1/*
2 * Netburst Performance Events (P4, old Xeon)
3 *
4 *  Copyright (C) 2010 Parallels, Inc., Cyrill Gorcunov <gorcunov@openvz.org>
5 *  Copyright (C) 2010 Intel Corporation, Lin Ming <ming.m.lin@intel.com>
6 *
7 *  For licencing details see kernel-base/COPYING
8 */
9
10#include <linux/perf_event.h>
11
12#include <asm/perf_event_p4.h>
13#include <asm/hardirq.h>
14#include <asm/apic.h>
15
16#include "../perf_event.h"
17
18#define P4_CNTR_LIMIT 3
19/*
20 * array indices: 0,1 - HT threads, used with HT enabled cpu
21 */
22struct p4_event_bind {
23	unsigned int opcode;			/* Event code and ESCR selector */
24	unsigned int escr_msr[2];		/* ESCR MSR for this event */
25	unsigned int escr_emask;		/* valid ESCR EventMask bits */
26	unsigned int shared;			/* event is shared across threads */
27	signed char cntr[2][P4_CNTR_LIMIT];	/* counter index (offset), -1 on absence */
28};
29
30struct p4_pebs_bind {
31	unsigned int metric_pebs;
32	unsigned int metric_vert;
33};
34
35/* it sets P4_PEBS_ENABLE_UOP_TAG as well */
36#define P4_GEN_PEBS_BIND(name, pebs, vert)			\
37	[P4_PEBS_METRIC__##name] = {				\
38		.metric_pebs = pebs | P4_PEBS_ENABLE_UOP_TAG,	\
39		.metric_vert = vert,				\
40	}
41
42/*
43 * note we have P4_PEBS_ENABLE_UOP_TAG always set here
44 *
45 * it's needed for mapping P4_PEBS_CONFIG_METRIC_MASK bits of
46 * event configuration to find out which values are to be
47 * written into MSR_IA32_PEBS_ENABLE and MSR_P4_PEBS_MATRIX_VERT
48 * registers
49 */
50static struct p4_pebs_bind p4_pebs_bind_map[] = {
51	P4_GEN_PEBS_BIND(1stl_cache_load_miss_retired,	0x0000001, 0x0000001),
52	P4_GEN_PEBS_BIND(2ndl_cache_load_miss_retired,	0x0000002, 0x0000001),
53	P4_GEN_PEBS_BIND(dtlb_load_miss_retired,	0x0000004, 0x0000001),
54	P4_GEN_PEBS_BIND(dtlb_store_miss_retired,	0x0000004, 0x0000002),
55	P4_GEN_PEBS_BIND(dtlb_all_miss_retired,		0x0000004, 0x0000003),
56	P4_GEN_PEBS_BIND(tagged_mispred_branch,		0x0018000, 0x0000010),
57	P4_GEN_PEBS_BIND(mob_load_replay_retired,	0x0000200, 0x0000001),
58	P4_GEN_PEBS_BIND(split_load_retired,		0x0000400, 0x0000001),
59	P4_GEN_PEBS_BIND(split_store_retired,		0x0000400, 0x0000002),
60};
61
62/*
63 * Note that we don't use CCCR1 here, there is an
64 * exception for P4_BSQ_ALLOCATION but we just have
65 * no workaround
66 *
67 * consider this binding as resources which particular
68 * event may borrow, it doesn't contain EventMask,
69 * Tags and friends -- they are left to a caller
70 */
71static struct p4_event_bind p4_event_bind_map[] = {
72	[P4_EVENT_TC_DELIVER_MODE] = {
73		.opcode		= P4_OPCODE(P4_EVENT_TC_DELIVER_MODE),
74		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
75		.escr_emask	=
76			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DD)			|
77			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DB)			|
78			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, DI)			|
79			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BD)			|
80			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BB)			|
81			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, BI)			|
82			P4_ESCR_EMASK_BIT(P4_EVENT_TC_DELIVER_MODE, ID),
83		.shared		= 1,
84		.cntr		= { {4, 5, -1}, {6, 7, -1} },
85	},
86	[P4_EVENT_BPU_FETCH_REQUEST] = {
87		.opcode		= P4_OPCODE(P4_EVENT_BPU_FETCH_REQUEST),
88		.escr_msr	= { MSR_P4_BPU_ESCR0, MSR_P4_BPU_ESCR1 },
89		.escr_emask	=
90			P4_ESCR_EMASK_BIT(P4_EVENT_BPU_FETCH_REQUEST, TCMISS),
91		.cntr		= { {0, -1, -1}, {2, -1, -1} },
92	},
93	[P4_EVENT_ITLB_REFERENCE] = {
94		.opcode		= P4_OPCODE(P4_EVENT_ITLB_REFERENCE),
95		.escr_msr	= { MSR_P4_ITLB_ESCR0, MSR_P4_ITLB_ESCR1 },
96		.escr_emask	=
97			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT)			|
98			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, MISS)		|
99			P4_ESCR_EMASK_BIT(P4_EVENT_ITLB_REFERENCE, HIT_UK),
100		.cntr		= { {0, -1, -1}, {2, -1, -1} },
101	},
102	[P4_EVENT_MEMORY_CANCEL] = {
103		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_CANCEL),
104		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
105		.escr_emask	=
106			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, ST_RB_FULL)		|
107			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_CANCEL, 64K_CONF),
108		.cntr		= { {8, 9, -1}, {10, 11, -1} },
109	},
110	[P4_EVENT_MEMORY_COMPLETE] = {
111		.opcode		= P4_OPCODE(P4_EVENT_MEMORY_COMPLETE),
112		.escr_msr	= { MSR_P4_SAAT_ESCR0 , MSR_P4_SAAT_ESCR1 },
113		.escr_emask	=
114			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, LSC)		|
115			P4_ESCR_EMASK_BIT(P4_EVENT_MEMORY_COMPLETE, SSC),
116		.cntr		= { {8, 9, -1}, {10, 11, -1} },
117	},
118	[P4_EVENT_LOAD_PORT_REPLAY] = {
119		.opcode		= P4_OPCODE(P4_EVENT_LOAD_PORT_REPLAY),
120		.escr_msr	= { MSR_P4_SAAT_ESCR0, MSR_P4_SAAT_ESCR1 },
121		.escr_emask	=
122			P4_ESCR_EMASK_BIT(P4_EVENT_LOAD_PORT_REPLAY, SPLIT_LD),
123		.cntr		= { {8, 9, -1}, {10, 11, -1} },
124	},
125	[P4_EVENT_STORE_PORT_REPLAY] = {
126		.opcode		= P4_OPCODE(P4_EVENT_STORE_PORT_REPLAY),
127		.escr_msr	= { MSR_P4_SAAT_ESCR0 ,  MSR_P4_SAAT_ESCR1 },
128		.escr_emask	=
129			P4_ESCR_EMASK_BIT(P4_EVENT_STORE_PORT_REPLAY, SPLIT_ST),
130		.cntr		= { {8, 9, -1}, {10, 11, -1} },
131	},
132	[P4_EVENT_MOB_LOAD_REPLAY] = {
133		.opcode		= P4_OPCODE(P4_EVENT_MOB_LOAD_REPLAY),
134		.escr_msr	= { MSR_P4_MOB_ESCR0, MSR_P4_MOB_ESCR1 },
135		.escr_emask	=
136			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STA)		|
137			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, NO_STD)		|
138			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, PARTIAL_DATA)	|
139			P4_ESCR_EMASK_BIT(P4_EVENT_MOB_LOAD_REPLAY, UNALGN_ADDR),
140		.cntr		= { {0, -1, -1}, {2, -1, -1} },
141	},
142	[P4_EVENT_PAGE_WALK_TYPE] = {
143		.opcode		= P4_OPCODE(P4_EVENT_PAGE_WALK_TYPE),
144		.escr_msr	= { MSR_P4_PMH_ESCR0, MSR_P4_PMH_ESCR1 },
145		.escr_emask	=
146			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, DTMISS)		|
147			P4_ESCR_EMASK_BIT(P4_EVENT_PAGE_WALK_TYPE, ITMISS),
148		.shared		= 1,
149		.cntr		= { {0, -1, -1}, {2, -1, -1} },
150	},
151	[P4_EVENT_BSQ_CACHE_REFERENCE] = {
152		.opcode		= P4_OPCODE(P4_EVENT_BSQ_CACHE_REFERENCE),
153		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR1 },
154		.escr_emask	=
155			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
156			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
157			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
158			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
159			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
160			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)	|
161			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
162			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
