1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Intel(R) Processor Trace PMU driver for perf
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * Intel PT is specified in the Intel Architecture Instruction Set Extensions
7 * Programming Reference:
8 * http://software.intel.com/en-us/intel-isa-extensions
9 */
10
11#undef DEBUG
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/types.h>
16#include <linux/bits.h>
17#include <linux/limits.h>
18#include <linux/slab.h>
19#include <linux/device.h>
20
21#include <asm/perf_event.h>
22#include <asm/insn.h>
23#include <asm/io.h>
24#include <asm/intel_pt.h>
25#include <asm/intel-family.h>
26
27#include "../perf_event.h"
28#include "pt.h"
29
30static DEFINE_PER_CPU(struct pt, pt_ctx);
31
32static struct pt_pmu pt_pmu;
33
34/*
35 * Capabilities of Intel PT hardware, such as number of address bits or
36 * supported output schemes, are cached and exported to userspace as "caps"
37 * attribute group of pt pmu device
38 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
39 * relevant bits together with intel_pt traces.
40 *
41 * These are necessary for both trace decoding (payloads_lip, contains address
42 * width encoded in IP-related packets), and event configuration (bitmasks with
43 * permitted values for certain bit fields).
44 */
45#define PT_CAP(_n, _l, _r, _m)						\
46	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
47			    .reg = _r, .mask = _m }
48
49static struct pt_cap_desc {
50	const char	*name;
51	u32		leaf;
52	u8		reg;
53	u32		mask;
54} pt_caps[] = {
55	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
56	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
57	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
58	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
59	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
60	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
61	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
62	PT_CAP(event_trace,		0, CPUID_EBX, BIT(7)),
63	PT_CAP(tnt_disable,		0, CPUID_EBX, BIT(8)),
64	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
65	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
66	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
67	PT_CAP(output_subsys,		0, CPUID_ECX, BIT(3)),
68	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
69	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x7),
70	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
71	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
72	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
73};
74
75u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
76{
77	struct pt_cap_desc *cd = &pt_caps[capability];
78	u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
79	unsigned int shift = __ffs(cd->mask);
80
81	return (c & cd->mask) >> shift;
82}
83EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
84
85u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
86{
87	return intel_pt_validate_cap(pt_pmu.caps, cap);
88}
89EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
90
91static ssize_t pt_cap_show(struct device *cdev,
92			   struct device_attribute *attr,
93			   char *buf)
94{
95	struct dev_ext_attribute *ea =
96		container_of(attr, struct dev_ext_attribute, attr);
97	enum pt_capabilities cap = (long)ea->var;
98
99	return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
100}
101
102static struct attribute_group pt_cap_group __ro_after_init = {
103	.name	= "caps",
104};
105
106PMU_FORMAT_ATTR(pt,		"config:0"	);
107PMU_FORMAT_ATTR(cyc,		"config:1"	);
108PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
109PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
110PMU_FORMAT_ATTR(mtc,		"config:9"	);
111PMU_FORMAT_ATTR(tsc,		"config:10"	);
112PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
113PMU_FORMAT_ATTR(ptw,		"config:12"	);
114PMU_FORMAT_ATTR(branch,		"config:13"	);
115PMU_FORMAT_ATTR(event,		"config:31"	);
116PMU_FORMAT_ATTR(notnt,		"config:55"	);
117PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
118PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
119PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
120
121static struct attribute *pt_formats_attr[] = {
122	&format_attr_pt.attr,
123	&format_attr_cyc.attr,
124	&format_attr_pwr_evt.attr,
125	&format_attr_event.attr,
126	&format_attr_notnt.attr,
127	&format_attr_fup_on_ptw.attr,
128	&format_attr_mtc.attr,
129	&format_attr_tsc.attr,
130	&format_attr_noretcomp.attr,
131	&format_attr_ptw.attr,
132	&format_attr_branch.attr,
133	&format_attr_mtc_period.attr,
134	&format_attr_cyc_thresh.attr,
135	&format_attr_psb_period.attr,
136	NULL,
137};
138
139static struct attribute_group pt_format_group = {
140	.name	= "format",
141	.attrs	= pt_formats_attr,
142};
143
144static ssize_t
145pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
146		    char *page)
147{
148	struct perf_pmu_events_attr *pmu_attr =
149		container_of(attr, struct perf_pmu_events_attr, attr);
150
151	switch (pmu_attr->id) {
152	case 0:
153		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
154	case 1:
155		return sprintf(page, "%u:%u\n",
156			       pt_pmu.tsc_art_num,
157			       pt_pmu.tsc_art_den);
158	default:
159		break;
160	}
161
162	return -EINVAL;
163}
164
165PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
166	       pt_timing_attr_show);
167PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
168	       pt_timing_attr_show);
169
170static struct attribute *pt_timing_attr[] = {
171	&timing_attr_max_nonturbo_ratio.attr.attr,
172	&timing_attr_tsc_art_ratio.attr.attr,
173	NULL,
174};
175
176static struct attribute_group pt_timing_group = {
177	.attrs	= pt_timing_attr,
178};
179
180static const struct attribute_group *pt_attr_groups[] = {
181	&pt_cap_group,
182	&pt_format_group,
183	&pt_timing_group,
184	NULL,
185};
186
187static int __init pt_pmu_hw_init(void)
188{
189	struct dev_ext_attribute *de_attrs;
190	struct attribute **attrs;
191	size_t size;
192	u64 reg;
193	int ret;
194	long i;
195
196	rdmsrl(MSR_PLATFORM_INFO, reg);
197	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
198
199	/*
200	 * if available, read in TSC to core crystal clock ratio,
201	 * otherwise, zero for numerator stands for "not enumerated"
202	 * as per SDM
203	 */
204	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
205		u32 eax, ebx, ecx, edx;
206
207		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
208
209		pt_pmu.tsc_art_num = ebx;
210		pt_pmu.tsc_art_den = eax;
211	}
212
213	/* model-specific quirks */
214	switch (boot_cpu_data.x86_model) {
215	case INTEL_FAM6_BROADWELL:
216	case INTEL_FAM6_BROADWELL_D:
217	case INTEL_FAM6_BROADWELL_G:
218	case INTEL_FAM6_BROADWELL_X:
219		/* not setting BRANCH_EN will #GP, erratum BDM106 */
220		pt_pmu.branch_en_always_on = true;
221		break;
222	default:
223		break;
224	}
225
226	if (boot_cpu_has(X86_FEATURE_VMX)) {
227		/*
228		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
229		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
230		 * post-VMXON.
