1/*
2 * Performance events x86 architecture code
3 *
4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 *  Copyright (C) 2009 Jaswinder Singh Rajput
7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 *  For licencing details see kernel-base/COPYING
13 */
14
15#include <linux/perf_event.h>
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
20#include <linux/export.h>
21#include <linux/init.h>
22#include <linux/kdebug.h>
23#include <linux/sched/mm.h>
24#include <linux/sched/clock.h>
25#include <linux/uaccess.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/bitops.h>
29#include <linux/device.h>
30#include <linux/nospec.h>
31#include <linux/static_call.h>
32
33#include <asm/apic.h>
34#include <asm/stacktrace.h>
35#include <asm/nmi.h>
36#include <asm/smp.h>
37#include <asm/alternative.h>
38#include <asm/mmu_context.h>
39#include <asm/tlbflush.h>
40#include <asm/timer.h>
41#include <asm/desc.h>
42#include <asm/ldt.h>
43#include <asm/unwind.h>
44
45#include "perf_event.h"
46
47struct x86_pmu x86_pmu __read_mostly;
48static struct pmu pmu;
49
50DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51	.enabled = 1,
52	.pmu = &pmu,
53};
54
55DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59/*
60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61 * from just a typename, as opposed to an actual function.
62 */
63DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
67DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
71DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
76DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
77DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
78
79DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
80DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
81DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
82
83DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
84DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
85DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
86
87DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
88DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
89
90DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
91DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
92
93DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
94
95/*
96 * This one is magic, it will get called even when PMU init fails (because
97 * there is no PMU), in which case it should simply return NULL.
98 */
99DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
100
101u64 __read_mostly hw_cache_event_ids
102				[PERF_COUNT_HW_CACHE_MAX]
103				[PERF_COUNT_HW_CACHE_OP_MAX]
104				[PERF_COUNT_HW_CACHE_RESULT_MAX];
105u64 __read_mostly hw_cache_extra_regs
106				[PERF_COUNT_HW_CACHE_MAX]
107				[PERF_COUNT_HW_CACHE_OP_MAX]
108				[PERF_COUNT_HW_CACHE_RESULT_MAX];
109
110/*
111 * Propagate event elapsed time into the generic event.
112 * Can only be executed on the CPU where the event is active.
113 * Returns the delta events processed.
114 */
115u64 x86_perf_event_update(struct perf_event *event)
116{
117	struct hw_perf_event *hwc = &event->hw;
118	int shift = 64 - x86_pmu.cntval_bits;
119	u64 prev_raw_count, new_raw_count;
120	u64 delta;
121
122	if (unlikely(!hwc->event_base))
123		return 0;
124
125	/*
126	 * Careful: an NMI might modify the previous event value.
127	 *
128	 * Our tactic to handle this is to first atomically read and
129	 * exchange a new raw count - then add that new-prev delta
130	 * count to the generic event atomically:
131	 */
132	prev_raw_count = local64_read(&hwc->prev_count);
133	do {
134		rdpmcl(hwc->event_base_rdpmc, new_raw_count);
135	} while (!local64_try_cmpxchg(&hwc->prev_count,
136				      &prev_raw_count, new_raw_count));
137
138	/*
139	 * Now we have the new raw value and have updated the prev
140	 * timestamp already. We can now calculate the elapsed delta
141	 * (event-)time and add that to the generic event.
142	 *
143	 * Careful, not all hw sign-extends above the physical width
144	 * of the count.
145	 */
146	delta = (new_raw_count << shift) - (prev_raw_count << shift);
147	delta >>= shift;
148
149	local64_add(delta, &event->count);
150	local64_sub(delta, &hwc->period_left);
151
152	return new_raw_count;
153}
154
155/*
156 * Find and validate any extra registers to set up.
157 */
158static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
159{
160	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
161	struct hw_perf_event_extra *reg;
162	struct extra_reg *er;
163
164	reg = &event->hw.extra_reg;
165
166	if (!extra_regs)
167		return 0;
168
169	for (er = extra_regs; er->msr; er++) {
170		if (er->event != (config & er->config_mask))
171			continue;
172		if (event->attr.config1 & ~er->valid_mask)
173			return -EINVAL;
174		/* Check if the extra msrs can be safely accessed*/
175		if (!er->extra_msr_access)
176			return -ENXIO;
177
178		reg->idx = er->idx;
179		reg->config = event->attr.config1;
180		reg->reg = er->msr;
181		break;
182	}
183	return 0;
184}
185
186static atomic_t active_events;
187static atomic_t pmc_refcount;
188static DEFINE_MUTEX(pmc_reserve_mutex);
189
190#ifdef CONFIG_X86_LOCAL_APIC
191
192static inline int get_possible_num_counters(void)
193{
194	int i, num_counters = x86_pmu.num_counters;
195
196	if (!is_hybrid())
197		return num_counters;
198
199	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
200		num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
201
202	return num_counters;
203}
204
205static bool reserve_pmc_hardware(void)
206{
207	int i, num_counters = get_possible_num_counters();
208
209	for (i = 0; i < num_counters; i++) {
210		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
211			goto perfctr_fail;
212	}
213
214	for (i = 0; i < num_counters; i++) {
215		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
216			goto eventsel_fail;
217	}
218
219	return true;
220
221eventsel_fail:
222	for (i--; i >= 0; i--)
223		release_evntsel_nmi(x86_pmu_config_addr(i));
224
225	i = num_counters;
226
227perfctr_fail:
228	for (i--; i >= 0; i--)
229		release_perfctr_nmi(x86_pmu_event_addr(i));
230
231	return false;
232}
233
234static void release_pmc_hardware(void)
235{
236	int i, num_counters = get_possible_num_counters();
237
238	for (i = 0; i < num_counters; i++) {
239		release_perfctr_nmi(x86_pmu_event_addr(i));
240		release_evntsel_nmi(x86_pmu_config_addr(i));
241	}
242}
243
244#else
245
246static bool reserve_pmc_hardware(void) { return true; }
247static void release_pmc_hardware(void) {}
248
249#endif
250
251bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
252{
253	u64 val, val_fail = -1, val_new= ~0;
254	int i, reg, reg_fail = -1, ret = 0;
255	int bios_fail = 0;
256	int reg_safe = -1;
257
258	/*
259	 * Check to see if the BIOS enabled any of the counters, if so
260	 * complain and bail.
261	 */
262	for (i = 0; i < num_counters; i++) {
263		reg = x86_pmu_config_addr(i);
264		ret = rdmsrl_safe(reg, &val);
265		if (ret)
266			goto msr_fail;
267		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
268			bios_fail = 1;
269			val_fail = val;
270			reg_fail = reg;
271		} else {
272			reg_safe = i;
273		}
274	}
275
276	if (num_counters_fixed) {
277		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
278		ret = rdmsrl_safe(reg, &val);
279		if (ret)
280			goto msr_fail;
281		for (i = 0; i < num_counters_fixed; i++) {
282			if (fixed_counter_disabled(i, pmu))
283				continue;
284			if (val & (0x03ULL << i*4)) {
285				bios_fail = 1;
286				val_fail = val;
287				reg_fail = reg;
288			}
289		}
290	}
291
292	/*
293	 * If all the counters are enabled, the below test will always
294	 * fail.  The tools will also become useless in this scenario.
295	 * Just fail and disable the hardware counters.
296	 */
297
298	if (reg_safe == -1) {
299		reg = reg_safe;
300		goto msr_fail;
301	}
302
303	/*
304	 * Read the current value, change it and read it back to see if it
305	 * matches, this is needed to detect certain hardware emulators
306	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
307	 */
308	reg = x86_pmu_event_addr(reg_safe);
309	if (rdmsrl_safe(reg, &val))
310		goto msr_fail;
311	val ^= 0xffffUL;
312	ret = wrmsrl_safe(reg, val);
313	ret |= rdmsrl_safe(reg, &val_new);
314	if (ret || val != val_new)
315		goto msr_fail;
316
317	/*
318	 * We still allow the PMU driver to operate:
319	 */
320	if (bios_fail) {
321		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
322		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
323			      reg_fail, val_fail);
324	}
325
326	return true;
327
328msr_fail:
329	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
330		pr_cont("PMU not available due to virtualization, using software events only.\n");
331	} else {
332		pr_cont("Broken PMU hardware detected, using software events only.\n");
333		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
334		       reg, val_new);
335	}
336
337	return false;
338}
339
340static void hw_perf_event_destroy(struct perf_event *event)
341{
342	x86_release_hardware();
343	atomic_dec(&active_events);
344}
345
346void hw_perf_lbr_event_destroy(struct perf_event *event)
347{
348	hw_perf_event_destroy(event);
349
350	/* undo the lbr/bts event accounting */
351	x86_del_exclusive(x86_lbr_exclusive_lbr);
352}
353
354static inline int x86_pmu_initialized(void)
355{
356	return x86_pmu.handle_irq != NULL;
357}
358
359static inline int
360set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
361{
362	struct perf_event_attr *attr = &event->attr;
363	unsigned int cache_type, cache_op, cache_result;
364	u64 config, val;
365
366	config = attr->config;
367
368	cache_type = (config >> 0) & 0xff;
369	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
370		return -EINVAL;
371	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
372
373	cache_op = (config >>  8) & 0xff;
374	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
375		return -EINVAL;
376	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
377
378	cache_result = (config >> 16) & 0xff;
379	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
380		return -EINVAL;
381	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
382
383	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
384	if (val == 0)
385		return -ENOENT;
386
387	if (val == -1)
388		return -EINVAL;
389
390	hwc->config |= val;
391	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
392	return x86_pmu_extra_regs(val, event);
393}
394
395int x86_reserve_hardware(void)
396{
397	int err = 0;
398
399	if (!atomic_inc_not_zero(&pmc_refcount)) {
400		mutex_lock(&pmc_reserve_mutex);
401		if (atomic_read(&pmc_refcount) == 0) {
402			if (!reserve_pmc_hardware()) {
403				err = -EBUSY;
404			} else {
405				reserve_ds_buffers();
406				reserve_lbr_buffers();
407			}
408		}
409		if (!err)
410			atomic_inc(&pmc_refcount);
411		mutex_unlock(&pmc_reserve_mutex);
412	}
413
414	return err;
415}
416
417void x86_release_hardware(void)
418{
419	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
420		release_pmc_hardware();
421		release_ds_buffers();
422		release_lbr_buffers();
423		mutex_unlock(&pmc_reserve_mutex);
424	}
425}
426
427/*
428 * Check if we can create event of a certain type (that no conflicting events
429 * are present).