163			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS),
164		.cntr		= { {0, -1, -1}, {2, -1, -1} },
165	},
166	[P4_EVENT_IOQ_ALLOCATION] = {
167		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ALLOCATION),
168		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
169		.escr_emask	=
170			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, DEFAULT)		|
171			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_READ)		|
172			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, ALL_WRITE)		|
173			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_UC)		|
174			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WC)		|
175			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WT)		|
176			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WP)		|
177			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, MEM_WB)		|
178			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OWN)			|
179			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, OTHER)		|
180			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ALLOCATION, PREFETCH),
181		.cntr		= { {0, -1, -1}, {2, -1, -1} },
182	},
183	[P4_EVENT_IOQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
184		.opcode		= P4_OPCODE(P4_EVENT_IOQ_ACTIVE_ENTRIES),
185		.escr_msr	= { MSR_P4_FSB_ESCR1,  MSR_P4_FSB_ESCR1 },
186		.escr_emask	=
187			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, DEFAULT)		|
188			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_READ)	|
189			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, ALL_WRITE)	|
190			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_UC)		|
191			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WC)		|
192			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WT)		|
193			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WP)		|
194			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, MEM_WB)		|
195			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OWN)		|
196			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, OTHER)		|
197			P4_ESCR_EMASK_BIT(P4_EVENT_IOQ_ACTIVE_ENTRIES, PREFETCH),
198		.cntr		= { {2, -1, -1}, {3, -1, -1} },
199	},
200	[P4_EVENT_FSB_DATA_ACTIVITY] = {
201		.opcode		= P4_OPCODE(P4_EVENT_FSB_DATA_ACTIVITY),
202		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
203		.escr_emask	=
204			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
205			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN)		|
206			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OTHER)	|
207			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_DRV)		|
208			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OWN)		|
209			P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DBSY_OTHER),
210		.shared		= 1,
211		.cntr		= { {0, -1, -1}, {2, -1, -1} },
212	},
213	[P4_EVENT_BSQ_ALLOCATION] = {		/* shared ESCR, broken CCCR1 */
214		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ALLOCATION),
215		.escr_msr	= { MSR_P4_BSU_ESCR0, MSR_P4_BSU_ESCR0 },
216		.escr_emask	=
217			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE0)		|
218			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_TYPE1)		|
219			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN0)		|
220			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LEN1)		|
221			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_IO_TYPE)		|
222			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_LOCK_TYPE)	|
223			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_CACHE_TYPE)	|
224			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_SPLIT_TYPE)	|
225			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_DEM_TYPE)	|
226			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, REQ_ORD_TYPE)	|
227			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE0)		|
228			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE1)		|
229			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ALLOCATION, MEM_TYPE2),
230		.cntr		= { {0, -1, -1}, {1, -1, -1} },
231	},
232	[P4_EVENT_BSQ_ACTIVE_ENTRIES] = {	/* shared ESCR */
233		.opcode		= P4_OPCODE(P4_EVENT_BSQ_ACTIVE_ENTRIES),
234		.escr_msr	= { MSR_P4_BSU_ESCR1 , MSR_P4_BSU_ESCR1 },
235		.escr_emask	=
236			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE0)	|
237			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_TYPE1)	|
238			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN0)	|
239			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LEN1)	|
240			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_IO_TYPE)	|
241			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_LOCK_TYPE)	|
242			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_CACHE_TYPE)	|
243			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_SPLIT_TYPE)	|
244			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_DEM_TYPE)	|
245			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, REQ_ORD_TYPE)	|
246			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE0)	|
247			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE1)	|
248			P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_ACTIVE_ENTRIES, MEM_TYPE2),
249		.cntr		= { {2, -1, -1}, {3, -1, -1} },
250	},
251	[P4_EVENT_SSE_INPUT_ASSIST] = {
252		.opcode		= P4_OPCODE(P4_EVENT_SSE_INPUT_ASSIST),
253		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
254		.escr_emask	=
255			P4_ESCR_EMASK_BIT(P4_EVENT_SSE_INPUT_ASSIST, ALL),
256		.shared		= 1,
257		.cntr		= { {8, 9, -1}, {10, 11, -1} },
258	},
259	[P4_EVENT_PACKED_SP_UOP] = {
260		.opcode		= P4_OPCODE(P4_EVENT_PACKED_SP_UOP),
261		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
262		.escr_emask	=
263			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_SP_UOP, ALL),
264		.shared		= 1,
265		.cntr		= { {8, 9, -1}, {10, 11, -1} },
266	},
267	[P4_EVENT_PACKED_DP_UOP] = {
268		.opcode		= P4_OPCODE(P4_EVENT_PACKED_DP_UOP),
269		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
270		.escr_emask	=
271			P4_ESCR_EMASK_BIT(P4_EVENT_PACKED_DP_UOP, ALL),
272		.shared		= 1,
273		.cntr		= { {8, 9, -1}, {10, 11, -1} },
274	},
275	[P4_EVENT_SCALAR_SP_UOP] = {
276		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_SP_UOP),
277		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
278		.escr_emask	=
279			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_SP_UOP, ALL),
280		.shared		= 1,
281		.cntr		= { {8, 9, -1}, {10, 11, -1} },
282	},
283	[P4_EVENT_SCALAR_DP_UOP] = {
284		.opcode		= P4_OPCODE(P4_EVENT_SCALAR_DP_UOP),
285		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
286		.escr_emask	=
287			P4_ESCR_EMASK_BIT(P4_EVENT_SCALAR_DP_UOP, ALL),
288		.shared		= 1,
289		.cntr		= { {8, 9, -1}, {10, 11, -1} },
290	},
291	[P4_EVENT_64BIT_MMX_UOP] = {