231		 */
232		rdmsrl(MSR_IA32_VMX_MISC, reg);
233		if (reg & BIT(14))
234			pt_pmu.vmx = true;
235	}
236
237	for (i = 0; i < PT_CPUID_LEAVES; i++) {
238		cpuid_count(20, i,
239			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
240			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
241			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
242			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
243	}
244
245	ret = -ENOMEM;
246	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
247	attrs = kzalloc(size, GFP_KERNEL);
248	if (!attrs)
249		goto fail;
250
251	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
252	de_attrs = kzalloc(size, GFP_KERNEL);
253	if (!de_attrs)
254		goto fail;
255
256	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
257		struct dev_ext_attribute *de_attr = de_attrs + i;
258
259		de_attr->attr.attr.name = pt_caps[i].name;
260
261		sysfs_attr_init(&de_attr->attr.attr);
262
263		de_attr->attr.attr.mode		= S_IRUGO;
264		de_attr->attr.show		= pt_cap_show;
265		de_attr->var			= (void *)i;
266
267		attrs[i] = &de_attr->attr.attr;
268	}
269
270	pt_cap_group.attrs = attrs;
271
272	return 0;
273
274fail:
275	kfree(attrs);
276
277	return ret;
278}
279
280#define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
281			  RTIT_CTL_CYC_THRESH	| \
282			  RTIT_CTL_PSB_FREQ)
283
284#define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
285			 RTIT_CTL_MTC_RANGE)
286
287#define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
288			 RTIT_CTL_FUP_ON_PTW)
289
290/*
291 * Bit 0 (TraceEn) in the attr.config is meaningless as the
292 * corresponding bit in the RTIT_CTL can only be controlled
293 * by the driver; therefore, repurpose it to mean: pass
294 * through the bit that was previously assumed to be always
295 * on for PT, thereby allowing the user to *not* set it if
296 * they so wish. See also pt_event_valid() and pt_config().
297 */
298#define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
299
300#define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
301			RTIT_CTL_TSC_EN		| \
302			RTIT_CTL_DISRETC	| \
303			RTIT_CTL_BRANCH_EN	| \
304			RTIT_CTL_CYC_PSB	| \
305			RTIT_CTL_MTC		| \
306			RTIT_CTL_PWR_EVT_EN	| \
307			RTIT_CTL_EVENT_EN	| \
308			RTIT_CTL_NOTNT		| \
309			RTIT_CTL_FUP_ON_PTW	| \
310			RTIT_CTL_PTW_EN)
311
312static bool pt_event_valid(struct perf_event *event)
313{
314	u64 config = event->attr.config;
315	u64 allowed, requested;
316
317	if ((config & PT_CONFIG_MASK) != config)
318		return false;
319
320	if (config & RTIT_CTL_CYC_PSB) {
321		if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
322			return false;
323
324		allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
325		requested = (config & RTIT_CTL_PSB_FREQ) >>
326			RTIT_CTL_PSB_FREQ_OFFSET;
327		if (requested && (!(allowed & BIT(requested))))
328			return false;
329
330		allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
331		requested = (config & RTIT_CTL_CYC_THRESH) >>
332			RTIT_CTL_CYC_THRESH_OFFSET;
333		if (requested && (!(allowed & BIT(requested))))
334			return false;
335	}
336
337	if (config & RTIT_CTL_MTC) {
338		/*
339		 * In the unlikely case that CPUID lists valid mtc periods,
340		 * but not the mtc capability, drop out here.
341		 *
342		 * Spec says that setting mtc period bits while mtc bit in
343		 * CPUID is 0 will #GP, so better safe than sorry.
344		 */
345		if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
346			return false;
347
348		allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
349		if (!allowed)
350			return false;
351
352		requested = (config & RTIT_CTL_MTC_RANGE) >>
353			RTIT_CTL_MTC_RANGE_OFFSET;
354
355		if (!(allowed & BIT(requested)))
356			return false;
357	}
358
359	if (config & RTIT_CTL_PWR_EVT_EN &&
360	    !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
361		return false;
362
363	if (config & RTIT_CTL_EVENT_EN &&
364	    !intel_pt_validate_hw_cap(PT_CAP_event_trace))
365		return false;
366
367	if (config & RTIT_CTL_NOTNT &&
368	    !intel_pt_validate_hw_cap(PT_CAP_tnt_disable))
369		return false;
370
371	if (config & RTIT_CTL_PTW) {
372		if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
373			return false;
374
375		/* FUPonPTW without PTW doesn't make sense */
376		if ((config & RTIT_CTL_FUP_ON_PTW) &&
377		    !(config & RTIT_CTL_PTW_EN))
378			return false;
379	}
380
381	/*
382	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
383	 * clears the assumption that BranchEn must always be enabled,
384	 * as was the case with the first implementation of PT.
385	 * If this bit is not set, the legacy behavior is preserved
386	 * for compatibility with the older userspace.
387	 *
388	 * Re-using bit 0 for this purpose is fine because it is never
389	 * directly set by the user; previous attempts at setting it in
390	 * the attr.config resulted in -EINVAL.
391	 */
392	if (config & RTIT_CTL_PASSTHROUGH) {
393		/*
394		 * Disallow not setting BRANCH_EN where BRANCH_EN is
395		 * always required.
396		 */
397		if (pt_pmu.branch_en_always_on &&
398		    !(config & RTIT_CTL_BRANCH_EN))
399			return false;
400	} else {
401		/*
402		 * Disallow BRANCH_EN without the PASSTHROUGH.
403		 */
404		if (config & RTIT_CTL_BRANCH_EN)
405			return false;
406	}
407
408	return true;
409}
410
411/*
412 * PT configuration helpers
413 * These all are cpu affine and operate on a local PT
414 */
415
416static void pt_config_start(struct perf_event *event)
417{
418	struct pt *pt = this_cpu_ptr(&pt_ctx);
419	u64 ctl = event->hw.config;
420
421	ctl |= RTIT_CTL_TRACEEN;
422	if (READ_ONCE(pt->vmx_on))
423		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
424	else
425		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
426
427	WRITE_ONCE(event->hw.config, ctl);
428}
429
430/* Address ranges and their corresponding msr configuration registers */
431static const struct pt_address_range {
432	unsigned long	msr_a;
433	unsigned long	msr_b;
434	unsigned int	reg_off;
435} pt_address_ranges[] = {
436	{
437		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
438		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
439		.reg_off = RTIT_CTL_ADDR0_OFFSET,
440	},
441	{
442		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
443		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
444		.reg_off = RTIT_CTL_ADDR1_OFFSET,
445	},
446	{
447		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
448		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
449		.reg_off = RTIT_CTL_ADDR2_OFFSET,
450	},
451	{
452		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
453		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
454		.reg_off = RTIT_CTL_ADDR3_OFFSET,
455	}
456};
457
458static u64 pt_config_filters(struct perf_event *event)
459{
460	struct pt_filters *filters = event->hw.addr_filters;
461	struct pt *pt = this_cpu_ptr(&pt_ctx);
462	unsigned int range = 0;
463	u64 rtit_ctl = 0;
464
465	if (!filters)
466		return 0;
467
468	perf_event_addr_filters_sync(event);
469
470	for (range = 0; range < filters->nr_filters; range++) {
471		struct pt_filter *filter = &filters->filter[range];
472
473		/*
474		 * Note, if the range has zero start/end addresses due
475		 * to its dynamic object not being loaded yet, we just
476		 * go ahead and program zeroed range, which will simply
477		 * produce no data. Note^2: if executable code at 0x0
478		 * is a concern, we can set up an "invalid" configuration
479		 * such as msr_b < msr_a.
