1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7 * James Leu (jleu@mindspring.net).
8 * Copyright (C) 2001 by various other people who didn't put their name here.
9 */
10
11#include <linux/memblock.h>
12#include <linux/etherdevice.h>
13#include <linux/ethtool.h>
14#include <linux/inetdevice.h>
15#include <linux/init.h>
16#include <linux/list.h>
17#include <linux/netdevice.h>
18#include <linux/platform_device.h>
19#include <linux/rtnetlink.h>
20#include <linux/skbuff.h>
21#include <linux/slab.h>
22#include <linux/interrupt.h>
23#include <linux/firmware.h>
24#include <linux/fs.h>
25#include <uapi/linux/filter.h>
26#include <init.h>
27#include <irq_kern.h>
28#include <irq_user.h>
29#include <net_kern.h>
30#include <os.h>
31#include "mconsole_kern.h"
32#include "vector_user.h"
33#include "vector_kern.h"
34
35/*
36 * Adapted from network devices with the following major changes:
37 * All transports are static - simplifies the code significantly
38 * Multiple FDs/IRQs per device
39 * Vector IO optionally used for read/write, falling back to legacy
40 * based on configuration and/or availability
41 * Configuration is no longer positional - L2TPv3 and GRE require up to
42 * 10 parameters, passing this as positional is not fit for purpose.
43 * Only socket transports are supported
44 */
45
46
47#define DRIVER_NAME "uml-vector"
48struct vector_cmd_line_arg {
49	struct list_head list;
50	int unit;
51	char *arguments;
52};
53
54struct vector_device {
55	struct list_head list;
56	struct net_device *dev;
57	struct platform_device pdev;
58	int unit;
59	int opened;
60};
61
62static LIST_HEAD(vec_cmd_line);
63
64static DEFINE_SPINLOCK(vector_devices_lock);
65static LIST_HEAD(vector_devices);
66
67static int driver_registered;
68
69static void vector_eth_configure(int n, struct arglist *def);
70static int vector_mmsg_rx(struct vector_private *vp, int budget);
71
72/* Argument accessors to set variables (and/or set default values)
73 * mtu, buffer sizing, default headroom, etc
74 */
75
76#define DEFAULT_HEADROOM 2
77#define SAFETY_MARGIN 32
78#define DEFAULT_VECTOR_SIZE 64
79#define TX_SMALL_PACKET 128
80#define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
81
82static const struct {
83	const char string[ETH_GSTRING_LEN];
84} ethtool_stats_keys[] = {
85	{ "rx_queue_max" },
86	{ "rx_queue_running_average" },
87	{ "tx_queue_max" },
88	{ "tx_queue_running_average" },
89	{ "rx_encaps_errors" },
90	{ "tx_timeout_count" },
91	{ "tx_restart_queue" },
92	{ "tx_kicks" },
93	{ "tx_flow_control_xon" },
94	{ "tx_flow_control_xoff" },
95	{ "rx_csum_offload_good" },
96	{ "rx_csum_offload_errors"},
97	{ "sg_ok"},
98	{ "sg_linearized"},
99};
100
101#define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
102
103static void vector_reset_stats(struct vector_private *vp)
104{
105	vp->estats.rx_queue_max = 0;
106	vp->estats.rx_queue_running_average = 0;
107	vp->estats.tx_queue_max = 0;
108	vp->estats.tx_queue_running_average = 0;
109	vp->estats.rx_encaps_errors = 0;
110	vp->estats.tx_timeout_count = 0;
111	vp->estats.tx_restart_queue = 0;
112	vp->estats.tx_kicks = 0;
113	vp->estats.tx_flow_control_xon = 0;
114	vp->estats.tx_flow_control_xoff = 0;
115	vp->estats.sg_ok = 0;
116	vp->estats.sg_linearized = 0;
117}
118
119static int get_mtu(struct arglist *def)
120{
121	char *mtu = uml_vector_fetch_arg(def, "mtu");
122	long result;
123
124	if (mtu != NULL) {
125		if (kstrtoul(mtu, 10, &result) == 0)
126			if ((result < (1 << 16) - 1) && (result >= 576))
127				return result;
128	}
129	return ETH_MAX_PACKET;