430 */
431int x86_add_exclusive(unsigned int what)
432{
433	int i;
434
435	/*
436	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
437	 * LBR and BTS are still mutually exclusive.
438	 */
439	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
440		goto out;
441
442	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
443		mutex_lock(&pmc_reserve_mutex);
444		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
445			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
446				goto fail_unlock;
447		}
448		atomic_inc(&x86_pmu.lbr_exclusive[what]);
449		mutex_unlock(&pmc_reserve_mutex);
450	}
451
452out:
453	atomic_inc(&active_events);
454	return 0;
455
456fail_unlock:
457	mutex_unlock(&pmc_reserve_mutex);
458	return -EBUSY;
459}
460
461void x86_del_exclusive(unsigned int what)
462{
463	atomic_dec(&active_events);
464
465	/*
466	 * See the comment in x86_add_exclusive().
467	 */
468	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
469		return;
470
471	atomic_dec(&x86_pmu.lbr_exclusive[what]);
472}
473
474int x86_setup_perfctr(struct perf_event *event)
475{
476	struct perf_event_attr *attr = &event->attr;
477	struct hw_perf_event *hwc = &event->hw;
478	u64 config;
479
480	if (!is_sampling_event(event)) {
481		hwc->sample_period = x86_pmu.max_period;
482		hwc->last_period = hwc->sample_period;
483		local64_set(&hwc->period_left, hwc->sample_period);
484	}
485
486	if (attr->type == event->pmu->type)
487		return x86_pmu_extra_regs(event->attr.config, event);
488
489	if (attr->type == PERF_TYPE_HW_CACHE)
490		return set_ext_hw_attr(hwc, event);
491
492	if (attr->config >= x86_pmu.max_events)
493		return -EINVAL;
494
495	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
496
497	/*
498	 * The generic map:
499	 */
500	config = x86_pmu.event_map(attr->config);
501
502	if (config == 0)
503		return -ENOENT;
504
505	if (config == -1LL)
506		return -EINVAL;
507
508	hwc->config |= config;
509
510	return 0;
511}
512
513/*
514 * check that branch_sample_type is compatible with
515 * settings needed for precise_ip > 1 which implies
516 * using the LBR to capture ALL taken branches at the
517 * priv levels of the measurement
518 */
519static inline int precise_br_compat(struct perf_event *event)
520{
521	u64 m = event->attr.branch_sample_type;
522	u64 b = 0;
523
524	/* must capture all branches */
525	if (!(m & PERF_SAMPLE_BRANCH_ANY))
526		return 0;
527
528	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
529
530	if (!event->attr.exclude_user)
531		b |= PERF_SAMPLE_BRANCH_USER;
532
533	if (!event->attr.exclude_kernel)
534		b |= PERF_SAMPLE_BRANCH_KERNEL;
535
536	/*
537	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
538	 */
539
540	return m == b;
541}
542
543int x86_pmu_max_precise(void)
544{
545	int precise = 0;
546
547	/* Support for constant skid */
548	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
549		precise++;
550
551		/* Support for IP fixup */
552		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
553			precise++;
554
555		if (x86_pmu.pebs_prec_dist)
556			precise++;
557	}
558	return precise;
559}
560
561int x86_pmu_hw_config(struct perf_event *event)
562{
563	if (event->attr.precise_ip) {
564		int precise = x86_pmu_max_precise();
565
566		if (event->attr.precise_ip > precise)
567			return -EOPNOTSUPP;
568
569		/* There's no sense in having PEBS for non sampling events: */
570		if (!is_sampling_event(event))
571			return -EINVAL;
572	}
573	/*
574	 * check that PEBS LBR correction does not conflict with
575	 * whatever the user is asking with attr->branch_sample_type
576	 */
577	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
578		u64 *br_type = &event->attr.branch_sample_type;
579
580		if (has_branch_stack(event)) {
581			if (!precise_br_compat(event))
582				return -EOPNOTSUPP;
583
584			/* branch_sample_type is compatible */
585
586		} else {
587			/*
588			 * user did not specify  branch_sample_type
589			 *
590			 * For PEBS fixups, we capture all
591			 * the branches at the priv level of the
592			 * event.
593			 */
594			*br_type = PERF_SAMPLE_BRANCH_ANY;
595
596			if (!event->attr.exclude_user)
597				*br_type |= PERF_SAMPLE_BRANCH_USER;
598
599			if (!event->attr.exclude_kernel)
600				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
601		}
602	}
603
604	if (branch_sample_call_stack(event))
605		event->attach_state |= PERF_ATTACH_TASK_DATA;
606
607	/*
608	 * Generate PMC IRQs:
609	 * (keep 'enabled' bit clear for now)
610	 */
611	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
612
613	/*
614	 * Count user and OS events unless requested not to
615	 */
616	if (!event->attr.exclude_user)
617		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
618	if (!event->attr.exclude_kernel)
619		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
620
621	if (event->attr.type == event->pmu->type)
622		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
623
624	if (event->attr.sample_period && x86_pmu.limit_period) {
625		s64 left = event->attr.sample_period;
626		x86_pmu.limit_period(event, &left);
627		if (left > event->attr.sample_period)
628			return -EINVAL;
629	}
630
631	/* sample_regs_user never support XMM registers */
632	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
633		return -EINVAL;
634	/*
635	 * Besides the general purpose registers, XMM registers may
636	 * be collected in PEBS on some platforms, e.g. Icelake
637	 */
638	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
639		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
640			return -EINVAL;
641
642		if (!event->attr.precise_ip)
643			return -EINVAL;
644	}
645
646	return x86_setup_perfctr(event);
647}
648
649/*
650 * Setup the hardware configuration for a given attr_type
651 */
652static int __x86_pmu_event_init(struct perf_event *event)
653{
654	int err;
655
656	if (!x86_pmu_initialized())
657		return -ENODEV;
658
659	err = x86_reserve_hardware();
660	if (err)
661		return err;
662
663	atomic_inc(&active_events);
664	event->destroy = hw_perf_event_destroy;
665
666	event->hw.idx = -1;
667	event->hw.last_cpu = -1;
668	event->hw.last_tag = ~0ULL;
669
670	/* mark unused */
671	event->hw.extra_reg.idx = EXTRA_REG_NONE;
672	event->hw.branch_reg.idx = EXTRA_REG_NONE;
673
674	return x86_pmu.hw_config(event);
675}
676
677void x86_pmu_disable_all(void)
678{
679	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
680	int idx;
681
682	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
683		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
684		u64 val;
685
686		if (!test_bit(idx, cpuc->active_mask))
687			continue;
688		rdmsrl(x86_pmu_config_addr(idx), val);
689		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
690			continue;
691		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
692		wrmsrl(x86_pmu_config_addr(idx), val);
693		if (is_counter_pair(hwc))
694			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
695	}
696}
697
698struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
699{
700	return static_call(x86_pmu_guest_get_msrs)(nr, data);
701}
702EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
703
704/*
705 * There may be PMI landing after enabled=0. The PMI hitting could be before or
706 * after disable_all.
707 *
708 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
709 * It will not be re-enabled in the NMI handler again, because enabled=0. After
710 * handling the NMI, disable_all will be called, which will not change the
711 * state either. If PMI hits after disable_all, the PMU is already disabled
712 * before entering NMI handler. The NMI handler will not change the state
713 * either.
714 *
715 * So either situation is harmless.
716 */
717static void x86_pmu_disable(struct pmu *pmu)
718{
719	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
720
721	if (!x86_pmu_initialized())
722		return;
723
724	if (!cpuc->enabled)
725		return;
726
727	cpuc->n_added = 0;
728	cpuc->enabled = 0;
729	barrier();
730
731	static_call(x86_pmu_disable_all)();
732}
733
734void x86_pmu_enable_all(int added)
735{
736	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
737	int idx;
738
739	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
740		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
741
742		if (!test_bit(idx, cpuc->active_mask))
743			continue;
744
745		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
746	}
747}
748
749static inline int is_x86_event(struct perf_event *event)
750{
751	int i;
752
753	if (!is_hybrid())
754		return event->pmu == &pmu;
755
756	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
757		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
758			return true;
759	}
760
761	return false;
762}
763
764struct pmu *x86_get_pmu(unsigned int cpu)
765{
766	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
767
768	/*
769	 * All CPUs of the hybrid type have been offline.
770	 * The x86_get_pmu() should not be invoked.
771	 */
772	if (WARN_ON_ONCE(!cpuc->pmu))
773		return &pmu;
774
775	return cpuc->pmu;
776}
777/*
778 * Event scheduler state:
779 *
780 * Assign events iterating over all events and counters, beginning
781 * with events with least weights first. Keep the current iterator
782 * state in struct sched_state.
783 */
784struct sched_state {
785	int	weight;
786	int	event;		/* event index */
787	int	counter;	/* counter index */
788	int	unassigned;	/* number of events to be assigned left */
789	int	nr_gp;		/* number of GP counters used */
790	u64	used;
791};
792
793/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
794#define	SCHED_STATES_MAX	2
795
796struct perf_sched {
797	int			max_weight;
798	int			max_events;
799	int			max_gp;
800	int			saved_states;
801	struct event_constraint	**constraints;
802	struct sched_state	state;
803	struct sched_state	saved[SCHED_STATES_MAX];
804};
805
806/*
807 * Initialize iterator that runs through all events and counters.