480		 */
481
482		/* avoid redundant msr writes */
483		if (pt->filters.filter[range].msr_a != filter->msr_a) {
484			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
485			pt->filters.filter[range].msr_a = filter->msr_a;
486		}
487
488		if (pt->filters.filter[range].msr_b != filter->msr_b) {
489			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
490			pt->filters.filter[range].msr_b = filter->msr_b;
491		}
492
493		rtit_ctl |= (u64)filter->config << pt_address_ranges[range].reg_off;
494	}
495
496	return rtit_ctl;
497}
498
499static void pt_config(struct perf_event *event)
500{
501	struct pt *pt = this_cpu_ptr(&pt_ctx);
502	struct pt_buffer *buf = perf_get_aux(&pt->handle);
503	u64 reg;
504
505	/* First round: clear STATUS, in particular the PSB byte counter. */
506	if (!event->hw.config) {
507		perf_event_itrace_started(event);
508		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
509	}
510
511	reg = pt_config_filters(event);
512	reg |= RTIT_CTL_TRACEEN;
513	if (!buf->single)
514		reg |= RTIT_CTL_TOPA;
515
516	/*
517	 * Previously, we had BRANCH_EN on by default, but now that PT has
518	 * grown features outside of branch tracing, it is useful to allow
519	 * the user to disable it. Setting bit 0 in the event's attr.config
520	 * allows BRANCH_EN to pass through instead of being always on. See
521	 * also the comment in pt_event_valid().
522	 */
523	if (event->attr.config & BIT(0)) {
524		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
525	} else {
526		reg |= RTIT_CTL_BRANCH_EN;
527	}
528
529	if (!event->attr.exclude_kernel)
530		reg |= RTIT_CTL_OS;
531	if (!event->attr.exclude_user)
532		reg |= RTIT_CTL_USR;
533
534	reg |= (event->attr.config & PT_CONFIG_MASK);
535
536	event->hw.config = reg;
537	pt_config_start(event);
538}
539
540static void pt_config_stop(struct perf_event *event)
541{
542	struct pt *pt = this_cpu_ptr(&pt_ctx);
543	u64 ctl = READ_ONCE(event->hw.config);
544
545	/* may be already stopped by a PMI */
546	if (!(ctl & RTIT_CTL_TRACEEN))
547		return;
548
549	ctl &= ~RTIT_CTL_TRACEEN;
550	if (!READ_ONCE(pt->vmx_on))
551		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
552
553	WRITE_ONCE(event->hw.config, ctl);
554
555	/*
556	 * A wrmsr that disables trace generation serializes other PT
557	 * registers and causes all data packets to be written to memory,
558	 * but a fence is required for the data to become globally visible.
559	 *
560	 * The below WMB, separating data store and aux_head store matches
561	 * the consumer's RMB that separates aux_head load and data load.
562	 */
563	wmb();
564}
565
566/**
567 * struct topa - ToPA metadata
568 * @list:	linkage to struct pt_buffer's list of tables
569 * @offset:	offset of the first entry in this table in the buffer
570 * @size:	total size of all entries in this table
571 * @last:	index of the last initialized entry in this table
572 * @z_count:	how many times the first entry repeats
573 */
574struct topa {
575	struct list_head	list;
576	u64			offset;
577	size_t			size;
578	int			last;
579	unsigned int		z_count;
580};
581
582/*
583 * Keep ToPA table-related metadata on the same page as the actual table,
584 * taking up a few words from the top
585 */
586
587#define TENTS_PER_PAGE	\
588	((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry))
589
590/**
591 * struct topa_page - page-sized ToPA table with metadata at the top
592 * @table:	actual ToPA table entries, as understood by PT hardware
593 * @topa:	metadata
594 */
595struct topa_page {
596	struct topa_entry	table[TENTS_PER_PAGE];
597	struct topa		topa;
598};
599
600static inline struct topa_page *topa_to_page(struct topa *topa)
601{
602	return container_of(topa, struct topa_page, topa);
603}
604
605static inline struct topa_page *topa_entry_to_page(struct topa_entry *te)
606{
607	return (struct topa_page *)((unsigned long)te & PAGE_MASK);
608}
609
610static inline phys_addr_t topa_pfn(struct topa *topa)
611{
612	return PFN_DOWN(virt_to_phys(topa_to_page(topa)));
613}
614
615/* make -1 stand for the last table entry */
616#define TOPA_ENTRY(t, i)				\
617	((i) == -1					\
618		? &topa_to_page(t)->table[(t)->last]	\
619		: &topa_to_page(t)->table[(i)])
620#define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size))
621#define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size)
622
623static void pt_config_buffer(struct pt_buffer *buf)
624{
625	struct pt *pt = this_cpu_ptr(&pt_ctx);
626	u64 reg, mask;
627	void *base;
628
629	if (buf->single) {
630		base = buf->data_pages[0];
631		mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7;
632	} else {
633		base = topa_to_page(buf->cur)->table;
634		mask = (u64)buf->cur_idx;
635	}
636
637	reg = virt_to_phys(base);
638	if (pt->output_base != reg) {
639		pt->output_base = reg;
640		wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg);
641	}
642
643	reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32);
644	if (pt->output_mask != reg) {
645		pt->output_mask = reg;
646		wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
647	}
648}
649
650/**
651 * topa_alloc() - allocate page-sized ToPA table
652 * @cpu:	CPU on which to allocate.
653 * @gfp:	Allocation flags.
654 *
655 * Return:	On success, return the pointer to ToPA table page.
656 */
657static struct topa *topa_alloc(int cpu, gfp_t gfp)
658{
659	int node = cpu_to_node(cpu);
660	struct topa_page *tp;
661	struct page *p;
662
663	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
664	if (!p)
665		return NULL;
666
667	tp = page_address(p);
668	tp->topa.last = 0;
669
670	/*
671	 * In case of singe-entry ToPA, always put the self-referencing END
672	 * link as the 2nd entry in the table
673	 */
674	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
675		TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT;
676		TOPA_ENTRY(&tp->topa, 1)->end = 1;
677	}
678
679	return &tp->topa;
680}
681
682/**
683 * topa_free() - free a page-sized ToPA table
684 * @topa:	Table to deallocate.