130}
131
132static char *get_bpf_file(struct arglist *def)
133{
134	return uml_vector_fetch_arg(def, "bpffile");
135}
136
137static bool get_bpf_flash(struct arglist *def)
138{
139	char *allow = uml_vector_fetch_arg(def, "bpfflash");
140	long result;
141
142	if (allow != NULL) {
143		if (kstrtoul(allow, 10, &result) == 0)
144			return (allow > 0);
145	}
146	return false;
147}
148
149static int get_depth(struct arglist *def)
150{
151	char *mtu = uml_vector_fetch_arg(def, "depth");
152	long result;
153
154	if (mtu != NULL) {
155		if (kstrtoul(mtu, 10, &result) == 0)
156			return result;
157	}
158	return DEFAULT_VECTOR_SIZE;
159}
160
161static int get_headroom(struct arglist *def)
162{
163	char *mtu = uml_vector_fetch_arg(def, "headroom");
164	long result;
165
166	if (mtu != NULL) {
167		if (kstrtoul(mtu, 10, &result) == 0)
168			return result;
169	}
170	return DEFAULT_HEADROOM;
171}
172
173static int get_req_size(struct arglist *def)
174{
175	char *gro = uml_vector_fetch_arg(def, "gro");
176	long result;
177
178	if (gro != NULL) {
179		if (kstrtoul(gro, 10, &result) == 0) {
180			if (result > 0)
181				return 65536;
182		}
183	}
184	return get_mtu(def) + ETH_HEADER_OTHER +
185		get_headroom(def) + SAFETY_MARGIN;
186}
187
188
189static int get_transport_options(struct arglist *def)
190{
191	char *transport = uml_vector_fetch_arg(def, "transport");
192	char *vector = uml_vector_fetch_arg(def, "vec");
193
194	int vec_rx = VECTOR_RX;
195	int vec_tx = VECTOR_TX;
196	long parsed;
197	int result = 0;
198
199	if (transport == NULL)
200		return -EINVAL;
201
202	if (vector != NULL) {
203		if (kstrtoul(vector, 10, &parsed) == 0) {
204			if (parsed == 0) {
205				vec_rx = 0;
206				vec_tx = 0;
207			}
208		}
209	}
210
211	if (get_bpf_flash(def))
212		result = VECTOR_BPF_FLASH;
213
214	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
215		return result;
216	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
217		return (result | vec_rx | VECTOR_BPF);
218	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
219		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
220	return (result | vec_rx | vec_tx);
221}
222
223
224/* A mini-buffer for packet drop read
225 * All of our supported transports are datagram oriented and we always
226 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
227 * than the packet size it still counts as full packet read and will
228 * clean the incoming stream to keep sigio/epoll happy
229 */
230
231#define DROP_BUFFER_SIZE 32
232
233static char *drop_buffer;
234
235/* Array backed queues optimized for bulk enqueue/dequeue and
236 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
237 * For more details and full design rationale see
238 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
239 */
240
241
242/*
243 * Advance the mmsg queue head by n = advance. Resets the queue to
244 * maximum enqueue/dequeue-at-once capacity if possible. Called by
245 * dequeuers. Caller must hold the head_lock!
246 */
247
248static int vector_advancehead(struct vector_queue *qi, int advance)
249{
250	int queue_depth;
251
252	qi->head =
253		(qi->head + advance)
254			% qi->max_depth;
255
256
257	spin_lock(&qi->tail_lock);
258	qi->queue_depth -= advance;
259
260	/* we are at 0, use this to
261	 * reset head and tail so we can use max size vectors
262	 */
263
264	if (qi->queue_depth == 0) {
265		qi->head = 0;
266		qi->tail = 0;
267	}
268	queue_depth = qi->queue_depth;
269	spin_unlock(&qi->tail_lock);
270	return queue_depth;
271}
272
273/*	Advance the queue tail by n = advance.