292		.opcode		= P4_OPCODE(P4_EVENT_64BIT_MMX_UOP),
293		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
294		.escr_emask	=
295			P4_ESCR_EMASK_BIT(P4_EVENT_64BIT_MMX_UOP, ALL),
296		.shared		= 1,
297		.cntr		= { {8, 9, -1}, {10, 11, -1} },
298	},
299	[P4_EVENT_128BIT_MMX_UOP] = {
300		.opcode		= P4_OPCODE(P4_EVENT_128BIT_MMX_UOP),
301		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
302		.escr_emask	=
303			P4_ESCR_EMASK_BIT(P4_EVENT_128BIT_MMX_UOP, ALL),
304		.shared		= 1,
305		.cntr		= { {8, 9, -1}, {10, 11, -1} },
306	},
307	[P4_EVENT_X87_FP_UOP] = {
308		.opcode		= P4_OPCODE(P4_EVENT_X87_FP_UOP),
309		.escr_msr	= { MSR_P4_FIRM_ESCR0, MSR_P4_FIRM_ESCR1 },
310		.escr_emask	=
311			P4_ESCR_EMASK_BIT(P4_EVENT_X87_FP_UOP, ALL),
312		.shared		= 1,
313		.cntr		= { {8, 9, -1}, {10, 11, -1} },
314	},
315	[P4_EVENT_TC_MISC] = {
316		.opcode		= P4_OPCODE(P4_EVENT_TC_MISC),
317		.escr_msr	= { MSR_P4_TC_ESCR0, MSR_P4_TC_ESCR1 },
318		.escr_emask	=
319			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MISC, FLUSH),
320		.cntr		= { {4, 5, -1}, {6, 7, -1} },
321	},
322	[P4_EVENT_GLOBAL_POWER_EVENTS] = {
323		.opcode		= P4_OPCODE(P4_EVENT_GLOBAL_POWER_EVENTS),
324		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
325		.escr_emask	=
326			P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING),
327		.cntr		= { {0, -1, -1}, {2, -1, -1} },
328	},
329	[P4_EVENT_TC_MS_XFER] = {
330		.opcode		= P4_OPCODE(P4_EVENT_TC_MS_XFER),
331		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
332		.escr_emask	=
333			P4_ESCR_EMASK_BIT(P4_EVENT_TC_MS_XFER, CISC),
334		.cntr		= { {4, 5, -1}, {6, 7, -1} },
335	},
336	[P4_EVENT_UOP_QUEUE_WRITES] = {
337		.opcode		= P4_OPCODE(P4_EVENT_UOP_QUEUE_WRITES),
338		.escr_msr	= { MSR_P4_MS_ESCR0, MSR_P4_MS_ESCR1 },
339		.escr_emask	=
340			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_BUILD)	|
341			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_TC_DELIVER)	|
342			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_QUEUE_WRITES, FROM_ROM),
343		.cntr		= { {4, 5, -1}, {6, 7, -1} },
344	},
345	[P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE] = {
346		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE),
347		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR0 },
348		.escr_emask	=
349			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CONDITIONAL)	|
350			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, CALL)		|
351			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, RETURN)		|
352			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_MISPRED_BRANCH_TYPE, INDIRECT),
353		.cntr		= { {4, 5, -1}, {6, 7, -1} },
354	},
355	[P4_EVENT_RETIRED_BRANCH_TYPE] = {
356		.opcode		= P4_OPCODE(P4_EVENT_RETIRED_BRANCH_TYPE),
357		.escr_msr	= { MSR_P4_TBPU_ESCR0 , MSR_P4_TBPU_ESCR1 },
358		.escr_emask	=
359			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
360			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
361			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
362			P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT),
363		.cntr		= { {4, 5, -1}, {6, 7, -1} },
364	},
365	[P4_EVENT_RESOURCE_STALL] = {
366		.opcode		= P4_OPCODE(P4_EVENT_RESOURCE_STALL),
367		.escr_msr	= { MSR_P4_ALF_ESCR0, MSR_P4_ALF_ESCR1 },
368		.escr_emask	=
369			P4_ESCR_EMASK_BIT(P4_EVENT_RESOURCE_STALL, SBFULL),
370		.cntr		= { {12, 13, 16}, {14, 15, 17} },
371	},
372	[P4_EVENT_WC_BUFFER] = {
373		.opcode		= P4_OPCODE(P4_EVENT_WC_BUFFER),
374		.escr_msr	= { MSR_P4_DAC_ESCR0, MSR_P4_DAC_ESCR1 },
375		.escr_emask	=
376			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_EVICTS)		|
377			P4_ESCR_EMASK_BIT(P4_EVENT_WC_BUFFER, WCB_FULL_EVICTS),
378		.shared		= 1,
379		.cntr		= { {8, 9, -1}, {10, 11, -1} },
380	},
381	[P4_EVENT_B2B_CYCLES] = {
382		.opcode		= P4_OPCODE(P4_EVENT_B2B_CYCLES),
383		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
384		.escr_emask	= 0,
385		.cntr		= { {0, -1, -1}, {2, -1, -1} },
386	},
387	[P4_EVENT_BNR] = {
388		.opcode		= P4_OPCODE(P4_EVENT_BNR),
389		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
390		.escr_emask	= 0,
391		.cntr		= { {0, -1, -1}, {2, -1, -1} },
392	},
393	[P4_EVENT_SNOOP] = {
394		.opcode		= P4_OPCODE(P4_EVENT_SNOOP),
395		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
396		.escr_emask	= 0,
397		.cntr		= { {0, -1, -1}, {2, -1, -1} },
398	},
399	[P4_EVENT_RESPONSE] = {
400		.opcode		= P4_OPCODE(P4_EVENT_RESPONSE),
401		.escr_msr	= { MSR_P4_FSB_ESCR0, MSR_P4_FSB_ESCR1 },
402		.escr_emask	= 0,
403		.cntr		= { {0, -1, -1}, {2, -1, -1} },
404	},
405	[P4_EVENT_FRONT_END_EVENT] = {
406		.opcode		= P4_OPCODE(P4_EVENT_FRONT_END_EVENT),
407		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
408		.escr_emask	=
409			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, NBOGUS)		|
410			P4_ESCR_EMASK_BIT(P4_EVENT_FRONT_END_EVENT, BOGUS),
411		.cntr		= { {12, 13, 16}, {14, 15, 17} },
412	},
413	[P4_EVENT_EXECUTION_EVENT] = {
414		.opcode		= P4_OPCODE(P4_EVENT_EXECUTION_EVENT),
415		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
416		.escr_emask	=
417			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)		|
418			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)		|
419			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)		|
420			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)		|
421			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)		|
422			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)		|
423			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)		|
424			P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3),
425		.cntr		= { {12, 13, 16}, {14, 15, 17} },
426	},
427	[P4_EVENT_REPLAY_EVENT] = {
428		.opcode		= P4_OPCODE(P4_EVENT_REPLAY_EVENT),
429		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
430		.escr_emask	=
431			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, NBOGUS)		|
432			P4_ESCR_EMASK_BIT(P4_EVENT_REPLAY_EVENT, BOGUS),
433		.cntr		= { {12, 13, 16}, {14, 15, 17} },
434	},
435	[P4_EVENT_INSTR_RETIRED] = {
436		.opcode		= P4_OPCODE(P4_EVENT_INSTR_RETIRED),
437		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
438		.escr_emask	=
439			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
440			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSTAG)		|
441			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)		|
442			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSTAG),
443		.cntr		= { {12, 13, 16}, {14, 15, 17} },
444	},
445	[P4_EVENT_UOPS_RETIRED] = {
446		.opcode		= P4_OPCODE(P4_EVENT_UOPS_RETIRED),
447		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
448		.escr_emask	=
449			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, NBOGUS)		|
450			P4_ESCR_EMASK_BIT(P4_EVENT_UOPS_RETIRED, BOGUS),