808 */
809static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
810			    int num, int wmin, int wmax, int gpmax)
811{
812	int idx;
813
814	memset(sched, 0, sizeof(*sched));
815	sched->max_events	= num;
816	sched->max_weight	= wmax;
817	sched->max_gp		= gpmax;
818	sched->constraints	= constraints;
819
820	for (idx = 0; idx < num; idx++) {
821		if (constraints[idx]->weight == wmin)
822			break;
823	}
824
825	sched->state.event	= idx;		/* start with min weight */
826	sched->state.weight	= wmin;
827	sched->state.unassigned	= num;
828}
829
830static void perf_sched_save_state(struct perf_sched *sched)
831{
832	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
833		return;
834
835	sched->saved[sched->saved_states] = sched->state;
836	sched->saved_states++;
837}
838
839static bool perf_sched_restore_state(struct perf_sched *sched)
840{
841	if (!sched->saved_states)
842		return false;
843
844	sched->saved_states--;
845	sched->state = sched->saved[sched->saved_states];
846
847	/* this assignment didn't work out */
848	/* XXX broken vs EVENT_PAIR */
849	sched->state.used &= ~BIT_ULL(sched->state.counter);
850
851	/* try the next one */
852	sched->state.counter++;
853
854	return true;
855}
856
857/*
858 * Select a counter for the current event to schedule. Return true on
859 * success.
860 */
861static bool __perf_sched_find_counter(struct perf_sched *sched)
862{
863	struct event_constraint *c;
864	int idx;
865
866	if (!sched->state.unassigned)
867		return false;
868
869	if (sched->state.event >= sched->max_events)
870		return false;
871
872	c = sched->constraints[sched->state.event];
873	/* Prefer fixed purpose counters */
874	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
875		idx = INTEL_PMC_IDX_FIXED;
876		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
877			u64 mask = BIT_ULL(idx);
878
879			if (sched->state.used & mask)
880				continue;
881
882			sched->state.used |= mask;
883			goto done;
884		}
885	}
886
887	/* Grab the first unused counter starting with idx */
888	idx = sched->state.counter;
889	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
890		u64 mask = BIT_ULL(idx);
891
892		if (c->flags & PERF_X86_EVENT_PAIR)
893			mask |= mask << 1;
894
895		if (sched->state.used & mask)
896			continue;
897
898		if (sched->state.nr_gp++ >= sched->max_gp)
899			return false;
900
901		sched->state.used |= mask;
902		goto done;
903	}
904
905	return false;
906
907done:
908	sched->state.counter = idx;
909
910	if (c->overlap)
911		perf_sched_save_state(sched);
912
913	return true;
914}
915
916static bool perf_sched_find_counter(struct perf_sched *sched)
917{
918	while (!__perf_sched_find_counter(sched)) {
919		if (!perf_sched_restore_state(sched))
920			return false;
921	}
922
923	return true;
924}
925
926/*
927 * Go through all unassigned events and find the next one to schedule.
928 * Take events with the least weight first. Return true on success.
929 */
930static bool perf_sched_next_event(struct perf_sched *sched)
931{
932	struct event_constraint *c;
933
934	if (!sched->state.unassigned || !--sched->state.unassigned)
935		return false;
936
937	do {
938		/* next event */
939		sched->state.event++;
940		if (sched->state.event >= sched->max_events) {
941			/* next weight */
942			sched->state.event = 0;
943			sched->state.weight++;
944			if (sched->state.weight > sched->max_weight)
945				return false;
946		}
947		c = sched->constraints[sched->state.event];
948	} while (c->weight != sched->state.weight);
949
950	sched->state.counter = 0;	/* start with first counter */
951
952	return true;
953}
954
955/*
956 * Assign a counter for each event.
957 */
958int perf_assign_events(struct event_constraint **constraints, int n,
959			int wmin, int wmax, int gpmax, int *assign)
960{
961	struct perf_sched sched;
962
963	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
964
965	do {
966		if (!perf_sched_find_counter(&sched))
967			break;	/* failed */
968		if (assign)
969			assign[sched.state.event] = sched.state.counter;
970	} while (perf_sched_next_event(&sched));
971
972	return sched.state.unassigned;
973}
974EXPORT_SYMBOL_GPL(perf_assign_events);
975
976int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
977{
978	int num_counters = hybrid(cpuc->pmu, num_counters);
979	struct event_constraint *c;
980	struct perf_event *e;
981	int n0, i, wmin, wmax, unsched = 0;
982	struct hw_perf_event *hwc;
983	u64 used_mask = 0;
984
985	/*
986	 * Compute the number of events already present; see x86_pmu_add(),
987	 * validate_group() and x86_pmu_commit_txn(). For the former two
988	 * cpuc->n_events hasn't been updated yet, while for the latter
989	 * cpuc->n_txn contains the number of events added in the current
990	 * transaction.
991	 */
992	n0 = cpuc->n_events;
993	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
994		n0 -= cpuc->n_txn;
995
996	static_call_cond(x86_pmu_start_scheduling)(cpuc);
997
998	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
999		c = cpuc->event_constraint[i];
1000
1001		/*
1002		 * Previously scheduled events should have a cached constraint,
1003		 * while new events should not have one.
1004		 */
1005		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1006
1007		/*
1008		 * Request constraints for new events; or for those events that
1009		 * have a dynamic constraint -- for those the constraint can
1010		 * change due to external factors (sibling state, allow_tfa).
1011		 */
1012		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1013			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1014			cpuc->event_constraint[i] = c;
1015		}
1016
1017		wmin = min(wmin, c->weight);
1018		wmax = max(wmax, c->weight);
1019	}
1020
1021	/*
1022	 * fastpath, try to reuse previous register
1023	 */
1024	for (i = 0; i < n; i++) {
1025		u64 mask;
1026
1027		hwc = &cpuc->event_list[i]->hw;
1028		c = cpuc->event_constraint[i];
1029
1030		/* never assigned */
1031		if (hwc->idx == -1)
1032			break;
1033
1034		/* constraint still honored */
1035		if (!test_bit(hwc->idx, c->idxmsk))
1036			break;
1037
1038		mask = BIT_ULL(hwc->idx);
1039		if (is_counter_pair(hwc))
1040			mask |= mask << 1;
1041
1042		/* not already used */
1043		if (used_mask & mask)
1044			break;
1045
1046		used_mask |= mask;
1047
1048		if (assign)
1049			assign[i] = hwc->idx;
1050	}
1051
1052	/* slow path */
1053	if (i != n) {
1054		int gpmax = num_counters;
1055
1056		/*
1057		 * Do not allow scheduling of more than half the available
1058		 * generic counters.
1059		 *
1060		 * This helps avoid counter starvation of sibling thread by
1061		 * ensuring at most half the counters cannot be in exclusive
1062		 * mode. There is no designated counters for the limits. Any
1063		 * N/2 counters can be used. This helps with events with
1064		 * specific counter constraints.
1065		 */
1066		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1067		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1068			gpmax /= 2;
1069
1070		/*
1071		 * Reduce the amount of available counters to allow fitting
1072		 * the extra Merge events needed by large increment events.
1073		 */
1074		if (x86_pmu.flags & PMU_FL_PAIR) {
1075			gpmax = num_counters - cpuc->n_pair;
1076			WARN_ON(gpmax <= 0);
1077		}
1078
1079		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1080					     wmax, gpmax, assign);
1081	}
1082
1083	/*
1084	 * In case of success (unsched = 0), mark events as committed,
1085	 * so we do not put_constraint() in case new events are added
1086	 * and fail to be scheduled
1087	 *
1088	 * We invoke the lower level commit callback to lock the resource
1089	 *
1090	 * We do not need to do all of this in case we are called to
1091	 * validate an event group (assign == NULL)
1092	 */
1093	if (!unsched && assign) {
1094		for (i = 0; i < n; i++)
1095			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1096	} else {
1097		for (i = n0; i < n; i++) {
1098			e = cpuc->event_list[i];
1099
1100			/*
1101			 * release events that failed scheduling
1102			 */
1103			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1104
1105			cpuc->event_constraint[i] = NULL;
1106		}
1107	}
1108
1109	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1110
1111	return unsched ? -EINVAL : 0;
1112}
1113
1114static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1115			       struct perf_event *event)
1116{
1117	if (is_metric_event(event)) {
1118		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1119			return -EINVAL;
1120		cpuc->n_metric++;
1121		cpuc->n_txn_metric++;
1122	}
1123
1124	return 0;
1125}
1126
1127static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1128				struct perf_event *event)
1129{
1130	if (is_metric_event(event))
1131		cpuc->n_metric--;
1132}
1133
1134static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1135			 int max_count, int n)
1136{
1137	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1138
1139	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1140		return -EINVAL;
1141
1142	if (n >= max_count + cpuc->n_metric)
1143		return -EINVAL;
1144
1145	cpuc->event_list[n] = event;
1146	if (is_counter_pair(&event->hw)) {
1147		cpuc->n_pair++;
1148		cpuc->n_txn_pair++;
1149	}
1150
1151	return 0;
1152}
1153
1154/*
1155 * dogrp: true if must collect siblings events (group)
1156 * returns total number of events and error code
1157 */
1158static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1159{
1160	int num_counters = hybrid(cpuc->pmu, num_counters);
1161	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1162	struct perf_event *event;
1163	int n, max_count;
1164
1165	max_count = num_counters + num_counters_fixed;
1166
1167	/* current number of events already accepted */
1168	n = cpuc->n_events;
1169	if (!cpuc->n_events)
1170		cpuc->pebs_output = 0;
1171
1172	if (!cpuc->is_fake && leader->attr.precise_ip) {
1173		/*
1174		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1175		 * away, the group was broken down and this singleton event
1176		 * can't schedule any more.