685 */
686static void topa_free(struct topa *topa)
687{
688	free_page((unsigned long)topa);
689}
690
691/**
692 * topa_insert_table() - insert a ToPA table into a buffer
693 * @buf:	 PT buffer that's being extended.
694 * @topa:	 New topa table to be inserted.
695 *
696 * If it's the first table in this buffer, set up buffer's pointers
697 * accordingly; otherwise, add a END=1 link entry to @topa to the current
698 * "last" table and adjust the last table pointer to @topa.
699 */
700static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
701{
702	struct topa *last = buf->last;
703
704	list_add_tail(&topa->list, &buf->tables);
705
706	if (!buf->first) {
707		buf->first = buf->last = buf->cur = topa;
708		return;
709	}
710
711	topa->offset = last->offset + last->size;
712	buf->last = topa;
713
714	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
715		return;
716
717	BUG_ON(last->last != TENTS_PER_PAGE - 1);
718
719	TOPA_ENTRY(last, -1)->base = topa_pfn(topa);
720	TOPA_ENTRY(last, -1)->end = 1;
721}
722
723/**
724 * topa_table_full() - check if a ToPA table is filled up
725 * @topa:	ToPA table.
726 */
727static bool topa_table_full(struct topa *topa)
728{
729	/* single-entry ToPA is a special case */
730	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
731		return !!topa->last;
732
733	return topa->last == TENTS_PER_PAGE - 1;
734}
735
736/**
737 * topa_insert_pages() - create a list of ToPA tables
738 * @buf:	PT buffer being initialized.
739 * @cpu:	CPU on which to allocate.
740 * @gfp:	Allocation flags.
741 *
742 * This initializes a list of ToPA tables with entries from
743 * the data_pages provided by rb_alloc_aux().
744 *
745 * Return:	0 on success or error code.
746 */
747static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp)
748{
749	struct topa *topa = buf->last;
750	int order = 0;
751	struct page *p;
752
753	p = virt_to_page(buf->data_pages[buf->nr_pages]);
754	if (PagePrivate(p))
755		order = page_private(p);
756
757	if (topa_table_full(topa)) {
758		topa = topa_alloc(cpu, gfp);
759		if (!topa)
760			return -ENOMEM;
761
762		topa_insert_table(buf, topa);
763	}
764
765	if (topa->z_count == topa->last - 1) {
766		if (order == TOPA_ENTRY(topa, topa->last - 1)->size)
767			topa->z_count++;
768	}
769
770	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
771	TOPA_ENTRY(topa, -1)->size = order;
772	if (!buf->snapshot &&
773	    !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
774		TOPA_ENTRY(topa, -1)->intr = 1;
775		TOPA_ENTRY(topa, -1)->stop = 1;
776	}
777
778	topa->last++;
779	topa->size += sizes(order);
780
781	buf->nr_pages += 1ul << order;
782
783	return 0;
784}
785
786/**
787 * pt_topa_dump() - print ToPA tables and their entries
788 * @buf:	PT buffer.
789 */
790static void pt_topa_dump(struct pt_buffer *buf)
791{
792	struct topa *topa;
793
794	list_for_each_entry(topa, &buf->tables, list) {
795		struct topa_page *tp = topa_to_page(topa);
796		int i;
797
798		pr_debug("# table @%p, off %llx size %zx\n", tp->table,
799			 topa->offset, topa->size);
800		for (i = 0; i < TENTS_PER_PAGE; i++) {
801			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
802				 &tp->table[i],
803				 (unsigned long)tp->table[i].base << TOPA_SHIFT,
804				 sizes(tp->table[i].size),
805				 tp->table[i].end ?  'E' : ' ',
806				 tp->table[i].intr ? 'I' : ' ',
807				 tp->table[i].stop ? 'S' : ' ',
808				 *(u64 *)&tp->table[i]);
809			if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
810			     tp->table[i].stop) ||
811			    tp->table[i].end)
812				break;
813			if (!i && topa->z_count)
814				i += topa->z_count;
815		}
816	}
817}
818
819/**
820 * pt_buffer_advance() - advance to the next output region
821 * @buf:	PT buffer.
822 *
823 * Advance the current pointers in the buffer to the next ToPA entry.
824 */
825static void pt_buffer_advance(struct pt_buffer *buf)
826{
827	buf->output_off = 0;
828	buf->cur_idx++;
829
830	if (buf->cur_idx == buf->cur->last) {
831		if (buf->cur == buf->last)
832			buf->cur = buf->first;
833		else
834			buf->cur = list_entry(buf->cur->list.next, struct topa,
835					      list);
836		buf->cur_idx = 0;
837	}
838}
839
840/**
841 * pt_update_head() - calculate current offsets and sizes
842 * @pt:		Per-cpu pt context.
843 *
844 * Update buffer's current write pointer position and data size.
845 */
846static void pt_update_head(struct pt *pt)
847{
848	struct pt_buffer *buf = perf_get_aux(&pt->handle);
849	u64 topa_idx, base, old;
850
851	if (buf->single) {
852		local_set(&buf->data_size, buf->output_off);
853		return;
854	}
855
856	/* offset of the first region in this table from the beginning of buf */
857	base = buf->cur->offset + buf->output_off;
858
859	/* offset of the current output region within this table */
860	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
861		base += TOPA_ENTRY_SIZE(buf->cur, topa_idx);
862
863	if (buf->snapshot) {
864		local_set(&buf->data_size, base);
865	} else {
866		old = (local64_xchg(&buf->head, base) &
867		       ((buf->nr_pages << PAGE_SHIFT) - 1));
868		if (base < old)
869			base += buf->nr_pages << PAGE_SHIFT;
870
871		local_add(base - old, &buf->data_size);
872	}
873}
874
875/**
876 * pt_buffer_region() - obtain current output region's address
877 * @buf:	PT buffer.
878 */
879static void *pt_buffer_region(struct pt_buffer *buf)
880{
881	return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT);
882}
883
884/**
885 * pt_buffer_region_size() - obtain current output region's size
886 * @buf:	PT buffer.
887 */
888static size_t pt_buffer_region_size(struct pt_buffer *buf)
889{
890	return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx);
891}
892
893/**
894 * pt_handle_status() - take care of possible status conditions
895 * @pt:		Per-cpu pt context.
896 */
897static void pt_handle_status(struct pt *pt)
898{
899	struct pt_buffer *buf = perf_get_aux(&pt->handle);
900	int advance = 0;
901	u64 status;
902
903	rdmsrl(MSR_IA32_RTIT_STATUS, status);
904
905	if (status & RTIT_STATUS_ERROR) {
906		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
907		pt_topa_dump(buf);
908		status &= ~RTIT_STATUS_ERROR;
909	}
910
911	if (status & RTIT_STATUS_STOPPED) {
912		status &= ~RTIT_STATUS_STOPPED;
913
914		/*
915		 * On systems that only do single-entry ToPA, hitting STOP
916		 * means we are already losing data; need to let the decoder
917		 * know.