451		.cntr		= { {12, 13, 16}, {14, 15, 17} },
452	},
453	[P4_EVENT_UOP_TYPE] = {
454		.opcode		= P4_OPCODE(P4_EVENT_UOP_TYPE),
455		.escr_msr	= { MSR_P4_RAT_ESCR0, MSR_P4_RAT_ESCR1 },
456		.escr_emask	=
457			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGLOADS)			|
458			P4_ESCR_EMASK_BIT(P4_EVENT_UOP_TYPE, TAGSTORES),
459		.cntr		= { {12, 13, 16}, {14, 15, 17} },
460	},
461	[P4_EVENT_BRANCH_RETIRED] = {
462		.opcode		= P4_OPCODE(P4_EVENT_BRANCH_RETIRED),
463		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
464		.escr_emask	=
465			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNP)		|
466			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMNM)		|
467			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTP)		|
468			P4_ESCR_EMASK_BIT(P4_EVENT_BRANCH_RETIRED, MMTM),
469		.cntr		= { {12, 13, 16}, {14, 15, 17} },
470	},
471	[P4_EVENT_MISPRED_BRANCH_RETIRED] = {
472		.opcode		= P4_OPCODE(P4_EVENT_MISPRED_BRANCH_RETIRED),
473		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
474		.escr_emask	=
475			P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS),
476		.cntr		= { {12, 13, 16}, {14, 15, 17} },
477	},
478	[P4_EVENT_X87_ASSIST] = {
479		.opcode		= P4_OPCODE(P4_EVENT_X87_ASSIST),
480		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
481		.escr_emask	=
482			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSU)			|
483			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, FPSO)			|
484			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAO)			|
485			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, POAU)			|
486			P4_ESCR_EMASK_BIT(P4_EVENT_X87_ASSIST, PREA),
487		.cntr		= { {12, 13, 16}, {14, 15, 17} },
488	},
489	[P4_EVENT_MACHINE_CLEAR] = {
490		.opcode		= P4_OPCODE(P4_EVENT_MACHINE_CLEAR),
491		.escr_msr	= { MSR_P4_CRU_ESCR2, MSR_P4_CRU_ESCR3 },
492		.escr_emask	=
493			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, CLEAR)		|
494			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, MOCLEAR)		|
495			P4_ESCR_EMASK_BIT(P4_EVENT_MACHINE_CLEAR, SMCLEAR),
496		.cntr		= { {12, 13, 16}, {14, 15, 17} },
497	},
498	[P4_EVENT_INSTR_COMPLETED] = {
499		.opcode		= P4_OPCODE(P4_EVENT_INSTR_COMPLETED),
500		.escr_msr	= { MSR_P4_CRU_ESCR0, MSR_P4_CRU_ESCR1 },
501		.escr_emask	=
502			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, NBOGUS)		|
503			P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_COMPLETED, BOGUS),
504		.cntr		= { {12, 13, 16}, {14, 15, 17} },
505	},
506};
507
508#define P4_GEN_CACHE_EVENT(event, bit, metric)				  \
509	p4_config_pack_escr(P4_ESCR_EVENT(event)			| \
510			    P4_ESCR_EMASK_BIT(event, bit))		| \
511	p4_config_pack_cccr(metric					| \
512			    P4_CCCR_ESEL(P4_OPCODE_ESEL(P4_OPCODE(event))))
513
514static __initconst const u64 p4_hw_cache_event_ids
515				[PERF_COUNT_HW_CACHE_MAX]
516				[PERF_COUNT_HW_CACHE_OP_MAX]
517				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
518{
519 [ C(L1D ) ] = {
520	[ C(OP_READ) ] = {
521		[ C(RESULT_ACCESS) ] = 0x0,
522		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
523						P4_PEBS_METRIC__1stl_cache_load_miss_retired),
524	},
525 },
526 [ C(LL  ) ] = {
527	[ C(OP_READ) ] = {
528		[ C(RESULT_ACCESS) ] = 0x0,
529		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
530						P4_PEBS_METRIC__2ndl_cache_load_miss_retired),
531	},
532},
533 [ C(DTLB) ] = {
534	[ C(OP_READ) ] = {
535		[ C(RESULT_ACCESS) ] = 0x0,
536		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
537						P4_PEBS_METRIC__dtlb_load_miss_retired),
538	},
539	[ C(OP_WRITE) ] = {
540		[ C(RESULT_ACCESS) ] = 0x0,
541		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_REPLAY_EVENT, NBOGUS,
542						P4_PEBS_METRIC__dtlb_store_miss_retired),
543	},
544 },
545 [ C(ITLB) ] = {
546	[ C(OP_READ) ] = {
547		[ C(RESULT_ACCESS) ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, HIT,
548						P4_PEBS_METRIC__none),
549		[ C(RESULT_MISS)   ] = P4_GEN_CACHE_EVENT(P4_EVENT_ITLB_REFERENCE, MISS,
550						P4_PEBS_METRIC__none),
551	},
552	[ C(OP_WRITE) ] = {
553		[ C(RESULT_ACCESS) ] = -1,
554		[ C(RESULT_MISS)   ] = -1,
555	},
556	[ C(OP_PREFETCH) ] = {
557		[ C(RESULT_ACCESS) ] = -1,
558		[ C(RESULT_MISS)   ] = -1,
559	},
560 },
561 [ C(NODE) ] = {
562	[ C(OP_READ) ] = {
563		[ C(RESULT_ACCESS) ] = -1,
564		[ C(RESULT_MISS)   ] = -1,
565	},
566	[ C(OP_WRITE) ] = {
567		[ C(RESULT_ACCESS) ] = -1,
568		[ C(RESULT_MISS)   ] = -1,
569	},
570	[ C(OP_PREFETCH) ] = {
571		[ C(RESULT_ACCESS) ] = -1,
572		[ C(RESULT_MISS)   ] = -1,
573	},
574 },
575};
576
577/*
578 * Because of Netburst being quite restricted in how many
579 * identical events may run simultaneously, we introduce event aliases,
580 * ie the different events which have the same functionality but
581 * utilize non-intersected resources (ESCR/CCCR/counter registers).
582 *
583 * This allow us to relax restrictions a bit and run two or more
584 * identical events together.
585 *
586 * Never set any custom internal bits such as P4_CONFIG_HT,
587 * P4_CONFIG_ALIASABLE or bits for P4_PEBS_METRIC, they are
588 * either up to date automatically or not applicable at all.
589 */
590static struct p4_event_alias {
591	u64 original;
592	u64 alternative;
593} p4_event_aliases[] = {
594	{
595		/*
596		 * Non-halted cycles can be substituted with non-sleeping cycles (see
597		 * Intel SDM Vol3b for details). We need this alias to be able
598		 * to run nmi-watchdog and 'perf top' (or any other user space tool
599		 * which is interested in running PERF_COUNT_HW_CPU_CYCLES)
600		 * simultaneously.
601		 */
602	.original	=
603		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
604				    P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING)),
605	.alternative	=
606		p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_EXECUTION_EVENT)		|
607				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS0)|
608				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS1)|
609				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS2)|
610				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, NBOGUS3)|
611				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS0)	|
612				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS1)	|
613				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS2)	|
614				    P4_ESCR_EMASK_BIT(P4_EVENT_EXECUTION_EVENT, BOGUS3))|
615		p4_config_pack_cccr(P4_CCCR_THRESHOLD(15) | P4_CCCR_COMPLEMENT		|
616				    P4_CCCR_COMPARE),
617	},
618};
619
620static u64 p4_get_alias_event(u64 config)
621{
622	u64 config_match;
623	int i;
624
625	/*
626	 * Only event with special mark is allowed,
627	 * we're to be sure it didn't come as malformed
628	 * RAW event.