1177		 */
1178		if (is_pebs_pt(leader) && !leader->aux_event)
1179			return -EINVAL;
1180
1181		/*
1182		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1183		 */
1184		if (cpuc->pebs_output &&
1185		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1186			return -EINVAL;
1187
1188		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1189	}
1190
1191	if (is_x86_event(leader)) {
1192		if (collect_event(cpuc, leader, max_count, n))
1193			return -EINVAL;
1194		n++;
1195	}
1196
1197	if (!dogrp)
1198		return n;
1199
1200	for_each_sibling_event(event, leader) {
1201		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1202			continue;
1203
1204		if (collect_event(cpuc, event, max_count, n))
1205			return -EINVAL;
1206
1207		n++;
1208	}
1209	return n;
1210}
1211
1212static inline void x86_assign_hw_event(struct perf_event *event,
1213				struct cpu_hw_events *cpuc, int i)
1214{
1215	struct hw_perf_event *hwc = &event->hw;
1216	int idx;
1217
1218	idx = hwc->idx = cpuc->assign[i];
1219	hwc->last_cpu = smp_processor_id();
1220	hwc->last_tag = ++cpuc->tags[i];
1221
1222	static_call_cond(x86_pmu_assign)(event, idx);
1223
1224	switch (hwc->idx) {
1225	case INTEL_PMC_IDX_FIXED_BTS:
1226	case INTEL_PMC_IDX_FIXED_VLBR:
1227		hwc->config_base = 0;
1228		hwc->event_base	= 0;
1229		break;
1230
1231	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1232		/* All the metric events are mapped onto the fixed counter 3. */
1233		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1234		fallthrough;
1235	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1236		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1237		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1238				(idx - INTEL_PMC_IDX_FIXED);
1239		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1240					INTEL_PMC_FIXED_RDPMC_BASE;
1241		break;
1242
1243	default:
1244		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1245		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1246		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1247		break;
1248	}
1249}
1250
1251/**
1252 * x86_perf_rdpmc_index - Return PMC counter used for event
1253 * @event: the perf_event to which the PMC counter was assigned
1254 *
1255 * The counter assigned to this performance event may change if interrupts
1256 * are enabled. This counter should thus never be used while interrupts are
1257 * enabled. Before this function is used to obtain the assigned counter the
1258 * event should be checked for validity using, for example,
1259 * perf_event_read_local(), within the same interrupt disabled section in
1260 * which this counter is planned to be used.
1261 *
1262 * Return: The index of the performance monitoring counter assigned to
1263 * @perf_event.
1264 */
1265int x86_perf_rdpmc_index(struct perf_event *event)
1266{
1267	lockdep_assert_irqs_disabled();
1268
1269	return event->hw.event_base_rdpmc;
1270}
1271
1272static inline int match_prev_assignment(struct hw_perf_event *hwc,
1273					struct cpu_hw_events *cpuc,
1274					int i)
1275{
1276	return hwc->idx == cpuc->assign[i] &&
1277		hwc->last_cpu == smp_processor_id() &&
1278		hwc->last_tag == cpuc->tags[i];
1279}
1280
1281static void x86_pmu_start(struct perf_event *event, int flags);
1282
1283static void x86_pmu_enable(struct pmu *pmu)
1284{
1285	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1286	struct perf_event *event;
1287	struct hw_perf_event *hwc;
1288	int i, added = cpuc->n_added;
1289
1290	if (!x86_pmu_initialized())
1291		return;
1292
1293	if (cpuc->enabled)
1294		return;
1295
1296	if (cpuc->n_added) {
1297		int n_running = cpuc->n_events - cpuc->n_added;
1298		/*
1299		 * apply assignment obtained either from
1300		 * hw_perf_group_sched_in() or x86_pmu_enable()
1301		 *
1302		 * step1: save events moving to new counters
1303		 */
1304		for (i = 0; i < n_running; i++) {
1305			event = cpuc->event_list[i];
1306			hwc = &event->hw;
1307
1308			/*
1309			 * we can avoid reprogramming counter if:
1310			 * - assigned same counter as last time
1311			 * - running on same CPU as last time
1312			 * - no other event has used the counter since
1313			 */
1314			if (hwc->idx == -1 ||
1315			    match_prev_assignment(hwc, cpuc, i))
1316				continue;
1317
1318			/*
1319			 * Ensure we don't accidentally enable a stopped
1320			 * counter simply because we rescheduled.
1321			 */
1322			if (hwc->state & PERF_HES_STOPPED)
1323				hwc->state |= PERF_HES_ARCH;
1324
1325			x86_pmu_stop(event, PERF_EF_UPDATE);
1326		}
1327
1328		/*
1329		 * step2: reprogram moved events into new counters
1330		 */
1331		for (i = 0; i < cpuc->n_events; i++) {
1332			event = cpuc->event_list[i];
1333			hwc = &event->hw;
1334
1335			if (!match_prev_assignment(hwc, cpuc, i))
1336				x86_assign_hw_event(event, cpuc, i);
1337			else if (i < n_running)
1338				continue;
1339
1340			if (hwc->state & PERF_HES_ARCH)
1341				continue;
1342
1343			/*
1344			 * if cpuc->enabled = 0, then no wrmsr as
1345			 * per x86_pmu_enable_event()
1346			 */
1347			x86_pmu_start(event, PERF_EF_RELOAD);
1348		}
1349		cpuc->n_added = 0;
1350		perf_events_lapic_init();
1351	}
1352
1353	cpuc->enabled = 1;
1354	barrier();
1355
1356	static_call(x86_pmu_enable_all)(added);
1357}
1358
1359DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1360
1361/*
1362 * Set the next IRQ period, based on the hwc->period_left value.
1363 * To be called with the event disabled in hw:
1364 */
1365int x86_perf_event_set_period(struct perf_event *event)
1366{
1367	struct hw_perf_event *hwc = &event->hw;
1368	s64 left = local64_read(&hwc->period_left);
1369	s64 period = hwc->sample_period;
1370	int ret = 0, idx = hwc->idx;
1371
1372	if (unlikely(!hwc->event_base))
1373		return 0;
1374
1375	/*
1376	 * If we are way outside a reasonable range then just skip forward:
1377	 */
1378	if (unlikely(left <= -period)) {
1379		left = period;
1380		local64_set(&hwc->period_left, left);
1381		hwc->last_period = period;
1382		ret = 1;
1383	}
1384
1385	if (unlikely(left <= 0)) {
1386		left += period;
1387		local64_set(&hwc->period_left, left);
1388		hwc->last_period = period;
1389		ret = 1;
1390	}
1391	/*
1392	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1393	 */
1394	if (unlikely(left < 2))
1395		left = 2;
1396
1397	if (left > x86_pmu.max_period)
1398		left = x86_pmu.max_period;
1399
1400	static_call_cond(x86_pmu_limit_period)(event, &left);
1401
1402	this_cpu_write(pmc_prev_left[idx], left);
1403
1404	/*
1405	 * The hw event starts counting from this event offset,
1406	 * mark it to be able to extra future deltas:
1407	 */
1408	local64_set(&hwc->prev_count, (u64)-left);
1409
1410	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1411
1412	/*
1413	 * Sign extend the Merge event counter's upper 16 bits since
1414	 * we currently declare a 48-bit counter width
1415	 */
1416	if (is_counter_pair(hwc))
1417		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1418
1419	perf_event_update_userpage(event);
1420
1421	return ret;
1422}
1423
1424void x86_pmu_enable_event(struct perf_event *event)
1425{
1426	if (__this_cpu_read(cpu_hw_events.enabled))
1427		__x86_pmu_enable_event(&event->hw,
1428				       ARCH_PERFMON_EVENTSEL_ENABLE);
1429}
1430
1431/*
1432 * Add a single event to the PMU.
1433 *
1434 * The event is added to the group of enabled events
1435 * but only if it can be scheduled with existing events.
1436 */
1437static int x86_pmu_add(struct perf_event *event, int flags)
1438{
1439	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1440	struct hw_perf_event *hwc;
1441	int assign[X86_PMC_IDX_MAX];
1442	int n, n0, ret;
1443
1444	hwc = &event->hw;
1445
1446	n0 = cpuc->n_events;
1447	ret = n = collect_events(cpuc, event, false);
1448	if (ret < 0)
1449		goto out;
1450
1451	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1452	if (!(flags & PERF_EF_START))
1453		hwc->state |= PERF_HES_ARCH;
1454
1455	/*
1456	 * If group events scheduling transaction was started,
1457	 * skip the schedulability test here, it will be performed
1458	 * at commit time (->commit_txn) as a whole.
1459	 *
1460	 * If commit fails, we'll call ->del() on all events
1461	 * for which ->add() was called.
1462	 */
1463	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1464		goto done_collect;
1465
1466	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1467	if (ret)
1468		goto out;
1469	/*
1470	 * copy new assignment, now we know it is possible
1471	 * will be used by hw_perf_enable()
1472	 */
1473	memcpy(cpuc->assign, assign, n*sizeof(int));
1474
1475done_collect:
1476	/*
1477	 * Commit the collect_events() state. See x86_pmu_del() and
1478	 * x86_pmu_*_txn().
1479	 */
1480	cpuc->n_events = n;
1481	cpuc->n_added += n - n0;
1482	cpuc->n_txn += n - n0;
1483
1484	/*
1485	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1486	 * so we enable LBRs before an event needs them etc..
1487	 */
1488	static_call_cond(x86_pmu_add)(event);
1489
1490	ret = 0;
1491out:
1492	return ret;
1493}
1494
1495static void x86_pmu_start(struct perf_event *event, int flags)
1496{
1497	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1498	int idx = event->hw.idx;
1499
1500	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1501		return;
1502
1503	if (WARN_ON_ONCE(idx == -1))
1504		return;
1505
1506	if (flags & PERF_EF_RELOAD) {
1507		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1508		static_call(x86_pmu_set_period)(event);
1509	}
1510
1511	event->hw.state = 0;
1512
1513	cpuc->events[idx] = event;
1514	__set_bit(idx, cpuc->active_mask);
1515	static_call(x86_pmu_enable)(event);
1516	perf_event_update_userpage(event);
1517}
1518
1519void perf_event_print_debug(void)
1520{
1521	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1522	u64 pebs, debugctl;
1523	int cpu = smp_processor_id();
1524	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1525	int num_counters = hybrid(cpuc->pmu, num_counters);
1526	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1527	struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1528	unsigned long flags;
1529	int idx;
1530
1531	if (!num_counters)
1532		return;
1533
1534	local_irq_save(flags);
1535
1536	if (x86_pmu.version >= 2) {
1537		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1538		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1539		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1540		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1541
1542		pr_info("\n");
1543		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1544		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1545		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1546		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1547		if (pebs_constraints) {
1548			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1549			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1550		}
1551		if (x86_pmu.lbr_nr) {
1552			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1553			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1554		}
1555	}
1556	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1557
1558	for (idx = 0; idx < num_counters; idx++) {
1559		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1560		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1561
1562		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1563
1564		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1565			cpu, idx, pmc_ctrl);
1566		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1567			cpu, idx, pmc_count);
1568		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1569			cpu, idx, prev_left);
1570	}
1571	for (idx = 0; idx < num_counters_fixed; idx++) {
1572		if (fixed_counter_disabled(idx, cpuc->pmu))
1573			continue;
1574		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1575
1576		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1577			cpu, idx, pmc_count);
1578	}
1579	local_irq_restore(flags);
1580}
1581
1582void x86_pmu_stop(struct perf_event *event, int flags)
1583{
1584	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1585	struct hw_perf_event *hwc = &event->hw;
1586
1587	if (test_bit(hwc->idx, cpuc->active_mask)) {
1588		static_call(x86_pmu_disable)(event);
1589		__clear_bit(hwc->idx, cpuc->active_mask);
1590		cpuc->events[hwc->idx] = NULL;
1591		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1592		hwc->state |= PERF_HES_STOPPED;
1593	}
1594
1595	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1596		/*
1597		 * Drain the remaining delta count out of a event
1598		 * that we are disabling:
1599		 */
1600		static_call(x86_pmu_update)(event);
1601		hwc->state |= PERF_HES_UPTODATE;
1602	}
1603}
1604
1605static void x86_pmu_del(struct perf_event *event, int flags)
1606{
1607	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1608	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1609	int i;
1610
1611	/*
1612	 * If we're called during a txn, we only need to undo x86_pmu.add.