274 *	This is called by enqueuers which should hold the
275 *	head lock already
276 */
277
278static int vector_advancetail(struct vector_queue *qi, int advance)
279{
280	int queue_depth;
281
282	qi->tail =
283		(qi->tail + advance)
284			% qi->max_depth;
285	spin_lock(&qi->head_lock);
286	qi->queue_depth += advance;
287	queue_depth = qi->queue_depth;
288	spin_unlock(&qi->head_lock);
289	return queue_depth;
290}
291
292static int prep_msg(struct vector_private *vp,
293	struct sk_buff *skb,
294	struct iovec *iov)
295{
296	int iov_index = 0;
297	int nr_frags, frag;
298	skb_frag_t *skb_frag;
299
300	nr_frags = skb_shinfo(skb)->nr_frags;
301	if (nr_frags > MAX_IOV_SIZE) {
302		if (skb_linearize(skb) != 0)
303			goto drop;
304	}
305	if (vp->header_size > 0) {
306		iov[iov_index].iov_len = vp->header_size;
307		vp->form_header(iov[iov_index].iov_base, skb, vp);
308		iov_index++;
309	}
310	iov[iov_index].iov_base = skb->data;
311	if (nr_frags > 0) {
312		iov[iov_index].iov_len = skb->len - skb->data_len;
313		vp->estats.sg_ok++;
314	} else
315		iov[iov_index].iov_len = skb->len;
316	iov_index++;
317	for (frag = 0; frag < nr_frags; frag++) {
318		skb_frag = &skb_shinfo(skb)->frags[frag];
319		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
320		iov[iov_index].iov_len = skb_frag_size(skb_frag);
321		iov_index++;
322	}
323	return iov_index;
324drop:
325	return -1;
326}
327/*
328 * Generic vector enqueue with support for forming headers using transport
329 * specific callback. Allows GRE, L2TPv3, RAW and other transports
330 * to use a common enqueue procedure in vector mode
331 */
332
333static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
334{
335	struct vector_private *vp = netdev_priv(qi->dev);
336	int queue_depth;
337	int packet_len;
338	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
339	int iov_count;
340
341	spin_lock(&qi->tail_lock);
342	spin_lock(&qi->head_lock);
343	queue_depth = qi->queue_depth;
344	spin_unlock(&qi->head_lock);
345
346	if (skb)
347		packet_len = skb->len;
348
349	if (queue_depth < qi->max_depth) {
350
351		*(qi->skbuff_vector + qi->tail) = skb;
352		mmsg_vector += qi->tail;
353		iov_count = prep_msg(
354			vp,
355			skb,
356			mmsg_vector->msg_hdr.msg_iov
357		);
358		if (iov_count < 1)
359			goto drop;
360		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
361		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
362		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
363		queue_depth = vector_advancetail(qi, 1);
364	} else
365		goto drop;
366	spin_unlock(&qi->tail_lock);
367	return queue_depth;
368drop:
369	qi->dev->stats.tx_dropped++;
370	if (skb != NULL) {
371		packet_len = skb->len;
372		dev_consume_skb_any(skb);
373		netdev_completed_queue(qi->dev, 1, packet_len);
374	}
375	spin_unlock(&qi->tail_lock);
376	return queue_depth;
377}
378
379static int consume_vector_skbs(struct vector_queue *qi, int count)
380{
381	struct sk_buff *skb;
382	int skb_index;
383	int bytes_compl = 0;
384
385	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
386		skb = *(qi->skbuff_vector + skb_index);
387		/* mark as empty to ensure correct destruction if
388		 * needed
389		 */
390		bytes_compl += skb->len;
391		*(qi->skbuff_vector + skb_index) = NULL;
392		dev_consume_skb_any(skb);
393	}
394	qi->dev->stats.tx_bytes += bytes_compl;
395	qi->dev->stats.tx_packets += count;
396	netdev_completed_queue(qi->dev, count, bytes_compl);
397	return vector_advancehead(qi, count);
398}
399
400/*
401 * Generic vector deque via sendmmsg with support for forming headers
402 * using transport specific callback. Allows GRE, L2TPv3, RAW and
403 * other transports to use a common dequeue procedure in vector mode
404 */
405
406
407static int vector_send(struct vector_queue *qi)
408{
409	struct vector_private *vp = netdev_priv(qi->dev);
410	struct mmsghdr *send_from;
411	int result = 0, send_len, queue_depth = qi->max_depth;
412
413	if (spin_trylock(&qi->head_lock)) {
414		if (spin_trylock(&qi->tail_lock)) {
415			/* update queue_depth to current value */
416			queue_depth = qi->queue_depth;
417			spin_unlock(&qi->tail_lock);
418			while (queue_depth > 0) {
419				/* Calculate the start of the vector */
420				send_len = queue_depth;
421				send_from = qi->mmsg_vector;
422				send_from += qi->head;
423				/* Adjust vector size if wraparound */
424				if (send_len + qi->head > qi->max_depth)
425					send_len = qi->max_depth - qi->head;
426				/* Try to TX as many packets as possible */
427				if (send_len > 0) {
428					result = uml_vector_sendmmsg(
429						 vp->fds->tx_fd,
430						 send_from,
431						 send_len,
432						 0
433					);
434					vp->in_write_poll =
435						(result != send_len);
436				}
437				/* For some of the sendmmsg error scenarios
438				 * we may end being unsure in the TX success
439				 * for all packets. It is safer to declare
440				 * them all TX-ed and blame the network.
