pnode(unsigned long gpa)
497{
498	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
499}
500
501/* gpa -> node offset */
502static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
503{
504	unsigned int m_shift = uv_hub_info->m_shift;
505
506	if (m_shift)
507		return (gpa << m_shift) >> m_shift;
508
509	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
510}
511
512/* Convert socket to node */
513static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
514{
515	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
516}
517
518static inline int uv_socket_to_node(int socket)
519{
520	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
521}
522
523static inline int uv_pnode_to_socket(int pnode)
524{
525	unsigned short *p2s = uv_hub_info->pnode_to_socket;
526
527	return p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
528}
529
530/* pnode, offset --> socket virtual */
531static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
532{
533	unsigned int m_val = uv_hub_info->m_val;
534	unsigned long base;
535	unsigned short sockid;
536
537	if (m_val)
538		return __va(((unsigned long)pnode << m_val) | offset);
539
540	sockid = uv_pnode_to_socket(pnode);
541
542	/* limit address of previous socket is our base, except node 0 is 0 */
543	if (sockid == 0)
544		return __va((unsigned long)offset);
545
546	base = (unsigned long)(uv_hub_info->gr_table[sockid - 1].limit);
547	return __va(base << UV_GAM_RANGE_SHFT | offset);
548}
549
550/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
551static inline int uv_apicid_to_pnode(int apicid)
552{
553	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
554	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
555
556	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
557}
558
559/*
560 * Access global MMRs using the low memory MMR32 space. This region supports
561 * faster MMR access but not all MMRs are accessible in this space.
562 */
563static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
564{
565	return __va(UV_GLOBAL_MMR32_BASE |
566		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
567}
568
569static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
570{
571	writeq(val, uv_global_mmr32_address(pnode, offset));
572}
573
574static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
575{
576	return readq(uv_global_mmr32_address(pnode, offset));
577}
578
579/*
580 * Access Global MMR space using the MMR space located at the top of physical
581 * memory.
582 */
583static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
584{
585	return __va(UV_GLOBAL_MMR64_BASE |
586		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
587}
588
589static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
590{
591	writeq(val, uv_global_mmr64_address(pnode, offset));
592}
593
594static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
595{
596	return readq(uv_global_mmr64_address(pnode, offset));
597}
598
599static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
600{
601	writeb(val, uv_global_mmr64_address(pnode, offset));
602}
603
604static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
605{
606	return readb(uv_global_mmr64_address(pnode, offset));
607}
608
609/*
610 * Access hub local MMRs. Faster than using global space but only local MMRs
611 * are accessible.
612 */
613static inline unsigned long *uv_local_mmr_address(unsigned long offset)
614{
615	return __va(UV_LOCAL_MMR_BASE | offset);
616}
617
618static inline unsigned long uv_read_local_mmr(unsigned long offset)
619{
620	return readq(uv_local_mmr_address(offset));
621}
622
623static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
624{
625	writeq(val, uv_local_mmr_address(offset));
626}
627
628static inline unsigned char uv_read_local_mmr8(unsigned long offset)
629{
630	return readb(uv_local_mmr_address(offset));
631}
632
633static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
634{
635	writeb(val, uv_local_mmr_address(offset));
636}
637
638/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
639static inline int uv_blade_processor_id(void)
640{
641	return uv_cpu_info->blade_cpu_id;
642}
643
644/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
645static inline int uv_cpu_blade_processor_id(int cpu)
646{
647	return uv_cpu_info_per(cpu)->blade_cpu_id;
648}
649
650/* Blade number to Node number (UV2..UV4 is 1:1) */
651static inline int uv_blade_to_node(int blade)
652{
653	return uv_socket_to_node(blade);
654}
655
656/* Blade number of current cpu. Numbered 0 .. <#blades -1> */
657static inline int uv_numa_blade_id(void)
658{
659	return uv_hub_info->numa_blade_id;
660}
661
662/*
663 * Convert linux node number to the UV blade number.
664 * .. Currently for UV2 thru UV4 the node and the blade are identical.