1613	 * The events never got scheduled and ->cancel_txn will truncate
1614	 * the event_list.
1615	 *
1616	 * XXX assumes any ->del() called during a TXN will only be on
1617	 * an event added during that same TXN.
1618	 */
1619	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1620		goto do_del;
1621
1622	__set_bit(event->hw.idx, cpuc->dirty);
1623
1624	/*
1625	 * Not a TXN, therefore cleanup properly.
1626	 */
1627	x86_pmu_stop(event, PERF_EF_UPDATE);
1628
1629	for (i = 0; i < cpuc->n_events; i++) {
1630		if (event == cpuc->event_list[i])
1631			break;
1632	}
1633
1634	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1635		return;
1636
1637	/* If we have a newly added event; make sure to decrease n_added. */
1638	if (i >= cpuc->n_events - cpuc->n_added)
1639		--cpuc->n_added;
1640
1641	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1642
1643	/* Delete the array entry. */
1644	while (++i < cpuc->n_events) {
1645		cpuc->event_list[i-1] = cpuc->event_list[i];
1646		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1647		cpuc->assign[i-1] = cpuc->assign[i];
1648	}
1649	cpuc->event_constraint[i-1] = NULL;
1650	--cpuc->n_events;
1651	if (intel_cap.perf_metrics)
1652		del_nr_metric_event(cpuc, event);
1653
1654	perf_event_update_userpage(event);
1655
1656do_del:
1657
1658	/*
1659	 * This is after x86_pmu_stop(); so we disable LBRs after any
1660	 * event can need them etc..
1661	 */
1662	static_call_cond(x86_pmu_del)(event);
1663}
1664
1665int x86_pmu_handle_irq(struct pt_regs *regs)
1666{
1667	struct perf_sample_data data;
1668	struct cpu_hw_events *cpuc;
1669	struct perf_event *event;
1670	int idx, handled = 0;
1671	u64 val;
1672
1673	cpuc = this_cpu_ptr(&cpu_hw_events);
1674
1675	/*
1676	 * Some chipsets need to unmask the LVTPC in a particular spot
1677	 * inside the nmi handler.  As a result, the unmasking was pushed
1678	 * into all the nmi handlers.
1679	 *
1680	 * This generic handler doesn't seem to have any issues where the
1681	 * unmasking occurs so it was left at the top.
1682	 */
1683	apic_write(APIC_LVTPC, APIC_DM_NMI);
1684
1685	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1686		if (!test_bit(idx, cpuc->active_mask))
1687			continue;
1688
1689		event = cpuc->events[idx];
1690
1691		val = static_call(x86_pmu_update)(event);
1692		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1693			continue;
1694
1695		/*
1696		 * event overflow
1697		 */
1698		handled++;
1699
1700		if (!static_call(x86_pmu_set_period)(event))
1701			continue;
1702
1703		perf_sample_data_init(&data, 0, event->hw.last_period);
1704
1705		if (has_branch_stack(event))
1706			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1707
1708		if (perf_event_overflow(event, &data, regs))
1709			x86_pmu_stop(event, 0);
1710	}
1711
1712	if (handled)
1713		inc_irq_stat(apic_perf_irqs);
1714
1715	return handled;
1716}
1717
1718void perf_events_lapic_init(void)
1719{
1720	if (!x86_pmu.apic || !x86_pmu_initialized())
1721		return;
1722
1723	/*
1724	 * Always use NMI for PMU
1725	 */
1726	apic_write(APIC_LVTPC, APIC_DM_NMI);
1727}
1728
1729static int
1730perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1731{
1732	u64 start_clock;
1733	u64 finish_clock;
1734	int ret;
1735
1736	/*
1737	 * All PMUs/events that share this PMI handler should make sure to
1738	 * increment active_events for their events.
1739	 */
1740	if (!atomic_read(&active_events))
1741		return NMI_DONE;
1742
1743	start_clock = sched_clock();
1744	ret = static_call(x86_pmu_handle_irq)(regs);
1745	finish_clock = sched_clock();
1746
1747	perf_sample_event_took(finish_clock - start_clock);
1748
1749	return ret;
1750}
1751NOKPROBE_SYMBOL(perf_event_nmi_handler);
1752
1753struct event_constraint emptyconstraint;
1754struct event_constraint unconstrained;
1755
1756static int x86_pmu_prepare_cpu(unsigned int cpu)
1757{
1758	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1759	int i;
1760
1761	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1762		cpuc->kfree_on_online[i] = NULL;
1763	if (x86_pmu.cpu_prepare)
1764		return x86_pmu.cpu_prepare(cpu);
1765	return 0;
1766}
1767
1768static int x86_pmu_dead_cpu(unsigned int cpu)
1769{
1770	if (x86_pmu.cpu_dead)
1771		x86_pmu.cpu_dead(cpu);
1772	return 0;
1773}
1774
1775static int x86_pmu_online_cpu(unsigned int cpu)
1776{
1777	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1778	int i;
1779
1780	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1781		kfree(cpuc->kfree_on_online[i]);
1782		cpuc->kfree_on_online[i] = NULL;
1783	}
1784	return 0;
1785}
1786
1787static int x86_pmu_starting_cpu(unsigned int cpu)
1788{
1789	if (x86_pmu.cpu_starting)
1790		x86_pmu.cpu_starting(cpu);
1791	return 0;
1792}
1793
1794static int x86_pmu_dying_cpu(unsigned int cpu)
1795{
1796	if (x86_pmu.cpu_dying)
1797		x86_pmu.cpu_dying(cpu);
1798	return 0;
1799}
1800
1801static void __init pmu_check_apic(void)
1802{
1803	if (boot_cpu_has(X86_FEATURE_APIC))
1804		return;
1805
1806	x86_pmu.apic = 0;
1807	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1808	pr_info("no hardware sampling interrupt available.\n");
1809
1810	/*
1811	 * If we have a PMU initialized but no APIC
1812	 * interrupts, we cannot sample hardware
1813	 * events (user-space has to fall back and
1814	 * sample via a hrtimer based software event):
1815	 */
1816	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1817
1818}
1819
1820static struct attribute_group x86_pmu_format_group __ro_after_init = {
1821	.name = "format",
1822	.attrs = NULL,
1823};
1824
1825ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1826{
1827	struct perf_pmu_events_attr *pmu_attr =
1828		container_of(attr, struct perf_pmu_events_attr, attr);
1829	u64 config = 0;
1830
1831	if (pmu_attr->id < x86_pmu.max_events)
1832		config = x86_pmu.event_map(pmu_attr->id);
1833
1834	/* string trumps id */
1835	if (pmu_attr->event_str)
1836		return sprintf(page, "%s\n", pmu_attr->event_str);
1837
1838	return x86_pmu.events_sysfs_show(page, config);
1839}
1840EXPORT_SYMBOL_GPL(events_sysfs_show);
1841
1842ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1843			  char *page)
1844{
1845	struct perf_pmu_events_ht_attr *pmu_attr =
1846		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1847
1848	/*
1849	 * Report conditional events depending on Hyper-Threading.
1850	 *
1851	 * This is overly conservative as usually the HT special
1852	 * handling is not needed if the other CPU thread is idle.
1853	 *
1854	 * Note this does not (and cannot) handle the case when thread
1855	 * siblings are invisible, for example with virtualization
1856	 * if they are owned by some other guest.  The user tool
1857	 * has to re-read when a thread sibling gets onlined later.
1858	 */
1859	return sprintf(page, "%s",
1860			topology_max_smt_threads() > 1 ?
1861			pmu_attr->event_str_ht :
1862			pmu_attr->event_str_noht);
1863}
1864
1865ssize_t events_hybrid_sysfs_show(struct device *dev,
1866				 struct device_attribute *attr,
1867				 char *page)
1868{
1869	struct perf_pmu_events_hybrid_attr *pmu_attr =
1870		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1871	struct x86_hybrid_pmu *pmu;
1872	const char *str, *next_str;
1873	int i;
1874
1875	if (hweight64(pmu_attr->pmu_type) == 1)
1876		return sprintf(page, "%s", pmu_attr->event_str);
1877
1878	/*
1879	 * Hybrid PMUs may support the same event name, but with different
1880	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1881	 * different event encoding from a Core PMU.
1882	 *
1883	 * The event_str includes all event encodings. Each event encoding
1884	 * is divided by ";". The order of the event encodings must follow
1885	 * the order of the hybrid PMU index.