629	 */
630	if (!(config & P4_CONFIG_ALIASABLE))
631		return 0;
632
633	config_match = config & P4_CONFIG_EVENT_ALIAS_MASK;
634
635	for (i = 0; i < ARRAY_SIZE(p4_event_aliases); i++) {
636		if (config_match == p4_event_aliases[i].original) {
637			config_match = p4_event_aliases[i].alternative;
638			break;
639		} else if (config_match == p4_event_aliases[i].alternative) {
640			config_match = p4_event_aliases[i].original;
641			break;
642		}
643	}
644
645	if (i >= ARRAY_SIZE(p4_event_aliases))
646		return 0;
647
648	return config_match | (config & P4_CONFIG_EVENT_ALIAS_IMMUTABLE_BITS);
649}
650
651static u64 p4_general_events[PERF_COUNT_HW_MAX] = {
652  /* non-halted CPU clocks */
653  [PERF_COUNT_HW_CPU_CYCLES] =
654	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_GLOBAL_POWER_EVENTS)		|
655		P4_ESCR_EMASK_BIT(P4_EVENT_GLOBAL_POWER_EVENTS, RUNNING))	|
656		P4_CONFIG_ALIASABLE,
657
658  /*
659   * retired instructions
660   * in a sake of simplicity we don't use the FSB tagging
661   */
662  [PERF_COUNT_HW_INSTRUCTIONS] =
663	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_INSTR_RETIRED)		|
664		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, NBOGUSNTAG)		|
665		P4_ESCR_EMASK_BIT(P4_EVENT_INSTR_RETIRED, BOGUSNTAG)),
666
667  /* cache hits */
668  [PERF_COUNT_HW_CACHE_REFERENCES] =
669	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
670		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITS)	|
671		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITE)	|
672		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_HITM)	|
673		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITS)	|
674		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITE)	|
675		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_HITM)),
676
677  /* cache misses */
678  [PERF_COUNT_HW_CACHE_MISSES] =
679	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_BSQ_CACHE_REFERENCE)		|
680		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_2ndL_MISS)	|
681		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, RD_3rdL_MISS)	|
682		P4_ESCR_EMASK_BIT(P4_EVENT_BSQ_CACHE_REFERENCE, WR_2ndL_MISS)),
683
684  /* branch instructions retired */
685  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] =
686	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_RETIRED_BRANCH_TYPE)		|
687		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CONDITIONAL)	|
688		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, CALL)		|
689		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, RETURN)		|
690		P4_ESCR_EMASK_BIT(P4_EVENT_RETIRED_BRANCH_TYPE, INDIRECT)),
691
692  /* mispredicted branches retired */
693  [PERF_COUNT_HW_BRANCH_MISSES]	=
694	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_MISPRED_BRANCH_RETIRED)	|
695		P4_ESCR_EMASK_BIT(P4_EVENT_MISPRED_BRANCH_RETIRED, NBOGUS)),
696
697  /* bus ready clocks (cpu is driving #DRDY_DRV\#DRDY_OWN):  */
698  [PERF_COUNT_HW_BUS_CYCLES] =
699	p4_config_pack_escr(P4_ESCR_EVENT(P4_EVENT_FSB_DATA_ACTIVITY)		|
700		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_DRV)		|
701		P4_ESCR_EMASK_BIT(P4_EVENT_FSB_DATA_ACTIVITY, DRDY_OWN))	|
702	p4_config_pack_cccr(P4_CCCR_EDGE | P4_CCCR_COMPARE),
703};
704
705static struct p4_event_bind *p4_config_get_bind(u64 config)
706{
707	unsigned int evnt = p4_config_unpack_event(config);
708	struct p4_event_bind *bind = NULL;
709
710	if (evnt < ARRAY_SIZE(p4_event_bind_map))
711		bind = &p4_event_bind_map[evnt];
712
713	return bind;
714}
715
716static u64 p4_pmu_event_map(int hw_event)
717{
718	struct p4_event_bind *bind;
719	unsigned int esel;
720	u64 config;
721
722	config = p4_general_events[hw_event];
723	bind = p4_config_get_bind(config);
724	esel = P4_OPCODE_ESEL(bind->opcode);
725	config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
726
727	return config;
728}
729
730/* check cpu model specifics */
731static bool p4_event_match_cpu_model(unsigned int event_idx)
732{
733	/* INSTR_COMPLETED event only exist for model 3, 4, 6 (Prescott) */
734	if (event_idx == P4_EVENT_INSTR_COMPLETED) {
735		if (boot_cpu_data.x86_model != 3 &&
736			boot_cpu_data.x86_model != 4 &&
737			boot_cpu_data.x86_model != 6)
738			return false;
739	}
740
741	/*
742	 * For info
743	 * - IQ_ESCR0, IQ_ESCR1 only for models 1 and 2
744	 */
745
746	return true;
747}
748
749static int p4_validate_raw_event(struct perf_event *event)
750{
751	unsigned int v, emask;
752
753	/* User data may have out-of-bound event index */
754	v = p4_config_unpack_event(event->attr.config);
755	if (v >= ARRAY_SIZE(p4_event_bind_map))
756		return -EINVAL;
757
758	/* It may be unsupported: */
759	if (!p4_event_match_cpu_model(v))
760		return -EINVAL;
761
762	/*
763	 * NOTE: P4_CCCR_THREAD_ANY has not the same meaning as
764	 * in Architectural Performance Monitoring, it means not
765	 * on _which_ logical cpu to count but rather _when_, ie it
766	 * depends on logical cpu state -- count event if one cpu active,
767	 * none, both or any, so we just allow user to pass any value
768	 * desired.
