1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * General FPU state handling cleanups
7 *	Gareth Hughes <gareth@valinux.com>, May 2000
8 * x86-64 work by Andi Kleen 2002
9 */
10
11#ifndef _ASM_X86_FPU_API_H
12#define _ASM_X86_FPU_API_H
13#include <linux/bottom_half.h>
14
15#include <asm/fpu/types.h>
16
17/*
18 * Use kernel_fpu_begin/end() if you intend to use FPU in kernel context. It
19 * disables preemption so be careful if you intend to use it for long periods
20 * of time.
21 * If you intend to use the FPU in irq/softirq you need to check first with
22 * irq_fpu_usable() if it is possible.
23 */
24
25/* Kernel FPU states to initialize in kernel_fpu_begin_mask() */
26#define KFPU_387	_BITUL(0)	/* 387 state will be initialized */
27#define KFPU_MXCSR	_BITUL(1)	/* MXCSR will be initialized */
28
29extern void kernel_fpu_begin_mask(unsigned int kfpu_mask);
30extern void kernel_fpu_end(void);
31extern bool irq_fpu_usable(void);
32extern void fpregs_mark_activate(void);
33
34/* Code that is unaware of kernel_fpu_begin_mask() can use this */
35static inline void kernel_fpu_begin(void)
36{
37#ifdef CONFIG_X86_64
38	/*
39	 * Any 64-bit code that uses 387 instructions must explicitly request
40	 * KFPU_387.
41	 */
42	kernel_fpu_begin_mask(KFPU_MXCSR);
43#else
44	/*
45	 * 32-bit kernel code may use 387 operations as well as SSE2, etc,
46	 * as long as it checks that the CPU has the required capability.
47	 */
48	kernel_fpu_begin_mask(KFPU_387 | KFPU_MXCSR);
49#endif
50}
51
52/*
53 * Use fpregs_lock() while editing CPU's FPU registers or fpu->fpstate.
54 * A context switch will (and softirq might) save CPU's FPU registers to
55 * fpu->fpstate.regs and set TIF_NEED_FPU_LOAD leaving CPU's FPU registers in
56 * a random state.
57 *
58 * local_bh_disable() protects against both preemption and soft interrupts
59 * on !RT kernels.
60 *
61 * On RT kernels local_bh_disable() is not sufficient because it only
62 * serializes soft interrupt related sections via a local lock, but stays
63 * preemptible. Disabling preemption is the right choice here as bottom
64 * half processing is always in thread context on RT kernels so it
65 * implicitly prevents bottom half processing as well.
66 *
67 * Disabling preemption also serializes against kernel_fpu_begin().
68 */
69static inline void fpregs_lock(void)
70{
71	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
72		local_bh_disable();
73	else
74		preempt_disable();
75}
76
77static inline void fpregs_unlock(void)
78{
79	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
80		local_bh_enable();
81	else
82		preempt_enable();
83}
84
85/*
86 * FPU state gets lazily restored before returning to userspace. So when in the
87 * kernel, the valid FPU state may be kept in the buffer. This function will force
88 * restore all the fpu state to the registers early if needed, and lock them from
89 * being automatically saved/restored. Then FPU state can be modified safely in the
90 * registers, before unlocking with fpregs_unlock().
91 */
92void fpregs_lock_and_load(void);
93
94#ifdef CONFIG_X86_DEBUG_FPU
95extern void fpregs_assert_state_consistent(void);
96#else
97static inline void fpregs_assert_state_consistent(void) { }
98#endif
99
100/*
101 * Load the task FPU state before returning to userspace.
102 */
103extern void switch_fpu_return(void);
104
105/*
106 * Query the presence of one or more xfeatures. Works on any legacy CPU as well.
107 *
108 * If 'feature_name' is set then put a human-readable description of
109 * the feature there as well - this can be used to print error (or success)
110 * messages.
111 */
112extern int cpu_has_xfeatures(u64 xfeatures_mask, const char **feature_name);
113
114/* Trap handling */
115extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
116extern void fpu_sync_fpstate(struct fpu *fpu);
117extern void fpu_reset_from_exception_fixup(void);
118
119/* Boot, hotplug and resume */
120extern void fpu__init_cpu(void);
121extern void fpu__init_system(void);
122extern void fpu__init_check_bugs(void);
123extern void fpu__resume_cpu(void);
124
125#ifdef CONFIG_MATH_EMULATION
126extern void fpstate_init_soft(struct swregs_state *soft);
127#else
128static inline void fpstate_init_soft(struct swregs_state *soft) {}
129#endif
130
131/* State tracking */
132DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
133
134/* Process cleanup */
135#ifdef CONFIG_X86_64
136extern void fpstate_free(struct fpu *fpu);
137#else
138static inline void fpstate_free(struct fpu *fpu) { }
139#endif
140
141/* fpstate-related functions which are exported to KVM */
142extern void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature);
143
144extern u64 xstate_get_guest_group_perm(void);
145
146/* KVM specific functions */
147extern bool fpu_alloc_guest_fpstate(struct fpu_guest *gfpu);
148extern void fpu_free_guest_fpstate(struct fpu_guest *gfpu);
149extern int fpu_swap_kvm_fpstate(struct fpu_guest *gfpu, bool enter_guest);
150extern int fpu_enable_guest_xfd_features(struct fpu_guest *guest_fpu, u64 xfeatures);
151
152#ifdef CONFIG_X86_64
153extern void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd);
154extern void fpu_sync_guest_vmexit_xfd_state(void);
155#else
156static inline void fpu_update_guest_xfd(struct fpu_guest *guest_fpu, u64 xfd) { }
157static inline void fpu_sync_guest_vmexit_xfd_state(void) { }
158#endif
159
160extern void fpu_copy_guest_fpstate_to_uabi(struct fpu_guest *gfpu, void *buf,
161					   unsigned int size, u64 xfeatures, u32 pkru);
162extern int fpu_copy_uabi_to_guest_fpstate(struct fpu_guest *gfpu, const void *buf, u64 xcr0, u32 *vpkru);
163
164static inline void fpstate_set_confidential(struct fpu_guest *gfpu)
165{
166	gfpu->fpstate->is_confidential = true;
167}
168
169static inline bool fpstate_is_confidential(struct fpu_guest *gfpu)
170{
171	return gfpu->fpstate->is_confidential;
172}
173
174/* prctl */
175extern long fpu_xstate_prctl(int option, unsigned long arg2);
176
177extern void fpu_idle_fpregs(void);
178
179#endif /* _ASM_X86_FPU_API_H */
180