1886	 */
1887	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1888
1889	str = pmu_attr->event_str;
1890	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1891		if (!(x86_pmu.hybrid_pmu[i].pmu_type & pmu_attr->pmu_type))
1892			continue;
1893		if (x86_pmu.hybrid_pmu[i].pmu_type & pmu->pmu_type) {
1894			next_str = strchr(str, ';');
1895			if (next_str)
1896				return snprintf(page, next_str - str + 1, "%s", str);
1897			else
1898				return sprintf(page, "%s", str);
1899		}
1900		str = strchr(str, ';');
1901		str++;
1902	}
1903
1904	return 0;
1905}
1906EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1907
1908EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1909EVENT_ATTR(instructions,		INSTRUCTIONS		);
1910EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1911EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1912EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1913EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1914EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1915EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1916EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1917EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1918
1919static struct attribute *empty_attrs;
1920
1921static struct attribute *events_attr[] = {
1922	EVENT_PTR(CPU_CYCLES),
1923	EVENT_PTR(INSTRUCTIONS),
1924	EVENT_PTR(CACHE_REFERENCES),
1925	EVENT_PTR(CACHE_MISSES),
1926	EVENT_PTR(BRANCH_INSTRUCTIONS),
1927	EVENT_PTR(BRANCH_MISSES),
1928	EVENT_PTR(BUS_CYCLES),
1929	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1930	EVENT_PTR(STALLED_CYCLES_BACKEND),
1931	EVENT_PTR(REF_CPU_CYCLES),
1932	NULL,
1933};
1934
1935/*
1936 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1937 * out of events_attr attributes.
1938 */
1939static umode_t
1940is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1941{
1942	struct perf_pmu_events_attr *pmu_attr;
1943
1944	if (idx >= x86_pmu.max_events)
1945		return 0;
1946
1947	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1948	/* str trumps id */
1949	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1950}
1951
1952static struct attribute_group x86_pmu_events_group __ro_after_init = {
1953	.name = "events",
1954	.attrs = events_attr,
1955	.is_visible = is_visible,
1956};
1957
1958ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1959{
1960	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1961	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1962	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1963	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1964	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1965	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1966	ssize_t ret;
1967
1968	/*
1969	* We have whole page size to spend and just little data
1970	* to write, so we can safely use sprintf.
1971	*/
1972	ret = sprintf(page, "event=0x%02llx", event);
1973
1974	if (umask)
1975		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1976
1977	if (edge)
1978		ret += sprintf(page + ret, ",edge");
1979
1980	if (pc)
1981		ret += sprintf(page + ret, ",pc");
1982
1983	if (any)
1984		ret += sprintf(page + ret, ",any");
1985
1986	if (inv)
1987		ret += sprintf(page + ret, ",inv");
1988
1989	if (cmask)
1990		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1991
1992	ret += sprintf(page + ret, "\n");
1993
1994	return ret;
1995}
1996
1997static struct attribute_group x86_pmu_attr_group;
1998static struct attribute_group x86_pmu_caps_group;
1999
2000static void x86_pmu_static_call_update(void)
2001{
2002	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2003	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2004	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2005	static_call_update(x86_pmu_enable, x86_pmu.enable);
2006	static_call_update(x86_pmu_disable, x86_pmu.disable);
2007
2008	static_call_update(x86_pmu_assign, x86_pmu.assign);
2009
2010	static_call_update(x86_pmu_add, x86_pmu.add);
2011	static_call_update(x86_pmu_del, x86_pmu.del);
2012	static_call_update(x86_pmu_read, x86_pmu.read);
2013
2014	static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2015	static_call_update(x86_pmu_update, x86_pmu.update);
2016	static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2017
2018	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2019	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2020	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2021
2022	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2023	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2024	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2025
2026	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2027	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2028
2029	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2030	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2031
2032	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2033	static_call_update(x86_pmu_filter, x86_pmu.filter);
2034}
2035
2036static void _x86_pmu_read(struct perf_event *event)
2037{
2038	static_call(x86_pmu_update)(event);
2039}
2040
2041void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2042			  u64 intel_ctrl)
2043{
2044	pr_info("... version:                %d\n",     x86_pmu.version);
2045	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2046	pr_info("... generic registers:      %d\n",     num_counters);
2047	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2048	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2049	pr_info("... fixed-purpose events:   %lu\n",
2050			hweight64((((1ULL << num_counters_fixed) - 1)
2051					<< INTEL_PMC_IDX_FIXED) & intel_ctrl));
2052	pr_info("... event mask:             %016Lx\n", intel_ctrl);
2053}
2054
2055static int __init init_hw_perf_events(void)
2056{
2057	struct x86_pmu_quirk *quirk;
2058	int err;
2059
2060	pr_info("Performance Events: ");
2061
2062	switch (boot_cpu_data.x86_vendor) {
2063	case X86_VENDOR_INTEL:
2064		err = intel_pmu_init();
2065		break;
2066	case X86_VENDOR_AMD:
2067		err = amd_pmu_init();
2068		break;
2069	case X86_VENDOR_HYGON:
2070		err = amd_pmu_init();
2071		x86_pmu.name = "HYGON";
2072		break;
2073	case X86_VENDOR_ZHAOXIN:
2074	case X86_VENDOR_CENTAUR:
2075		err = zhaoxin_pmu_init();
2076		break;
2077	default:
2078		err = -ENOTSUPP;
2079	}
2080	if (err != 0) {
2081		pr_cont("no PMU driver, software events only.\n");
2082		err = 0;
2083		goto out_bad_pmu;
2084	}
2085
2086	pmu_check_apic();
2087
2088	/* sanity check that the hardware exists or is emulated */
2089	if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2090		goto out_bad_pmu;
2091
2092	pr_cont("%s PMU driver.\n", x86_pmu.name);
2093
2094	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2095
2096	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2097		quirk->func();
2098
2099	if (!x86_pmu.intel_ctrl)
2100		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2101
2102	perf_events_lapic_init();
2103	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2104
2105	unconstrained = (struct event_constraint)
2106		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2107				   0, x86_pmu.num_counters, 0, 0);
2108
2109	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2110
2111	if (!x86_pmu.events_sysfs_show)
2112		x86_pmu_events_group.attrs = &empty_attrs;
2113
2114	pmu.attr_update = x86_pmu.attr_update;
2115
2116	if (!is_hybrid()) {
2117		x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2118				     x86_pmu.num_counters_fixed,
2119				     x86_pmu.intel_ctrl);
2120	}
2121
2122	if (!x86_pmu.read)
2123		x86_pmu.read = _x86_pmu_read;
2124
2125	if (!x86_pmu.guest_get_msrs)
2126		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2127
2128	if (!x86_pmu.set_period)
2129		x86_pmu.set_period = x86_perf_event_set_period;
2130
2131	if (!x86_pmu.update)
2132		x86_pmu.update = x86_perf_event_update;
2133
2134	x86_pmu_static_call_update();
2135
2136	/*
2137	 * Install callbacks. Core will call them for each online
2138	 * cpu.
2139	 */
2140	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2141				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2142	if (err)
2143		return err;
2144
2145	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2146				"perf/x86:starting", x86_pmu_starting_cpu,
2147				x86_pmu_dying_cpu);
2148	if (err)
2149		goto out;
2150
2151	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2152				x86_pmu_online_cpu, NULL);
2153	if (err)
2154		goto out1;
2155
2156	if (!is_hybrid()) {
2157		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2158		if (err)
2159			goto out2;
2160	} else {
2161		struct x86_hybrid_pmu *hybrid_pmu;
2162		int i, j;
2163
2164		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2165			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2166
2167			hybrid_pmu->pmu = pmu;
2168			hybrid_pmu->pmu.type = -1;
2169			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2170			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2171
2172			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2173						(hybrid_pmu->pmu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2174			if (err)
2175				break;
2176		}
2177
2178		if (i < x86_pmu.num_hybrid_pmus) {
2179			for (j = 0; j < i; j++)
2180				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2181			pr_warn("Failed to register hybrid PMUs\n");
2182			kfree(x86_pmu.hybrid_pmu);
2183			x86_pmu.hybrid_pmu = NULL;
2184			x86_pmu.num_hybrid_pmus = 0;
2185			goto out2;
2186		}
2187	}
2188
2189	return 0;
2190
2191out2:
2192	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2193out1:
2194	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2195out:
2196	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2197out_bad_pmu:
2198	memset(&x86_pmu, 0, sizeof(x86_pmu));
2199	return err;
2200}
2201early_initcall(init_hw_perf_events);
2202
2203static void x86_pmu_read(struct perf_event *event)
2204{
2205	static_call(x86_pmu_read)(event);
2206}
2207
2208/*
2209 * Start group events scheduling transaction
2210 * Set the flag to make pmu::enable() not perform the
2211 * schedulability test, it will be performed at commit time
2212 *
2213 * We only support PERF_PMU_TXN_ADD transactions. Save the
2214 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2215 * transactions.
2216 */
2217static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2218{
2219	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2220
2221	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2222
2223	cpuc->txn_flags = txn_flags;
2224	if (txn_flags & ~PERF_PMU_TXN_ADD)
2225		return;
2226
2227	perf_pmu_disable(pmu);
2228	__this_cpu_write(cpu_hw_events.n_txn, 0);
2229	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2230	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2231}
2232
2233/*
2234 * Stop group events scheduling transaction
2235 * Clear the flag and pmu::enable() will perform the
2236 * schedulability test.
2237 */
2238static void x86_pmu_cancel_txn(struct pmu *pmu)
2239{
2240	unsigned int txn_flags;
2241	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2242
2243	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2244
2245	txn_flags = cpuc->txn_flags;
2246	cpuc->txn_flags = 0;
2247	if (txn_flags & ~PERF_PMU_TXN_ADD)
2248		return;
2249
2250	/*
2251	 * Truncate collected array by the number of events added in this
2252	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2253	 */
2254	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2255	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2256	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2257	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2258	perf_pmu_enable(pmu);
2259}
2260
2261/*
2262 * Commit group events scheduling transaction
2263 * Perform the group schedulability test as a whole
2264 * Return 0 if success
2265 *
2266 * Does not cancel the transaction on failure; expects the caller to do this.
2267 */
2268static int x86_pmu_commit_txn(struct pmu *pmu)
2269{
2270	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2271	int assign[X86_PMC_IDX_MAX];
2272	int n, ret;
2273
2274	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2275
2276	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2277		cpuc->txn_flags = 0;
2278		return 0;
2279	}
2280
2281	n = cpuc->n_events;
2282
2283	if (!x86_pmu_initialized())
2284		return -EAGAIN;
2285
2286	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2287	if (ret)
2288		return ret;
2289
2290	/*
2291	 * copy new assignment, now we know it is possible
2292	 * will be used by hw_perf_enable()
2293	 */
2294	memcpy(cpuc->assign, assign, n*sizeof(int));
2295
2296	cpuc->txn_flags = 0;
2297	perf_pmu_enable(pmu);
2298	return 0;
2299}
2300/*
2301 * a fake_cpuc is used to validate event groups. Due to
2302 * the extra reg logic, we need to also allocate a fake
2303 * per_core and per_cpu structure. Otherwise, group events
2304 * using extra reg may conflict without the kernel being
2305 * able to catch this when the last event gets added to
2306 * the group.