918		 */
919		if (!buf->single &&
920		    (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
921		     buf->output_off == pt_buffer_region_size(buf))) {
922			perf_aux_output_flag(&pt->handle,
923			                     PERF_AUX_FLAG_TRUNCATED);
924			advance++;
925		}
926	}
927
928	/*
929	 * Also on single-entry ToPA implementations, interrupt will come
930	 * before the output reaches its output region's boundary.
931	 */
932	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
933	    !buf->snapshot &&
934	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
935		void *head = pt_buffer_region(buf);
936
937		/* everything within this margin needs to be zeroed out */
938		memset(head + buf->output_off, 0,
939		       pt_buffer_region_size(buf) -
940		       buf->output_off);
941		advance++;
942	}
943
944	if (advance)
945		pt_buffer_advance(buf);
946
947	wrmsrl(MSR_IA32_RTIT_STATUS, status);
948}
949
950/**
951 * pt_read_offset() - translate registers into buffer pointers
952 * @buf:	PT buffer.
953 *
954 * Set buffer's output pointers from MSR values.
955 */
956static void pt_read_offset(struct pt_buffer *buf)
957{
958	struct pt *pt = this_cpu_ptr(&pt_ctx);
959	struct topa_page *tp;
960
961	if (!buf->single) {
962		rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base);
963		tp = phys_to_virt(pt->output_base);
964		buf->cur = &tp->topa;
965	}
966
967	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask);
968	/* offset within current output region */
969	buf->output_off = pt->output_mask >> 32;
970	/* index of current output region within this table */
971	if (!buf->single)
972		buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7;
973}
974
975static struct topa_entry *
976pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg)
977{
978	struct topa_page *tp;
979	struct topa *topa;
980	unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0;
981
982	/*
983	 * Indicates a bug in the caller.
984	 */
985	if (WARN_ON_ONCE(pg >= buf->nr_pages))
986		return NULL;
987
988	/*
989	 * First, find the ToPA table where @pg fits. With high
990	 * order allocations, there shouldn't be many of these.
991	 */
992	list_for_each_entry(topa, &buf->tables, list) {
993		if (topa->offset + topa->size > pg << PAGE_SHIFT)
994			goto found;
995	}
996
997	/*
998	 * Hitting this means we have a problem in the ToPA
999	 * allocation code.
1000	 */
1001	WARN_ON_ONCE(1);
1002
1003	return NULL;
1004
1005found:
1006	/*
1007	 * Indicates a problem in the ToPA allocation code.
1008	 */
1009	if (WARN_ON_ONCE(topa->last == -1))
1010		return NULL;
1011
1012	tp = topa_to_page(topa);
1013	cur_pg = PFN_DOWN(topa->offset);
1014	if (topa->z_count) {
1015		z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1);
1016		start_idx = topa->z_count + 1;
1017	}
1018
1019	/*
1020	 * Multiple entries at the beginning of the table have the same size,
1021	 * ideally all of them; if @pg falls there, the search is done.
1022	 */
1023	if (pg >= cur_pg && pg < cur_pg + z_pg) {
1024		idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0);
1025		return &tp->table[idx];
1026	}
1027
1028	/*
1029	 * Otherwise, slow path: iterate through the remaining entries.
1030	 */
1031	for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) {
1032		if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg)
1033			return &tp->table[idx];
1034
1035		cur_pg += TOPA_ENTRY_PAGES(topa, idx);
1036	}
1037
1038	/*
1039	 * Means we couldn't find a ToPA entry in the table that does match.
1040	 */
1041	WARN_ON_ONCE(1);
1042
1043	return NULL;
1044}
1045
1046static struct topa_entry *
1047pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te)
1048{
1049	unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1);
1050	struct topa_page *tp;
1051	struct topa *topa;
1052
1053	tp = (struct topa_page *)table;
1054	if (tp->table != te)
1055		return --te;
1056
1057	topa = &tp->topa;
1058	if (topa == buf->first)
1059		topa = buf->last;
1060	else
1061		topa = list_prev_entry(topa, list);
1062
1063	tp = topa_to_page(topa);
1064
1065	return &tp->table[topa->last - 1];
1066}
1067
1068/**
1069 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
1070 * @buf:	PT buffer.
1071 * @handle:	Current output handle.
1072 *
1073 * Place INT and STOP marks to prevent overwriting old data that the consumer
1074 * hasn't yet collected and waking up the consumer after a certain fraction of
1075 * the buffer has filled up. Only needed and sensible for non-snapshot counters.
1076 *
1077 * This obviously relies on buf::head to figure out buffer markers, so it has
1078 * to be called after pt_buffer_reset_offsets() and before the hardware tracing
1079 * is enabled.
1080 */
1081static int pt_buffer_reset_markers(struct pt_buffer *buf,
1082				   struct perf_output_handle *handle)
1083
1084{
1085	unsigned long head = local64_read(&buf->head);
1086	unsigned long idx, npages, wakeup;
1087
1088	if (buf->single)
1089		return 0;
1090
1091	/* can't stop in the middle of an output region */
1092	if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) {
1093		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1094		return -EINVAL;
1095	}
1096
1097
1098	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
1099	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1100		return 0;
1101
1102	/* clear STOP and INT from current entry */
1103	if (buf->stop_te) {
1104		buf->stop_te->stop = 0;
1105		buf->stop_te->intr = 0;
1106	}
1107
1108	if (buf->intr_te)
1109		buf->intr_te->intr = 0;
1110
1111	/* how many pages till the STOP marker */
1112	npages = handle->size >> PAGE_SHIFT;
1113
1114	/* if it's on a page boundary, fill up one more page */
1115	if (!offset_in_page(head + handle->size + 1))
1116		npages++;
1117
1118	idx = (head >> PAGE_SHIFT) + npages;
1119	idx &= buf->nr_pages - 1;
1120
1121	if (idx != buf->stop_pos) {
1122		buf->stop_pos = idx;
1123		buf->stop_te = pt_topa_entry_for_page(buf, idx);
1124		buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te);
1125	}
1126
1127	wakeup = handle->wakeup >> PAGE_SHIFT;
1128
1129	/* in the worst case, wake up the consumer one page before hard stop */
1130	idx = (head >> PAGE_SHIFT) + npages - 1;
1131	if (idx > wakeup)
1132		idx = wakeup;
1133
1134	idx &= buf->nr_pages - 1;
1135	if (idx != buf->intr_pos) {
1136		buf->intr_pos = idx;
1137		buf->intr_te = pt_topa_entry_for_page(buf, idx);
1138		buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te);
1139	}
1140
1141	buf->stop_te->stop = 1;
1142	buf->stop_te->intr = 1;
1143	buf->intr_te->intr = 1;
1144
1145	return 0;
1146}
1147
1148/**
1149 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1150 * @buf:	PT buffer.