769	 *
770	 * In turn we always set Tx_OS/Tx_USR bits bound to logical
771	 * cpu without their propagation to another cpu
772	 */
773
774	/*
775	 * if an event is shared across the logical threads
776	 * the user needs special permissions to be able to use it
777	 */
778	if (p4_ht_active() && p4_event_bind_map[v].shared) {
779		v = perf_allow_cpu(&event->attr);
780		if (v)
781			return v;
782	}
783
784	/* ESCR EventMask bits may be invalid */
785	emask = p4_config_unpack_escr(event->attr.config) & P4_ESCR_EVENTMASK_MASK;
786	if (emask & ~p4_event_bind_map[v].escr_emask)
787		return -EINVAL;
788
789	/*
790	 * it may have some invalid PEBS bits
791	 */
792	if (p4_config_pebs_has(event->attr.config, P4_PEBS_CONFIG_ENABLE))
793		return -EINVAL;
794
795	v = p4_config_unpack_metric(event->attr.config);
796	if (v >= ARRAY_SIZE(p4_pebs_bind_map))
797		return -EINVAL;
798
799	return 0;
800}
801
802static int p4_hw_config(struct perf_event *event)
803{
804	int cpu = get_cpu();
805	int rc = 0;
806	u32 escr, cccr;
807
808	/*
809	 * the reason we use cpu that early is that: if we get scheduled
810	 * first time on the same cpu -- we will not need swap thread
811	 * specific flags in config (and will save some cpu cycles)
812	 */
813
814	cccr = p4_default_cccr_conf(cpu);
815	escr = p4_default_escr_conf(cpu, event->attr.exclude_kernel,
816					 event->attr.exclude_user);
817	event->hw.config = p4_config_pack_escr(escr) |
818			   p4_config_pack_cccr(cccr);
819
820	if (p4_ht_active() && p4_ht_thread(cpu))
821		event->hw.config = p4_set_ht_bit(event->hw.config);
822
823	if (event->attr.type == PERF_TYPE_RAW) {
824		struct p4_event_bind *bind;
825		unsigned int esel;
826		/*
827		 * Clear bits we reserve to be managed by kernel itself
828		 * and never allowed from a user space
829		 */
830		event->attr.config &= P4_CONFIG_MASK;
831
832		rc = p4_validate_raw_event(event);
833		if (rc)
834			goto out;
835
836		/*
837		 * Note that for RAW events we allow user to use P4_CCCR_RESERVED
838		 * bits since we keep additional info here (for cache events and etc)
839		 */
840		event->hw.config |= event->attr.config;
841		bind = p4_config_get_bind(event->attr.config);
842		if (!bind) {
843			rc = -EINVAL;
844			goto out;
845		}
846		esel = P4_OPCODE_ESEL(bind->opcode);
847		event->hw.config |= p4_config_pack_cccr(P4_CCCR_ESEL(esel));
848	}
849
850	rc = x86_setup_perfctr(event);
851out:
852	put_cpu();
853	return rc;
854}
855
856static inline int p4_pmu_clear_cccr_ovf(struct hw_perf_event *hwc)
857{
858	u64 v;
859
860	/* an official way for overflow indication */
861	rdmsrl(hwc->config_base, v);
862	if (v & P4_CCCR_OVF) {
863		wrmsrl(hwc->config_base, v & ~P4_CCCR_OVF);
864		return 1;
865	}
866
867	/*
868	 * In some circumstances the overflow might issue an NMI but did
869	 * not set P4_CCCR_OVF bit. Because a counter holds a negative value
870	 * we simply check for high bit being set, if it's cleared it means
871	 * the counter has reached zero value and continued counting before
872	 * real NMI signal was received:
873	 */
874	rdmsrl(hwc->event_base, v);
875	if (!(v & ARCH_P4_UNFLAGGED_BIT))
876		return 1;
877
878	return 0;
879}
880
881static void p4_pmu_disable_pebs(void)
882{
883	/*
884	 * FIXME
885	 *
886	 * It's still allowed that two threads setup same cache
887	 * events so we can't simply clear metrics until we knew
888	 * no one is depending on us, so we need kind of counter
889	 * for "ReplayEvent" users.
890	 *
891	 * What is more complex -- RAW events, if user (for some
892	 * reason) will pass some cache event metric with improper
893	 * event opcode -- it's fine from hardware point of view
894	 * but completely nonsense from "meaning" of such action.
895	 *
896	 * So at moment let leave metrics turned on forever -- it's
897	 * ok for now but need to be revisited!
898	 *
899	 * (void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE, 0);
900	 * (void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT, 0);
901	 */
902}
903
904static inline void p4_pmu_disable_event(struct perf_event *event)
905{
906	struct hw_perf_event *hwc = &event->hw;
907
908	/*
909	 * If event gets disabled while counter is in overflowed
910	 * state we need to clear P4_CCCR_OVF, otherwise interrupt get
911	 * asserted again and again
912	 */
913	(void)wrmsrl_safe(hwc->config_base,
914		p4_config_unpack_cccr(hwc->config) & ~P4_CCCR_ENABLE & ~P4_CCCR_OVF & ~P4_CCCR_RESERVED);
915}
916
917static void p4_pmu_disable_all(void)
918{
919	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
920	int idx;
921
922	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
923		struct perf_event *event = cpuc->events[idx];
924		if (!test_bit(idx, cpuc->active_mask))
925			continue;
926		p4_pmu_disable_event(event);
927	}
928
929	p4_pmu_disable_pebs();
930}
931
932/* configuration must be valid */
933static void p4_pmu_enable_pebs(u64 config)
934{
935	struct p4_pebs_bind *bind;
936	unsigned int idx;
937
938	BUILD_BUG_ON(P4_PEBS_METRIC__max > P4_PEBS_CONFIG_METRIC_MASK);
939
940	idx = p4_config_unpack_metric(config);
941	if (idx == P4_PEBS_METRIC__none)
942		return;
943
944	bind = &p4_pebs_bind_map[idx];
945
946	(void)wrmsrl_safe(MSR_IA32_PEBS_ENABLE,	(u64)bind->metric_pebs);
947	(void)wrmsrl_safe(MSR_P4_PEBS_MATRIX_VERT,	(u64)bind->metric_vert);
948}
949
950static void __p4_pmu_enable_event(struct perf_event *event)
951{
952	struct hw_perf_event *hwc = &event->hw;
953	int thread = p4_ht_config_thread(hwc->config);
954	u64 escr_conf = p4_config_unpack_escr(p4_clear_ht_bit(hwc->config));
955	unsigned int idx = p4_config_unpack_event(hwc->config);
956	struct p4_event_bind *bind;
957	u64 escr_addr, cccr;
958
959	bind = &p4_event_bind_map[idx];
960	escr_addr = bind->escr_msr[thread];
961
962	/*
963	 * - we dont support cascaded counters yet
964	 * - and counter 1 is broken (erratum)
965	 */
966	WARN_ON_ONCE(p4_is_event_cascaded(hwc->config));
967	WARN_ON_ONCE(hwc->idx == 1);
968
969	/* we need a real Event value */
970	escr_conf &= ~P4_ESCR_EVENT_MASK;
971	escr_conf |= P4_ESCR_EVENT(P4_OPCODE_EVNT(bind->opcode));
972
973	cccr = p4_config_unpack_cccr(hwc->config);
974
975	/*
976	 * it could be Cache event so we need to write metrics
977	 * into additional MSRs
978	 */
979	p4_pmu_enable_pebs(hwc->config);
980
981	(void)wrmsrl_safe(escr_addr, escr_conf);
982	(void)wrmsrl_safe(hwc->config_base,
983				(cccr & ~P4_CCCR_RESERVED) | P4_CCCR_ENABLE);
984}
985
986static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(X86_PMC_IDX_MAX)], p4_running);
987
988static void p4_pmu_enable_event(struct perf_event *event)
989{
990	int idx = event->hw.idx;
991
992	__set_bit(idx, per_cpu(p4_running, smp_processor_id()));
993	__p4_pmu_enable_event(event);
994}
995
996static void p4_pmu_enable_all(int added)
997{
998	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
999	int idx;
1000
1001	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1002		struct perf_event *event = cpuc->events[idx];
1003		if (!test_bit(idx, cpuc->active_mask))
1004			continue;
1005		__p4_pmu_enable_event(event);
1006	}
1007}
1008
1009static int p4_pmu_set_period(struct perf_event *event)
1010{
1011	struct hw_perf_event *hwc = &event->hw;
1012	s64 left = this_cpu_read(pmc_prev_left[hwc->idx]);
1013	int ret;
1014
1015	ret = x86_perf_event_set_period(event);
1016
1017	if (hwc->event_base) {
1018		/*
1019		 * This handles erratum N15 in intel doc 249199-029,
1020		 * the counter may not be updated correctly on write
1021		 * so we need a second write operation to do the trick
1022		 * (the official workaround didn't work)
1023		 *
1024		 * the former idea is taken from OProfile code
1025		 */
1026		wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1027	}
1028
1029	return ret;
1030}
1031
1032static int p4_pmu_handle_irq(struct pt_regs *regs)
1033{
1034	struct perf_sample_data data;
1035	struct cpu_hw_events *cpuc;
1036	struct perf_event *event;
1037	struct hw_perf_event *hwc;
1038	int idx, handled = 0;
1039	u64 val;
1040
1041	cpuc = this_cpu_ptr(&cpu_hw_events);
1042
1043	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1044		int overflow;
1045
1046		if (!test_bit(idx, cpuc->active_mask)) {
1047			/* catch in-flight IRQs */
1048			if (__test_and_clear_bit(idx, per_cpu(p4_running, smp_processor_id())))
1049				handled++;
1050			continue;
1051		}
1052
1053		event = cpuc->events[idx];
1054		hwc = &event->hw;
1055
1056		WARN_ON_ONCE(hwc->idx != idx);
1057
1058		/* it might be unflagged overflow */
1059		overflow = p4_pmu_clear_cccr_ovf(hwc);
1060
1061		val = x86_perf_event_update(event);
1062		if (!overflow && (val & (1ULL << (x86_pmu.cntval_bits - 1))))
1063			continue;
1064
1065		handled += overflow;
1066
1067		/* event overflow for sure */
1068		perf_sample_data_init(&data, 0, hwc->last_period);
1069
1070		if (!static_call(x86_pmu_set_period)(event))
1071			continue;
1072
1073
1074		if (perf_event_overflow(event, &data, regs))
1075			x86_pmu_stop(event, 0);
1076	}
1077
1078	if (handled)
1079		inc_irq_stat(apic_perf_irqs);
1080
1081	/*
1082	 * When dealing with the unmasking of the LVTPC on P4 perf hw, it has
1083	 * been observed that the OVF bit flag has to be cleared first _before_
1084	 * the LVTPC can be unmasked.