2307 */
2308static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2309{
2310	intel_cpuc_finish(cpuc);
2311	kfree(cpuc);
2312}
2313
2314static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2315{
2316	struct cpu_hw_events *cpuc;
2317	int cpu;
2318
2319	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2320	if (!cpuc)
2321		return ERR_PTR(-ENOMEM);
2322	cpuc->is_fake = 1;
2323
2324	if (is_hybrid()) {
2325		struct x86_hybrid_pmu *h_pmu;
2326
2327		h_pmu = hybrid_pmu(event_pmu);
2328		if (cpumask_empty(&h_pmu->supported_cpus))
2329			goto error;
2330		cpu = cpumask_first(&h_pmu->supported_cpus);
2331	} else
2332		cpu = raw_smp_processor_id();
2333	cpuc->pmu = event_pmu;
2334
2335	if (intel_cpuc_prepare(cpuc, cpu))
2336		goto error;
2337
2338	return cpuc;
2339error:
2340	free_fake_cpuc(cpuc);
2341	return ERR_PTR(-ENOMEM);
2342}
2343
2344/*
2345 * validate that we can schedule this event
2346 */
2347static int validate_event(struct perf_event *event)
2348{
2349	struct cpu_hw_events *fake_cpuc;
2350	struct event_constraint *c;
2351	int ret = 0;
2352
2353	fake_cpuc = allocate_fake_cpuc(event->pmu);
2354	if (IS_ERR(fake_cpuc))
2355		return PTR_ERR(fake_cpuc);
2356
2357	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2358
2359	if (!c || !c->weight)
2360		ret = -EINVAL;
2361
2362	if (x86_pmu.put_event_constraints)
2363		x86_pmu.put_event_constraints(fake_cpuc, event);
2364
2365	free_fake_cpuc(fake_cpuc);
2366
2367	return ret;
2368}
2369
2370/*
2371 * validate a single event group
2372 *
2373 * validation include:
2374 *	- check events are compatible which each other
2375 *	- events do not compete for the same counter
2376 *	- number of events <= number of counters
2377 *
2378 * validation ensures the group can be loaded onto the
2379 * PMU if it was the only group available.
2380 */
2381static int validate_group(struct perf_event *event)
2382{
2383	struct perf_event *leader = event->group_leader;
2384	struct cpu_hw_events *fake_cpuc;
2385	int ret = -EINVAL, n;
2386
2387	/*
2388	 * Reject events from different hybrid PMUs.
2389	 */
2390	if (is_hybrid()) {
2391		struct perf_event *sibling;
2392		struct pmu *pmu = NULL;
2393
2394		if (is_x86_event(leader))
2395			pmu = leader->pmu;
2396
2397		for_each_sibling_event(sibling, leader) {
2398			if (!is_x86_event(sibling))
2399				continue;
2400			if (!pmu)
2401				pmu = sibling->pmu;
2402			else if (pmu != sibling->pmu)
2403				return ret;
2404		}
2405	}
2406
2407	fake_cpuc = allocate_fake_cpuc(event->pmu);
2408	if (IS_ERR(fake_cpuc))
2409		return PTR_ERR(fake_cpuc);
2410	/*
2411	 * the event is not yet connected with its
2412	 * siblings therefore we must first collect
2413	 * existing siblings, then add the new event
2414	 * before we can simulate the scheduling
2415	 */
2416	n = collect_events(fake_cpuc, leader, true);
2417	if (n < 0)
2418		goto out;
2419
2420	fake_cpuc->n_events = n;
2421	n = collect_events(fake_cpuc, event, false);
2422	if (n < 0)
2423		goto out;
2424
2425	fake_cpuc->n_events = 0;
2426	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2427
2428out:
2429	free_fake_cpuc(fake_cpuc);
2430	return ret;
2431}
2432
2433static int x86_pmu_event_init(struct perf_event *event)
2434{
2435	struct x86_hybrid_pmu *pmu = NULL;
2436	int err;
2437
2438	if ((event->attr.type != event->pmu->type) &&
2439	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2440	    (event->attr.type != PERF_TYPE_HW_CACHE))
2441		return -ENOENT;
2442
2443	if (is_hybrid() && (event->cpu != -1)) {
2444		pmu = hybrid_pmu(event->pmu);
2445		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2446			return -ENOENT;
2447	}
2448
2449	err = __x86_pmu_event_init(event);
2450	if (!err) {
2451		if (event->group_leader != event)
2452			err = validate_group(event);
2453		else
2454			err = validate_event(event);
2455	}
2456	if (err) {
2457		if (event->destroy)
2458			event->destroy(event);
2459		event->destroy = NULL;
2460	}
2461
2462	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2463	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2464		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2465
2466	return err;
2467}
2468
2469void perf_clear_dirty_counters(void)
2470{
2471	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2472	int i;
2473
2474	 /* Don't need to clear the assigned counter. */
2475	for (i = 0; i < cpuc->n_events; i++)
2476		__clear_bit(cpuc->assign[i], cpuc->dirty);
2477
2478	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2479		return;
2480
2481	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2482		if (i >= INTEL_PMC_IDX_FIXED) {
2483			/* Metrics and fake events don't have corresponding HW counters. */
2484			if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2485				continue;
2486
2487			wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2488		} else {
2489			wrmsrl(x86_pmu_event_addr(i), 0);
2490		}
2491	}
2492
2493	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2494}
2495
2496static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2497{
2498	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2499		return;
2500
2501	/*
2502	 * This function relies on not being called concurrently in two
2503	 * tasks in the same mm.  Otherwise one task could observe
2504	 * perf_rdpmc_allowed > 1 and return all the way back to
2505	 * userspace with CR4.PCE clear while another task is still
2506	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2507	 *
2508	 * For now, this can't happen because all callers hold mmap_lock
2509	 * for write.  If this changes, we'll need a different solution.
2510	 */
2511	mmap_assert_write_locked(mm);
2512
2513	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2514		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2515}
2516
2517static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2518{
2519	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2520		return;
2521
2522	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2523		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2524}
2525
2526static int x86_pmu_event_idx(struct perf_event *event)
2527{
2528	struct hw_perf_event *hwc = &event->hw;
2529
2530	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2531		return 0;
2532
2533	if (is_metric_idx(hwc->idx))
2534		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2535	else
2536		return hwc->event_base_rdpmc + 1;
2537}
2538
2539static ssize_t get_attr_rdpmc(struct device *cdev,
2540			      struct device_attribute *attr,
2541			      char *buf)
2542{
2543	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2544}
2545
2546static ssize_t set_attr_rdpmc(struct device *cdev,
2547			      struct device_attribute *attr,
2548			      const char *buf, size_t count)
2549{
2550	unsigned long val;
2551	ssize_t ret;
2552
2553	ret = kstrtoul(buf, 0, &val);
2554	if (ret)
2555		return ret;
2556
2557	if (val > 2)
2558		return -EINVAL;
2559
2560	if (x86_pmu.attr_rdpmc_broken)
2561		return -ENOTSUPP;
2562
2563	if (val != x86_pmu.attr_rdpmc) {
2564		/*
2565		 * Changing into or out of never available or always available,
2566		 * aka perf-event-bypassing mode. This path is extremely slow,
2567		 * but only root can trigger it, so it's okay.
2568		 */
2569		if (val == 0)
2570			static_branch_inc(&rdpmc_never_available_key);
2571		else if (x86_pmu.attr_rdpmc == 0)
2572			static_branch_dec(&rdpmc_never_available_key);
2573
2574		if (val == 2)
2575			static_branch_inc(&rdpmc_always_available_key);
2576		else if (x86_pmu.attr_rdpmc == 2)
2577			static_branch_dec(&rdpmc_always_available_key);
2578
2579		on_each_cpu(cr4_update_pce, NULL, 1);
2580		x86_pmu.attr_rdpmc = val;
2581	}
2582
2583	return count;
2584}
2585
2586static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2587
2588static struct attribute *x86_pmu_attrs[] = {
2589	&dev_attr_rdpmc.attr,
2590	NULL,
2591};
2592
2593static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2594	.attrs = x86_pmu_attrs,
2595};
2596
2597static ssize_t max_precise_show(struct device *cdev,
2598				  struct device_attribute *attr,
2599				  char *buf)
2600{
2601	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2602}
2603
2604static DEVICE_ATTR_RO(max_precise);
2605
2606static struct attribute *x86_pmu_caps_attrs[] = {
2607	&dev_attr_max_precise.attr,
2608	NULL
2609};
2610
2611static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2612	.name = "caps",
2613	.attrs = x86_pmu_caps_attrs,
2614};
2615
2616static const struct attribute_group *x86_pmu_attr_groups[] = {
2617	&x86_pmu_attr_group,
2618	&x86_pmu_format_group,
2619	&x86_pmu_events_group,
2620	&x86_pmu_caps_group,
2621	NULL,
2622};
2623
2624static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2625{
2626	static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2627}
2628
2629static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2630				  struct perf_event_pmu_context *next_epc)
2631{
2632	static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2633}
2634
2635void perf_check_microcode(void)
2636{
2637	if (x86_pmu.check_microcode)
2638		x86_pmu.check_microcode();
2639}
2640
2641static int x86_pmu_check_period(struct perf_event *event, u64 value)
2642{
2643	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2644		return -EINVAL;
2645
2646	if (value && x86_pmu.limit_period) {
2647		s64 left = value;
2648		x86_pmu.limit_period(event, &left);
2649		if (left > value)
2650			return -EINVAL;
2651	}
2652
2653	return 0;
2654}
2655
2656static int x86_pmu_aux_output_match(struct perf_event *event)
2657{
2658	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2659		return 0;
2660
2661	if (x86_pmu.aux_output_match)
2662		return x86_pmu.aux_output_match(event);
2663
2664	return 0;
2665}
2666
2667static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2668{
2669	bool ret = false;
2670
2671	static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2672
2673	return ret;
2674}
2675
2676static struct pmu pmu = {
2677	.pmu_enable		= x86_pmu_enable,
2678	.pmu_disable		= x86_pmu_disable,
2679
2680	.attr_groups		= x86_pmu_attr_groups,
2681
2682	.event_init		= x86_pmu_event_init,
2683
2684	.event_mapped		= x86_pmu_event_mapped,
2685	.event_unmapped		= x86_pmu_event_unmapped,
2686
2687	.add			= x86_pmu_add,
2688	.del			= x86_pmu_del,
2689	.start			= x86_pmu_start,
2690	.stop			= x86_pmu_stop,
2691	.read			= x86_pmu_read,
2692
2693	.start_txn		= x86_pmu_start_txn,
2694	.cancel_txn		= x86_pmu_cancel_txn,
2695	.commit_txn		= x86_pmu_commit_txn,
2696
2697	.event_idx		= x86_pmu_event_idx,
2698	.sched_task		= x86_pmu_sched_task,
2699	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2700	.check_period		= x86_pmu_check_period,
2701
2702	.aux_output_match	= x86_pmu_aux_output_match,
2703
2704	.filter			= x86_pmu_filter,
2705};
2706
2707void arch_perf_update_userpage(struct perf_event *event,
2708			       struct perf_event_mmap_page *userpg, u64 now)
2709{
2710	struct cyc2ns_data data;
2711	u64 offset;
2712
2713	userpg->cap_user_time = 0;
2714	userpg->cap_user_time_zero = 0;
2715	userpg->cap_user_rdpmc =
2716		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2717	userpg->pmc_width = x86_pmu.cntval_bits;
2718
2719	if (!using_native_sched_clock() || !sched_clock_stable())
2720		return;
2721
2722	cyc2ns_read_begin(&data);
2723
2724	offset = data.cyc2ns_offset + __sched_clock_offset;
2725
2726	/*
2727	 * Internal timekeeping for enabled/running/stopped times
2728	 * is always in the local_clock domain.