441				 */
442				if (result < 0) {
443					if (net_ratelimit())
444						netdev_err(vp->dev, "sendmmsg err=%i\n",
445							result);
446					vp->in_error = true;
447					result = send_len;
448				}
449				if (result > 0) {
450					queue_depth =
451						consume_vector_skbs(qi, result);
452					/* This is equivalent to an TX IRQ.
453					 * Restart the upper layers to feed us
454					 * more packets.
455					 */
456					if (result > vp->estats.tx_queue_max)
457						vp->estats.tx_queue_max = result;
458					vp->estats.tx_queue_running_average =
459						(vp->estats.tx_queue_running_average + result) >> 1;
460				}
461				netif_wake_queue(qi->dev);
462				/* if TX is busy, break out of the send loop,
463				 *  poll write IRQ will reschedule xmit for us
464				 */
465				if (result != send_len) {
466					vp->estats.tx_restart_queue++;
467					break;
468				}
469			}
470		}
471		spin_unlock(&qi->head_lock);
472	}
473	return queue_depth;
474}
475
476/* Queue destructor. Deliberately stateless so we can use
477 * it in queue cleanup if initialization fails.
478 */
479
480static void destroy_queue(struct vector_queue *qi)
481{
482	int i;
483	struct iovec *iov;
484	struct vector_private *vp = netdev_priv(qi->dev);
485	struct mmsghdr *mmsg_vector;
486
487	if (qi == NULL)
488		return;
489	/* deallocate any skbuffs - we rely on any unused to be
490	 * set to NULL.
491	 */
492	if (qi->skbuff_vector != NULL) {
493		for (i = 0; i < qi->max_depth; i++) {
494			if (*(qi->skbuff_vector + i) != NULL)
495				dev_kfree_skb_any(*(qi->skbuff_vector + i));
496		}
497		kfree(qi->skbuff_vector);
498	}
499	/* deallocate matching IOV structures including header buffs */
500	if (qi->mmsg_vector != NULL) {
501		mmsg_vector = qi->mmsg_vector;
502		for (i = 0; i < qi->max_depth; i++) {
503			iov = mmsg_vector->msg_hdr.msg_iov;
504			if (iov != NULL) {
505				if ((vp->header_size > 0) &&
506					(iov->iov_base != NULL))
507					kfree(iov->iov_base);
508				kfree(iov);
509			}
510			mmsg_vector++;
511		}
512		kfree(qi->mmsg_vector);
513	}
514	kfree(qi);
515}
516
517/*
518 * Queue constructor. Create a queue with a given side.