1085	 *
1086	 * The reason is the NMI line will continue to be asserted while the OVF
1087	 * bit is set.  This causes a second NMI to generate if the LVTPC is
1088	 * unmasked before the OVF bit is cleared, leading to unknown NMI
1089	 * messages.
1090	 */
1091	apic_write(APIC_LVTPC, APIC_DM_NMI);
1092
1093	return handled;
1094}
1095
1096/*
1097 * swap thread specific fields according to a thread
1098 * we are going to run on
1099 */
1100static void p4_pmu_swap_config_ts(struct hw_perf_event *hwc, int cpu)
1101{
1102	u32 escr, cccr;
1103
1104	/*
1105	 * we either lucky and continue on same cpu or no HT support
1106	 */
1107	if (!p4_should_swap_ts(hwc->config, cpu))
1108		return;
1109
1110	/*
1111	 * the event is migrated from an another logical
1112	 * cpu, so we need to swap thread specific flags
1113	 */
1114
1115	escr = p4_config_unpack_escr(hwc->config);
1116	cccr = p4_config_unpack_cccr(hwc->config);
1117
1118	if (p4_ht_thread(cpu)) {
1119		cccr &= ~P4_CCCR_OVF_PMI_T0;
1120		cccr |= P4_CCCR_OVF_PMI_T1;
1121		if (escr & P4_ESCR_T0_OS) {
1122			escr &= ~P4_ESCR_T0_OS;
1123			escr |= P4_ESCR_T1_OS;
1124		}
1125		if (escr & P4_ESCR_T0_USR) {
1126			escr &= ~P4_ESCR_T0_USR;
1127			escr |= P4_ESCR_T1_USR;
1128		}
1129		hwc->config  = p4_config_pack_escr(escr);
1130		hwc->config |= p4_config_pack_cccr(cccr);
1131		hwc->config |= P4_CONFIG_HT;
1132	} else {
1133		cccr &= ~P4_CCCR_OVF_PMI_T1;
1134		cccr |= P4_CCCR_OVF_PMI_T0;
1135		if (escr & P4_ESCR_T1_OS) {
1136			escr &= ~P4_ESCR_T1_OS;
1137			escr |= P4_ESCR_T0_OS;
1138		}
1139		if (escr & P4_ESCR_T1_USR) {
1140			escr &= ~P4_ESCR_T1_USR;
1141			escr |= P4_ESCR_T0_USR;
1142		}
1143		hwc->config  = p4_config_pack_escr(escr);
1144		hwc->config |= p4_config_pack_cccr(cccr);
1145		hwc->config &= ~P4_CONFIG_HT;
1146	}
1147}
1148
1149/*
1150 * ESCR address hashing is tricky, ESCRs are not sequential
1151 * in memory but all starts from MSR_P4_BSU_ESCR0 (0x03a0) and
1152 * the metric between any ESCRs is laid in range [0xa0,0xe1]
1153 *
1154 * so we make ~70% filled hashtable
1155 */
1156
1157#define P4_ESCR_MSR_BASE		0x000003a0
1158#define P4_ESCR_MSR_MAX			0x000003e1
1159#define P4_ESCR_MSR_TABLE_SIZE		(P4_ESCR_MSR_MAX - P4_ESCR_MSR_BASE + 1)
1160#define P4_ESCR_MSR_IDX(msr)		(msr - P4_ESCR_MSR_BASE)
1161#define P4_ESCR_MSR_TABLE_ENTRY(msr)	[P4_ESCR_MSR_IDX(msr)] = msr
1162
1163static const unsigned int p4_escr_table[P4_ESCR_MSR_TABLE_SIZE] = {
1164	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR0),
1165	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ALF_ESCR1),
1166	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR0),
1167	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BPU_ESCR1),
1168	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR0),
1169	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_BSU_ESCR1),
1170	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR0),
1171	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR1),
1172	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR2),
1173	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR3),
1174	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR4),
1175	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_CRU_ESCR5),
1176	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR0),
1177	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_DAC_ESCR1),
1178	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR0),
1179	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FIRM_ESCR1),
1180	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR0),
1181	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FLAME_ESCR1),
1182	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR0),
1183	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_FSB_ESCR1),
1184	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR0),
1185	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IQ_ESCR1),
1186	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR0),
1187	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IS_ESCR1),
1188	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR0),
1189	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_ITLB_ESCR1),
1190	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR0),
1191	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_IX_ESCR1),
1192	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR0),
1193	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MOB_ESCR1),
1194	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR0),
1195	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_MS_ESCR1),
1196	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR0),
1197	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_PMH_ESCR1),
1198	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR0),
1199	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_RAT_ESCR1),
1200	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR0),
1201	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SAAT_ESCR1),
1202	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR0),
1203	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_SSU_ESCR1),
1204	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR0),
1205	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TBPU_ESCR1),
1206	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR0),
1207	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_TC_ESCR1),
1208	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR0),
1209	P4_ESCR_MSR_TABLE_ENTRY(MSR_P4_U2L_ESCR1),
1210};
1211
1212static int p4_get_escr_idx(unsigned int addr)
1213{
1214	unsigned int idx = P4_ESCR_MSR_IDX(addr);
1215
1216	if (unlikely(idx >= P4_ESCR_MSR_TABLE_SIZE	||
1217			!p4_escr_table[idx]		||
1218			p4_escr_table[idx] != addr)) {
1219		WARN_ONCE(1, "P4 PMU: Wrong address passed: %x\n", addr);
1220		return -1;
1221	}
1222
1223	return idx;
1224}
1225
1226static int p4_next_cntr(int thread, unsigned long *used_mask,
1227			struct p4_event_bind *bind)
1228{
1229	int i, j;
1230
1231	for (i = 0; i < P4_CNTR_LIMIT; i++) {
1232		j = bind->cntr[thread][i];
1233		if (j != -1 && !test_bit(j, used_mask))
1234			return j;
1235	}
1236
1237	return -1;
1238}
1239
1240static int p4_pmu_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1241{
1242	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
1243	unsigned long escr_mask[BITS_TO_LONGS(P4_ESCR_MSR_TABLE_SIZE)];
1244	int cpu = smp_processor_id();
1245	struct hw_perf_event *hwc;
1246	struct p4_event_bind *bind;
1247	unsigned int i, thread, num;
1248	int cntr_idx, escr_idx;
1249	u64 config_alias;
1250	int pass;
1251
1252	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
1253	bitmap_zero(escr_mask, P4_ESCR_MSR_TABLE_SIZE);
1254
1255	for (i = 0, num = n; i < n; i++, num--) {
1256
1257		hwc = &cpuc->event_list[i]->hw;
1258		thread = p4_ht_thread(cpu);
1259		pass = 0;
1260
1261again:
1262		/*
1263		 * It's possible to hit a circular lock
1264		 * between original and alternative events
1265		 * if both are scheduled already.