2729	 */
2730	userpg->cap_user_time = 1;
2731	userpg->time_mult = data.cyc2ns_mul;
2732	userpg->time_shift = data.cyc2ns_shift;
2733	userpg->time_offset = offset - now;
2734
2735	/*
2736	 * cap_user_time_zero doesn't make sense when we're using a different
2737	 * time base for the records.
2738	 */
2739	if (!event->attr.use_clockid) {
2740		userpg->cap_user_time_zero = 1;
2741		userpg->time_zero = offset;
2742	}
2743
2744	cyc2ns_read_end();
2745}
2746
2747/*
2748 * Determine whether the regs were taken from an irq/exception handler rather
2749 * than from perf_arch_fetch_caller_regs().
2750 */
2751static bool perf_hw_regs(struct pt_regs *regs)
2752{
2753	return regs->flags & X86_EFLAGS_FIXED;
2754}
2755
2756void
2757perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2758{
2759	struct unwind_state state;
2760	unsigned long addr;
2761
2762	if (perf_guest_state()) {
2763		/* TODO: We don't support guest os callchain now */
2764		return;
2765	}
2766
2767	if (perf_callchain_store(entry, regs->ip))
2768		return;
2769
2770	if (perf_hw_regs(regs))
2771		unwind_start(&state, current, regs, NULL);
2772	else
2773		unwind_start(&state, current, NULL, (void *)regs->sp);
2774
2775	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2776		addr = unwind_get_return_address(&state);
2777		if (!addr || perf_callchain_store(entry, addr))
2778			return;
2779	}
2780}
2781
2782static inline int
2783valid_user_frame(const void __user *fp, unsigned long size)
2784{
2785	return __access_ok(fp, size);
2786}
2787
2788static unsigned long get_segment_base(unsigned int segment)
2789{
2790	struct desc_struct *desc;
2791	unsigned int idx = segment >> 3;
2792
2793	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2794#ifdef CONFIG_MODIFY_LDT_SYSCALL
2795		struct ldt_struct *ldt;
2796
2797		/* IRQs are off, so this synchronizes with smp_store_release */
2798		ldt = READ_ONCE(current->active_mm->context.ldt);
2799		if (!ldt || idx >= ldt->nr_entries)
2800			return 0;
2801
2802		desc = &ldt->entries[idx];
2803#else
2804		return 0;
2805#endif
2806	} else {
2807		if (idx >= GDT_ENTRIES)
2808			return 0;
2809
2810		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2811	}
2812
2813	return get_desc_base(desc);
2814}
2815
2816#ifdef CONFIG_IA32_EMULATION
2817
2818#include <linux/compat.h>
2819
2820static inline int
2821perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2822{
2823	/* 32-bit process in 64-bit kernel. */
2824	unsigned long ss_base, cs_base;
2825	struct stack_frame_ia32 frame;
2826	const struct stack_frame_ia32 __user *fp;
2827
2828	if (user_64bit_mode(regs))
2829		return 0;
2830
2831	cs_base = get_segment_base(regs->cs);
2832	ss_base = get_segment_base(regs->ss);
2833
2834	fp = compat_ptr(ss_base + regs->bp);
2835	pagefault_disable();
2836	while (entry->nr < entry->max_stack) {
2837		if (!valid_user_frame(fp, sizeof(frame)))
2838			break;
2839
2840		if (__get_user(frame.next_frame, &fp->next_frame))
2841			break;
2842		if (__get_user(frame.return_address, &fp->return_address))
2843			break;
2844
2845		perf_callchain_store(entry, cs_base + frame.return_address);
2846		fp = compat_ptr(ss_base + frame.next_frame);
2847	}
2848	pagefault_enable();
2849	return 1;
2850}
2851#else
2852static inline int
2853perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2854{
2855    return 0;
2856}
2857#endif
2858
2859void
2860perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2861{
2862	struct stack_frame frame;
2863	const struct stack_frame __user *fp;
2864
2865	if (perf_guest_state()) {
2866		/* TODO: We don't support guest os callchain now */
2867		return;
2868	}
2869
2870	/*
2871	 * We don't know what to do with VM86 stacks.. ignore them for now.
2872	 */
2873	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2874		return;
2875
2876	fp = (void __user *)regs->bp;
2877
2878	perf_callchain_store(entry, regs->ip);
2879
2880	if (!nmi_uaccess_okay())
2881		return;
2882
2883	if (perf_callchain_user32(regs, entry))
2884		return;
2885
2886	pagefault_disable();
2887	while (entry->nr < entry->max_stack) {
2888		if (!valid_user_frame(fp, sizeof(frame)))
2889			break;
2890
2891		if (__get_user(frame.next_frame, &fp->next_frame))
2892			break;
2893		if (__get_user(frame.return_address, &fp->return_address))
2894			break;
2895
2896		perf_callchain_store(entry, frame.return_address);
2897		fp = (void __user *)frame.next_frame;
2898	}
2899	pagefault_enable();
2900}
2901
2902/*
2903 * Deal with code segment offsets for the various execution modes:
2904 *
2905 *   VM86 - the good olde 16 bit days, where the linear address is
2906 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2907 *
2908 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2909 *          to figure out what the 32bit base address is.
2910 *
2911 *    X32 - has TIF_X32 set, but is running in x86_64
2912 *
2913 * X86_64 - CS,DS,SS,ES are all zero based.
2914 */
2915static unsigned long code_segment_base(struct pt_regs *regs)
2916{
2917	/*
2918	 * For IA32 we look at the GDT/LDT segment base to convert the
2919	 * effective IP to a linear address.
2920	 */
2921
2922#ifdef CONFIG_X86_32
2923	/*
2924	 * If we are in VM86 mode, add the segment offset to convert to a
2925	 * linear address.
2926	 */
2927	if (regs->flags & X86_VM_MASK)
2928		return 0x10 * regs->cs;
2929
2930	if (user_mode(regs) && regs->cs != __USER_CS)
2931		return get_segment_base(regs->cs);
2932#else
2933	if (user_mode(regs) && !user_64bit_mode(regs) &&
2934	    regs->cs != __USER32_CS)
2935		return get_segment_base(regs->cs);
2936#endif
2937	return 0;
2938}
2939
2940unsigned long perf_instruction_pointer(struct pt_regs *regs)
2941{
2942	if (perf_guest_state())
2943		return perf_guest_get_ip();
2944
2945	return regs->ip + code_segment_base(regs);
2946}
2947
2948unsigned long perf_misc_flags(struct pt_regs *regs)
2949{
2950	unsigned int guest_state = perf_guest_state();
2951	int misc = 0;
2952
2953	if (guest_state) {
2954		if (guest_state & PERF_GUEST_USER)
2955			misc |= PERF_RECORD_MISC_GUEST_USER;
2956		else
2957			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2958	} else {
2959		if (user_mode(regs))
2960			misc |= PERF_RECORD_MISC_USER;
2961		else
2962			misc |= PERF_RECORD_MISC_KERNEL;
2963	}
2964
2965	if (regs->flags & PERF_EFLAGS_EXACT)
2966		misc |= PERF_RECORD_MISC_EXACT_IP;
2967
2968	return misc;
2969}
2970
2971void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2972{
2973	/* This API doesn't currently support enumerating hybrid PMUs. */
2974	if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
2975	    !x86_pmu_initialized()) {
2976		memset(cap, 0, sizeof(*cap));
2977		return;
2978	}
2979
2980	/*
2981	 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
2982	 * all E-cores are disabled via BIOS.  When E-cores are disabled, the
2983	 * base PMU holds the correct number of counters for P-cores.
2984	 */
2985	cap->version		= x86_pmu.version;
2986	cap->num_counters_gp	= x86_pmu.num_counters;
2987	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2988	cap->bit_width_gp	= x86_pmu.cntval_bits;
2989	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2990	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2991	cap->events_mask_len	= x86_pmu.events_mask_len;
2992	cap->pebs_ept		= x86_pmu.pebs_ept;
2993}
2994EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2995
2996u64 perf_get_hw_event_config(int hw_event)
2997{
2998	int max = x86_pmu.max_events;
2999
3000	if (hw_event < max)
3001		return x86_pmu.event_map(array_index_nospec(hw_event, max));
3002
3003	return 0;
3004}
3005EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3006