1151 * @head:	Write pointer (aux_head) from AUX buffer.
1152 *
1153 * Find the ToPA table and entry corresponding to given @head and set buffer's
1154 * "current" pointers accordingly. This is done after we have obtained the
1155 * current aux_head position from a successful call to perf_aux_output_begin()
1156 * to make sure the hardware is writing to the right place.
1157 *
1158 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1159 * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1160 * which are used to determine INT and STOP markers' locations by a subsequent
1161 * call to pt_buffer_reset_markers().
1162 */
1163static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1164{
1165	struct topa_page *cur_tp;
1166	struct topa_entry *te;
1167	int pg;
1168
1169	if (buf->snapshot)
1170		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1171
1172	if (!buf->single) {
1173		pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1174		te = pt_topa_entry_for_page(buf, pg);
1175
1176		cur_tp = topa_entry_to_page(te);
1177		buf->cur = &cur_tp->topa;
1178		buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0);
1179		buf->output_off = head & (pt_buffer_region_size(buf) - 1);
1180	} else {
1181		buf->output_off = head;
1182	}
1183
1184	local64_set(&buf->head, head);
1185	local_set(&buf->data_size, 0);
1186}
1187
1188/**
1189 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1190 * @buf:	PT buffer.
1191 */
1192static void pt_buffer_fini_topa(struct pt_buffer *buf)
1193{
1194	struct topa *topa, *iter;
1195
1196	if (buf->single)
1197		return;
1198
1199	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1200		/*
1201		 * right now, this is in free_aux() path only, so
1202		 * no need to unlink this table from the list
1203		 */
1204		topa_free(topa);
1205	}
1206}
1207
1208/**
1209 * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1210 * @buf:	PT buffer.
1211 * @cpu:	CPU on which to allocate.
1212 * @nr_pages:	No. of pages to allocate.
1213 * @gfp:	Allocation flags.
1214 *
1215 * Return:	0 on success or error code.
1216 */
1217static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu,
1218			       unsigned long nr_pages, gfp_t gfp)
1219{
1220	struct topa *topa;
1221	int err;
1222
1223	topa = topa_alloc(cpu, gfp);
1224	if (!topa)
1225		return -ENOMEM;
1226
1227	topa_insert_table(buf, topa);
1228
1229	while (buf->nr_pages < nr_pages) {
1230		err = topa_insert_pages(buf, cpu, gfp);
1231		if (err) {
1232			pt_buffer_fini_topa(buf);
1233			return -ENOMEM;
1234		}
1235	}
1236
1237	/* link last table to the first one, unless we're double buffering */
1238	if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1239		TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first);
1240		TOPA_ENTRY(buf->last, -1)->end = 1;
1241	}
1242
1243	pt_topa_dump(buf);
1244	return 0;
1245}
1246
1247static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages)
1248{
1249	struct page *p = virt_to_page(buf->data_pages[0]);
1250	int ret = -ENOTSUPP, order = 0;
1251
1252	/*
1253	 * We can use single range output mode
1254	 * + in snapshot mode, where we don't need interrupts;
1255	 * + if the hardware supports it;
1256	 * + if the entire buffer is one contiguous allocation.
1257	 */
1258	if (!buf->snapshot)
1259		goto out;
1260
1261	if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output))
1262		goto out;
1263
1264	if (PagePrivate(p))
1265		order = page_private(p);
1266
1267	if (1 << order != nr_pages)
1268		goto out;
1269
1270	/*
1271	 * Some processors cannot always support single range for more than
1272	 * 4KB - refer errata TGL052, ADL037 and RPL017. Future processors might
1273	 * also be affected, so for now rather than trying to keep track of
1274	 * which ones, just disable it for all.
1275	 */
1276	if (nr_pages > 1)
1277		goto out;
1278
1279	buf->single = true;
1280	buf->nr_pages = nr_pages;
1281	ret = 0;
1282out:
1283	return ret;
1284}
1285
1286/**
1287 * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1288 * @event:	Performance event
1289 * @pages:	Array of pointers to buffer pages passed from perf core.
1290 * @nr_pages:	Number of pages in the buffer.
1291 * @snapshot:	If this is a snapshot/overwrite counter.
1292 *
1293 * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1294 * bookkeeping for an AUX buffer.
1295 *
1296 * Return:	Our private PT buffer structure.
1297 */
1298static void *
1299pt_buffer_setup_aux(struct perf_event *event, void **pages,
1300		    int nr_pages, bool snapshot)
1301{
1302	struct pt_buffer *buf;
1303	int node, ret, cpu = event->cpu;
1304
1305	if (!nr_pages)
1306		return NULL;
1307
1308	/*
1309	 * Only support AUX sampling in snapshot mode, where we don't
1310	 * generate NMIs.
1311	 */
1312	if (event->attr.aux_sample_size && !snapshot)
1313		return NULL;
1314
1315	if (cpu == -1)
1316		cpu = raw_smp_processor_id();
1317	node = cpu_to_node(cpu);
1318
1319	buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node);
1320	if (!buf)
1321		return NULL;
1322
1323	buf->snapshot = snapshot;
1324	buf->data_pages = pages;
1325	buf->stop_pos = -1;
1326	buf->intr_pos = -1;
1327
1328	INIT_LIST_HEAD(&buf->tables);
1329
1330	ret = pt_buffer_try_single(buf, nr_pages);
1331	if (!ret)
1332		return buf;
1333
1334	ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL);
1335	if (ret) {
1336		kfree(buf);
1337		return NULL;
1338	}
1339
1340	return buf;
1341}
1342
1343/**
1344 * pt_buffer_free_aux() - perf AUX deallocation path callback
1345 * @data:	PT buffer.
1346 */
1347static void pt_buffer_free_aux(void *data)
1348{
1349	struct pt_buffer *buf = data;
1350
1351	pt_buffer_fini_topa(buf);
1352	kfree(buf);
1353}
1354
1355static int pt_addr_filters_init(struct perf_event *event)
1356{
1357	struct pt_filters *filters;
1358	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1359
1360	if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1361		return 0;
1362
1363	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1364	if (!filters)
1365		return -ENOMEM;
1366
1367	if (event->parent)
1368		memcpy(filters, event->parent->hw.addr_filters,
1369		       sizeof(*filters));
1370
1371	event->hw.addr_filters = filters;
1372
1373	return 0;
1374}
1375
1376static void pt_addr_filters_fini(struct perf_event *event)
1377{
1378	kfree(event->hw.addr_filters);
1379	event->hw.addr_filters = NULL;
1380}
1381
1382#ifdef CONFIG_X86_64
1383/* Clamp to a canonical address greater-than-or-equal-to the address given */
1384static u64 clamp_to_ge_canonical_addr(u64 vaddr, u8 vaddr_bits)
1385{
1386	return __is_canonical_address(vaddr, vaddr_bits) ?