665 * .. UV5 needs conversion when sub-numa clustering is enabled.
666 */
667static inline int uv_node_to_blade_id(int nid)
668{
669	unsigned short *n2s = uv_hub_info->node_to_socket;
670
671	return n2s ? n2s[nid] : nid;
672}
673
674/* Convert a CPU number to the UV blade number */
675static inline int uv_cpu_to_blade_id(int cpu)
676{
677	return uv_cpu_hub_info(cpu)->numa_blade_id;
678}
679
680/* Convert a blade id to the PNODE of the blade */
681static inline int uv_blade_to_pnode(int bid)
682{
683	unsigned short *s2p = uv_hub_info->socket_to_pnode;
684
685	return s2p ? s2p[bid] : bid;
686}
687
688/* Nid of memory node on blade. -1 if no blade-local memory */
689static inline int uv_blade_to_memory_nid(int bid)
690{
691	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
692}
693
694/* Determine the number of possible cpus on a blade */
695static inline int uv_blade_nr_possible_cpus(int bid)
696{
697	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
698}
699
700/* Determine the number of online cpus on a blade */
701static inline int uv_blade_nr_online_cpus(int bid)
702{
703	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
704}
705
706/* Convert a cpu id to the PNODE of the blade containing the cpu */
707static inline int uv_cpu_to_pnode(int cpu)
708{
709	return uv_cpu_hub_info(cpu)->pnode;
710}
711
712/* Convert a linux node number to the PNODE of the blade */
713static inline int uv_node_to_pnode(int nid)
714{
715	return uv_hub_info_list(nid)->pnode;
716}
717
718/* Maximum possible number of blades */
719extern short uv_possible_blades;
720static inline int uv_num_possible_blades(void)
721{
722	return uv_possible_blades;
723}
724
725/* Per Hub NMI support */
726extern void uv_nmi_setup(void);
727extern void uv_nmi_setup_hubless(void);
728
729/* BIOS/Kernel flags exchange MMR */
730#define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
731#define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
732#define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2
733
734/* TSC sync valid, set by BIOS */
735#define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
736#define UVH_TSC_SYNC_SHIFT	10
737#define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
738#define UVH_TSC_SYNC_MASK	3	/* 0011 */
739#define UVH_TSC_SYNC_VALID	3	/* 0011 */
740#define UVH_TSC_SYNC_UNKNOWN	0	/* 0000 */
741
742/* BMC sets a bit this MMR non-zero before sending an NMI */
743#define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
744#define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
745#define UVH_NMI_MMR_SHIFT	63
746#define UVH_NMI_MMR_TYPE	"SCRATCH5"
747
748struct uv_hub_nmi_s {
749	raw_spinlock_t	nmi_lock;
750	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
751	atomic_t	cpu_owner;	/* last locker of this struct */
752	atomic_t	read_mmr_count;	/* count of MMR reads */
753	atomic_t	nmi_count;	/* count of true UV NMIs */
754	unsigned long	nmi_value;	/* last value read from NMI MMR */
755	bool		hub_present;	/* false means UV hubless system */
756	bool		pch_owner;	/* indicates this hub owns PCH */
757};
758
759struct uv_cpu_nmi_s {
760	struct uv_hub_nmi_s	*hub;
761	int			state;
762	int			pinging;
763	int			queries;
764	int			pings;
765};
766
767DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
768
769#define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
770#define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
771#define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
772
773/* uv_cpu_nmi_states */
774#define	UV_NMI_STATE_OUT		0
775#define	UV_NMI_STATE_IN			1
776#define	UV_NMI_STATE_DUMP		2
777#define	UV_NMI_STATE_DUMP_DONE		3
778
779/*
780 * Get the minimum revision number of the hub chips within the partition.
781 * (See UVx_HUB_REVISION_BASE above for specific values.)
782 */
783static inline int uv_get_min_hub_revision_id(void)
784{
785	return uv_hub_info->hub_revision;
786}
787
788#endif /* CONFIG_X86_64 */
789#endif /* _ASM_X86_UV_UV_HUB_H */
790