519 */
520static struct vector_queue *create_queue(
521	struct vector_private *vp,
522	int max_size,
523	int header_size,
524	int num_extra_frags)
525{
526	struct vector_queue *result;
527	int i;
528	struct iovec *iov;
529	struct mmsghdr *mmsg_vector;
530
531	result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
532	if (result == NULL)
533		return NULL;
534	result->max_depth = max_size;
535	result->dev = vp->dev;
536	result->mmsg_vector = kmalloc(
537		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
538	if (result->mmsg_vector == NULL)
539		goto out_mmsg_fail;
540	result->skbuff_vector = kmalloc(
541		(sizeof(void *) * max_size), GFP_KERNEL);
542	if (result->skbuff_vector == NULL)
543		goto out_skb_fail;
544
545	/* further failures can be handled safely by destroy_queue*/
546
547	mmsg_vector = result->mmsg_vector;
548	for (i = 0; i < max_size; i++) {
549		/* Clear all pointers - we use non-NULL as marking on
550		 * what to free on destruction
551		 */
552		*(result->skbuff_vector + i) = NULL;
553		mmsg_vector->msg_hdr.msg_iov = NULL;
554		mmsg_vector++;
555	}
556	mmsg_vector = result->mmsg_vector;
557	result->max_iov_frags = num_extra_frags;
558	for (i = 0; i < max_size; i++) {
559		if (vp->header_size > 0)
560			iov = kmalloc_array(3 + num_extra_frags,
561					    sizeof(struct iovec),
562					    GFP_KERNEL
563			);
564		else
565			iov = kmalloc_array(2 + num_extra_frags,
566					    sizeof(struct iovec),
567					    GFP_KERNEL
568			);
569		if (iov == NULL)
570			goto out_fail;
571		mmsg_vector->msg_hdr.msg_iov = iov;
572		mmsg_vector->msg_hdr.msg_iovlen = 1;
573		mmsg_vector->msg_hdr.msg_control = NULL;
574		mmsg_vector->msg_hdr.msg_controllen = 0;
575		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
576		mmsg_vector->msg_hdr.msg_name = NULL;
577		mmsg_vector->msg_hdr.msg_namelen = 0;
578		if (vp->header_size > 0) {
579			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
580			if (iov->iov_base == NULL)
581				goto out_fail;
582			iov->iov_len = header_size;
583			mmsg_vector->msg_hdr.msg_iovlen = 2;
584			iov++;
585		}
586		iov->iov_base = NULL;
587		iov->iov_len = 0;
588		mmsg_vector++;
589	}
590	spin_lock_init(&result->head_lock);
591	spin_lock_init(&result->tail_lock);
592	result->queue_depth = 0;
593	result->head = 0;
594	result->tail = 0;
595	return result;
596out_skb_fail:
597	kfree(result->mmsg_vector);
598out_mmsg_fail:
599	kfree(result);
600	return NULL;
601out_fail:
602	destroy_queue(result);
603	return NULL;
604}
605
606/*
607 * We do not use the RX queue as a proper wraparound queue for now
608 * This is not necessary because the consumption via napi_gro_receive()
609 * happens in-line. While we can try using the return code of
610 * netif_rx() for flow control there are no drivers doing this today.
611 * For this RX specific use we ignore the tail/head locks and
612 * just read into a prepared queue filled with skbuffs.