1387	       vaddr :
1388	       -BIT_ULL(vaddr_bits - 1);
1389}
1390
1391/* Clamp to a canonical address less-than-or-equal-to the address given */
1392static u64 clamp_to_le_canonical_addr(u64 vaddr, u8 vaddr_bits)
1393{
1394	return __is_canonical_address(vaddr, vaddr_bits) ?
1395	       vaddr :
1396	       BIT_ULL(vaddr_bits - 1) - 1;
1397}
1398#else
1399#define clamp_to_ge_canonical_addr(x, y) (x)
1400#define clamp_to_le_canonical_addr(x, y) (x)
1401#endif
1402
1403static int pt_event_addr_filters_validate(struct list_head *filters)
1404{
1405	struct perf_addr_filter *filter;
1406	int range = 0;
1407
1408	list_for_each_entry(filter, filters, entry) {
1409		/*
1410		 * PT doesn't support single address triggers and
1411		 * 'start' filters.
1412		 */
1413		if (!filter->size ||
1414		    filter->action == PERF_ADDR_FILTER_ACTION_START)
1415			return -EOPNOTSUPP;
1416
1417		if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1418			return -EOPNOTSUPP;
1419	}
1420
1421	return 0;
1422}
1423
1424static void pt_event_addr_filters_sync(struct perf_event *event)
1425{
1426	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1427	unsigned long msr_a, msr_b;
1428	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1429	struct pt_filters *filters = event->hw.addr_filters;
1430	struct perf_addr_filter *filter;
1431	int range = 0;
1432
1433	if (!filters)
1434		return;
1435
1436	list_for_each_entry(filter, &head->list, entry) {
1437		if (filter->path.dentry && !fr[range].start) {
1438			msr_a = msr_b = 0;
1439		} else {
1440			unsigned long n = fr[range].size - 1;
1441			unsigned long a = fr[range].start;
1442			unsigned long b;
1443
1444			if (a > ULONG_MAX - n)
1445				b = ULONG_MAX;
1446			else
1447				b = a + n;
1448			/*
1449			 * Apply the offset. 64-bit addresses written to the
1450			 * MSRs must be canonical, but the range can encompass
1451			 * non-canonical addresses. Since software cannot
1452			 * execute at non-canonical addresses, adjusting to
1453			 * canonical addresses does not affect the result of the
1454			 * address filter.
1455			 */
1456			msr_a = clamp_to_ge_canonical_addr(a, boot_cpu_data.x86_virt_bits);
1457			msr_b = clamp_to_le_canonical_addr(b, boot_cpu_data.x86_virt_bits);
1458			if (msr_b < msr_a)
1459				msr_a = msr_b = 0;
1460		}
1461
1462		filters->filter[range].msr_a  = msr_a;
1463		filters->filter[range].msr_b  = msr_b;
1464		if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1465			filters->filter[range].config = 1;
1466		else
1467			filters->filter[range].config = 2;
1468		range++;
1469	}
1470
1471	filters->nr_filters = range;
1472}
1473
1474/**
1475 * intel_pt_interrupt() - PT PMI handler
1476 */
1477void intel_pt_interrupt(void)
1478{
1479	struct pt *pt = this_cpu_ptr(&pt_ctx);
1480	struct pt_buffer *buf;
1481	struct perf_event *event = pt->handle.event;
1482
1483	/*
1484	 * There may be a dangling PT bit in the interrupt status register
1485	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1486	 * do anything (particularly, re-enable) for this event here.
1487	 */
1488	if (!READ_ONCE(pt->handle_nmi))
1489		return;
1490
1491	if (!event)
1492		return;
1493
1494	pt_config_stop(event);
1495
1496	buf = perf_get_aux(&pt->handle);
1497	if (!buf)
1498		return;
1499
1500	pt_read_offset(buf);
1501
1502	pt_handle_status(pt);
1503
1504	pt_update_head(pt);
1505
1506	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1507
1508	if (!event->hw.state) {
1509		int ret;
1510
1511		buf = perf_aux_output_begin(&pt->handle, event);
1512		if (!buf) {
1513			event->hw.state = PERF_HES_STOPPED;
1514			return;
1515		}
1516
1517		pt_buffer_reset_offsets(buf, pt->handle.head);
1518		/* snapshot counters don't use PMI, so it's safe */
1519		ret = pt_buffer_reset_markers(buf, &pt->handle);
1520		if (ret) {
1521			perf_aux_output_end(&pt->handle, 0);
1522			return;
1523		}
1524
1525		pt_config_buffer(buf);
1526		pt_config_start(event);
1527	}
1528}
1529
1530void intel_pt_handle_vmx(int on)
1531{
1532	struct pt *pt = this_cpu_ptr(&pt_ctx);
1533	struct perf_event *event;
1534	unsigned long flags;
1535
1536	/* PT plays nice with VMX, do nothing */
1537	if (pt_pmu.vmx)
1538		return;
1539
1540	/*
1541	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1542	 * sure to not try to set it while VMX is on. Disable
1543	 * interrupts to avoid racing with pmu callbacks;
1544	 * concurrent PMI should be handled fine.
1545	 */
1546	local_irq_save(flags);
1547	WRITE_ONCE(pt->vmx_on, on);
1548
1549	/*
1550	 * If an AUX transaction is in progress, it will contain
1551	 * gap(s), so flag it PARTIAL to inform the user.
1552	 */
1553	event = pt->handle.event;
1554	if (event)
1555		perf_aux_output_flag(&pt->handle,
1556		                     PERF_AUX_FLAG_PARTIAL);
1557
1558	/* Turn PTs back on */
1559	if (!on && event)
1560		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1561
1562	local_irq_restore(flags);
1563}
1564EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1565
1566/*
1567 * PMU callbacks
1568 */
1569
1570static void pt_event_start(struct perf_event *event, int mode)
1571{
1572	struct hw_perf_event *hwc = &event->hw;
1573	struct pt *pt = this_cpu_ptr(&pt_ctx);
1574	struct pt_buffer *buf;
1575
1576	buf = perf_aux_output_begin(&pt->handle, event);
1577	if (!buf)
1578		goto fail_stop;
1579
1580	pt_buffer_reset_offsets(buf, pt->handle.head);
1581	if (!buf->snapshot) {
1582		if (pt_buffer_reset_markers(buf, &pt->handle))
1583			goto fail_end_stop;
1584	}
1585
1586	WRITE_ONCE(pt->handle_nmi, 1);
1587	hwc->state = 0;
1588
1589	pt_config_buffer(buf);
1590	pt_config(event);
1591
1592	return;
1593
1594fail_end_stop:
1595	perf_aux_output_end(&pt->handle, 0);
1596fail_stop:
1597	hwc->state = PERF_HES_STOPPED;
1598}
1599
1600static void pt_event_stop(struct perf_event *event, int mode)
1601{
1602	struct pt *pt = this_cpu_ptr(&pt_ctx);
1603
1604	/*
1605	 * Protect against the PMI racing with disabling wrmsr,
1606	 * see comment in intel_pt_interrupt().