1266		 */
1267		if (pass > 2)
1268			goto done;
1269
1270		bind = p4_config_get_bind(hwc->config);
1271		escr_idx = p4_get_escr_idx(bind->escr_msr[thread]);
1272		if (unlikely(escr_idx == -1))
1273			goto done;
1274
1275		if (hwc->idx != -1 && !p4_should_swap_ts(hwc->config, cpu)) {
1276			cntr_idx = hwc->idx;
1277			if (assign)
1278				assign[i] = hwc->idx;
1279			goto reserve;
1280		}
1281
1282		cntr_idx = p4_next_cntr(thread, used_mask, bind);
1283		if (cntr_idx == -1 || test_bit(escr_idx, escr_mask)) {
1284			/*
1285			 * Check whether an event alias is still available.
1286			 */
1287			config_alias = p4_get_alias_event(hwc->config);
1288			if (!config_alias)
1289				goto done;
1290			hwc->config = config_alias;
1291			pass++;
1292			goto again;
1293		}
1294		/*
1295		 * Perf does test runs to see if a whole group can be assigned
1296		 * together successfully.  There can be multiple rounds of this.
1297		 * Unfortunately, p4_pmu_swap_config_ts touches the hwc->config
1298		 * bits, such that the next round of group assignments will
1299		 * cause the above p4_should_swap_ts to pass instead of fail.
1300		 * This leads to counters exclusive to thread0 being used by
1301		 * thread1.
1302		 *
1303		 * Solve this with a cheap hack, reset the idx back to -1 to
1304		 * force a new lookup (p4_next_cntr) to get the right counter
1305		 * for the right thread.
1306		 *
1307		 * This probably doesn't comply with the general spirit of how
1308		 * perf wants to work, but P4 is special. :-(
1309		 */
1310		if (p4_should_swap_ts(hwc->config, cpu))
1311			hwc->idx = -1;
1312		p4_pmu_swap_config_ts(hwc, cpu);
1313		if (assign)
1314			assign[i] = cntr_idx;
1315reserve:
1316		set_bit(cntr_idx, used_mask);
1317		set_bit(escr_idx, escr_mask);
1318	}
1319
1320done:
1321	return num ? -EINVAL : 0;
1322}
1323
1324PMU_FORMAT_ATTR(cccr, "config:0-31" );
1325PMU_FORMAT_ATTR(escr, "config:32-62");
1326PMU_FORMAT_ATTR(ht,   "config:63"   );
1327
1328static struct attribute *intel_p4_formats_attr[] = {
1329	&format_attr_cccr.attr,
1330	&format_attr_escr.attr,
1331	&format_attr_ht.attr,
1332	NULL,
1333};
1334
1335static __initconst const struct x86_pmu p4_pmu = {
1336	.name			= "Netburst P4/Xeon",
1337	.handle_irq		= p4_pmu_handle_irq,
1338	.disable_all		= p4_pmu_disable_all,
1339	.enable_all		= p4_pmu_enable_all,
1340	.enable			= p4_pmu_enable_event,
1341	.disable		= p4_pmu_disable_event,
1342
1343	.set_period		= p4_pmu_set_period,
1344
1345	.eventsel		= MSR_P4_BPU_CCCR0,
1346	.perfctr		= MSR_P4_BPU_PERFCTR0,
1347	.event_map		= p4_pmu_event_map,
1348	.max_events		= ARRAY_SIZE(p4_general_events),
1349	.get_event_constraints	= x86_get_event_constraints,
1350	/*
1351	 * IF HT disabled we may need to use all
1352	 * ARCH_P4_MAX_CCCR counters simultaneously
1353	 * though leave it restricted at moment assuming
1354	 * HT is on
1355	 */
1356	.num_counters		= ARCH_P4_MAX_CCCR,
1357	.apic			= 1,
1358	.cntval_bits		= ARCH_P4_CNTRVAL_BITS,
1359	.cntval_mask		= ARCH_P4_CNTRVAL_MASK,
1360	.max_period		= (1ULL << (ARCH_P4_CNTRVAL_BITS - 1)) - 1,
1361	.hw_config		= p4_hw_config,
1362	.schedule_events	= p4_pmu_schedule_events,
1363
1364	.format_attrs		= intel_p4_formats_attr,
1365};
1366
1367__init int p4_pmu_init(void)
1368{
1369	unsigned int low, high;
1370	int i, reg;
1371
1372	/* If we get stripped -- indexing fails */
1373	BUILD_BUG_ON(ARCH_P4_MAX_CCCR > INTEL_PMC_MAX_GENERIC);
1374
1375	rdmsr(MSR_IA32_MISC_ENABLE, low, high);
1376	if (!(low & (1 << 7))) {
1377		pr_cont("unsupported Netburst CPU model %d ",
1378			boot_cpu_data.x86_model);
1379		return -ENODEV;
1380	}
1381
1382	memcpy(hw_cache_event_ids, p4_hw_cache_event_ids,
1383		sizeof(hw_cache_event_ids));
1384
1385	pr_cont("Netburst events, ");
1386
1387	x86_pmu = p4_pmu;
1388
1389	/*
1390	 * Even though the counters are configured to interrupt a particular
1391	 * logical processor when an overflow happens, testing has shown that
1392	 * on kdump kernels (which uses a single cpu), thread1's counter
1393	 * continues to run and will report an NMI on thread0.  Due to the
1394	 * overflow bug, this leads to a stream of unknown NMIs.
1395	 *
1396	 * Solve this by zero'ing out the registers to mimic a reset.
1397	 */
1398	for (i = 0; i < x86_pmu.num_counters; i++) {
1399		reg = x86_pmu_config_addr(i);
1400		wrmsrl_safe(reg, 0ULL);
1401	}
1402
1403	return 0;
1404}
1405