1607	 */
1608	WRITE_ONCE(pt->handle_nmi, 0);
1609
1610	pt_config_stop(event);
1611
1612	if (event->hw.state == PERF_HES_STOPPED)
1613		return;
1614
1615	event->hw.state = PERF_HES_STOPPED;
1616
1617	if (mode & PERF_EF_UPDATE) {
1618		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1619
1620		if (!buf)
1621			return;
1622
1623		if (WARN_ON_ONCE(pt->handle.event != event))
1624			return;
1625
1626		pt_read_offset(buf);
1627
1628		pt_handle_status(pt);
1629
1630		pt_update_head(pt);
1631
1632		if (buf->snapshot)
1633			pt->handle.head =
1634				local_xchg(&buf->data_size,
1635					   buf->nr_pages << PAGE_SHIFT);
1636		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1637	}
1638}
1639
1640static long pt_event_snapshot_aux(struct perf_event *event,
1641				  struct perf_output_handle *handle,
1642				  unsigned long size)
1643{
1644	struct pt *pt = this_cpu_ptr(&pt_ctx);
1645	struct pt_buffer *buf = perf_get_aux(&pt->handle);
1646	unsigned long from = 0, to;
1647	long ret;
1648
1649	if (WARN_ON_ONCE(!buf))
1650		return 0;
1651
1652	/*
1653	 * Sampling is only allowed on snapshot events;
1654	 * see pt_buffer_setup_aux().
1655	 */
1656	if (WARN_ON_ONCE(!buf->snapshot))
1657		return 0;
1658
1659	/*
1660	 * Here, handle_nmi tells us if the tracing is on
1661	 */
1662	if (READ_ONCE(pt->handle_nmi))
1663		pt_config_stop(event);
1664
1665	pt_read_offset(buf);
1666	pt_update_head(pt);
1667
1668	to = local_read(&buf->data_size);
1669	if (to < size)
1670		from = buf->nr_pages << PAGE_SHIFT;
1671	from += to - size;
1672
1673	ret = perf_output_copy_aux(&pt->handle, handle, from, to);
1674
1675	/*
1676	 * If the tracing was on when we turned up, restart it.
1677	 * Compiler barrier not needed as we couldn't have been
1678	 * preempted by anything that touches pt->handle_nmi.
1679	 */
1680	if (pt->handle_nmi)
1681		pt_config_start(event);
1682
1683	return ret;
1684}
1685
1686static void pt_event_del(struct perf_event *event, int mode)
1687{
1688	pt_event_stop(event, PERF_EF_UPDATE);
1689}
1690
1691static int pt_event_add(struct perf_event *event, int mode)
1692{
1693	struct pt *pt = this_cpu_ptr(&pt_ctx);
1694	struct hw_perf_event *hwc = &event->hw;
1695	int ret = -EBUSY;
1696
1697	if (pt->handle.event)
1698		goto fail;
1699
1700	if (mode & PERF_EF_START) {
1701		pt_event_start(event, 0);
1702		ret = -EINVAL;
1703		if (hwc->state == PERF_HES_STOPPED)
1704			goto fail;
1705	} else {
1706		hwc->state = PERF_HES_STOPPED;
1707	}
1708
1709	ret = 0;
1710fail:
1711
1712	return ret;
1713}
1714
1715static void pt_event_read(struct perf_event *event)
1716{
1717}
1718
1719static void pt_event_destroy(struct perf_event *event)
1720{
1721	pt_addr_filters_fini(event);
1722	x86_del_exclusive(x86_lbr_exclusive_pt);
1723}
1724
1725static int pt_event_init(struct perf_event *event)
1726{
1727	if (event->attr.type != pt_pmu.pmu.type)
1728		return -ENOENT;
1729
1730	if (!pt_event_valid(event))
1731		return -EINVAL;
1732
1733	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1734		return -EBUSY;
1735
1736	if (pt_addr_filters_init(event)) {
1737		x86_del_exclusive(x86_lbr_exclusive_pt);
1738		return -ENOMEM;
1739	}
1740
1741	event->destroy = pt_event_destroy;
1742
1743	return 0;
1744}
1745
1746void cpu_emergency_stop_pt(void)
1747{
1748	struct pt *pt = this_cpu_ptr(&pt_ctx);
1749
1750	if (pt->handle.event)
1751		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1752}
1753
1754int is_intel_pt_event(struct perf_event *event)
1755{
1756	return event->pmu == &pt_pmu.pmu;
1757}
1758
1759static __init int pt_init(void)
1760{
1761	int ret, cpu, prior_warn = 0;
1762
1763	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1764
1765	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1766		return -ENODEV;
1767
1768	cpus_read_lock();
1769	for_each_online_cpu(cpu) {
1770		u64 ctl;
1771
1772		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1773		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1774			prior_warn++;
1775	}
1776	cpus_read_unlock();
1777
1778	if (prior_warn) {
1779		x86_add_exclusive(x86_lbr_exclusive_pt);
1780		pr_warn("PT is enabled at boot time, doing nothing\n");
1781
1782		return -EBUSY;
1783	}
1784
1785	ret = pt_pmu_hw_init();
1786	if (ret)
1787		return ret;
1788
1789	if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1790		pr_warn("ToPA output is not supported on this CPU\n");
1791		return -ENODEV;
1792	}
1793
1794	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1795		pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1796
1797	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1798	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1799	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1800	pt_pmu.pmu.event_init		 = pt_event_init;
1801	pt_pmu.pmu.add			 = pt_event_add;
1802	pt_pmu.pmu.del			 = pt_event_del;
1803	pt_pmu.pmu.start		 = pt_event_start;
1804	pt_pmu.pmu.stop			 = pt_event_stop;
1805	pt_pmu.pmu.snapshot_aux		 = pt_event_snapshot_aux;
1806	pt_pmu.pmu.read			 = pt_event_read;
1807	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1808	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1809	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1810	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1811	pt_pmu.pmu.nr_addr_filters       =
1812		intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1813
1814	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1815
1816	return ret;
1817}
1818arch_initcall(pt_init);
1819