613 */
614
615static struct sk_buff *prep_skb(
616	struct vector_private *vp,
617	struct user_msghdr *msg)
618{
619	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
620	struct sk_buff *result;
621	int iov_index = 0, len;
622	struct iovec *iov = msg->msg_iov;
623	int err, nr_frags, frag;
624	skb_frag_t *skb_frag;
625
626	if (vp->req_size <= linear)
627		len = linear;
628	else
629		len = vp->req_size;
630	result = alloc_skb_with_frags(
631		linear,
632		len - vp->max_packet,
633		3,
634		&err,
635		GFP_ATOMIC
636	);
637	if (vp->header_size > 0)
638		iov_index++;
639	if (result == NULL) {
640		iov[iov_index].iov_base = NULL;
641		iov[iov_index].iov_len = 0;
642		goto done;
643	}
644	skb_reserve(result, vp->headroom);
645	result->dev = vp->dev;
646	skb_put(result, vp->max_packet);
647	result->data_len = len - vp->max_packet;
648	result->len += len - vp->max_packet;
649	skb_reset_mac_header(result);
650	result->ip_summed = CHECKSUM_NONE;
651	iov[iov_index].iov_base = result->data;
652	iov[iov_index].iov_len = vp->max_packet;
653	iov_index++;
654
655	nr_frags = skb_shinfo(result)->nr_frags;
656	for (frag = 0; frag < nr_frags; frag++) {
657		skb_frag = &skb_shinfo(result)->frags[frag];
658		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
659		if (iov[iov_index].iov_base != NULL)
660			iov[iov_index].iov_len = skb_frag_size(skb_frag);
661		else
662			iov[iov_index].iov_len = 0;
663		iov_index++;
664	}
665done:
666	msg->msg_iovlen = iov_index;
667	return result;
668}
669
670
671/* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
672
673static void prep_queue_for_rx(struct vector_queue *qi)
674{
675	struct vector_private *vp = netdev_priv(qi->dev);
676	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
677	void **skbuff_vector = qi->skbuff_vector;
678	int i;
679
680	if (qi->queue_depth == 0)
681		return;
682	for (i = 0; i < qi->queue_depth; i++) {
683		/* it is OK if allocation fails - recvmmsg with NULL data in
684		 * iov argument still performs an RX, just drops the packet
685		 * This allows us stop faffing around with a "drop buffer"
686		 */
687
688		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
689		skbuff_vector++;
690		mmsg_vector++;
691	}
692	qi->queue_depth = 0;
693}
694
695static struct vector_device *find_device(int n)
696{
697	struct vector_device *device;
698	struct list_head *ele;
699
700	spin_lock(&vector_devices_lock);
701	list_for_each(ele, &vector_devices) {
702		device = list_entry(ele, struct vector_device, list);
703		if (device->unit == n)
704			goto out;
705	}
706	device = NULL;
707 out:
708	spin_unlock(&vector_devices_lock);
709	return device;
710}
711
712static int vector_parse(char *str, int *index_out, char **str_out,
713			char **error_out)
714{
715	int n, len, err;
716	char *start = str;
717
718	len = strlen(str);
719
720	while ((*str != ':') && (strlen(str) > 1))
721		str++;
722	if (*str != ':') {
723		*error_out = "Expected ':' after device number";
724		return -EINVAL;
725	}
726	*str = '\0';
727
728	err = kstrtouint(start, 0, &n);
729	if (err < 0) {
730		*error_out = "Bad device number";
731		return err;
732	}
733
734	str++;
735	if (find_device(n)) {
736		*error_out = "Device already configured";
737		return -EINVAL;
738	}
739
740	*index_out = n;
741	*str_out = str;
742	return 0;
743}
744
745static int vector_config(char *str, char **error_out)
746{
747	int err, n;
748	char *params;
749	struct arglist *parsed;
750
751	err = vector_parse(str, &n, &params, error_out);
752	if (err != 0)
753		return err;
754
755	/* This string is broken up and the pieces used by the underlying
756	 * driver. We should copy it to make sure things do not go wrong
757	 * later.
758	 */
759
760	params = kstrdup(params, GFP_KERNEL);
761	if (params == NULL) {
762		*error_out = "vector_config failed to strdup string";
763		return -ENOMEM;
764	}
765
766	parsed = uml_parse_vector_ifspec(params);
767
768	if (parsed == NULL) {
769		*error_out = "vector_config failed to parse parameters";
770		kfree(params);
771		return -EINVAL;
772	}
773
774	vector_eth_configure(n, parsed);
775	return 0;
776}
777
778static int vector_id(char **str, int *start_out, int *end_out)
779{
780	char *end;
781	int n;
782
783	n = simple_strtoul(*str, &end, 0);
784	if ((*end != '\0') || (end == *str))
785		return -1;
786
787	*start_out = n;
788	*end_out = n;
789	*str = end;
790	return n;
791}
792
793static int vector_remove(int n, char **error_out)
794{
795	struct vector_device *vec_d;
796	struct net_device *dev;
797	struct vector_private *vp;
798
799	vec_d = find_device(n);
800	if (vec_d == NULL)
801		return -ENODEV;
802	dev = vec_d->dev;
803	vp = netdev_priv(dev);
804	if (vp->fds != NULL)
805		return -EBUSY;
806	unregister_netdev(dev);
807	platform_device_unregister(&vec_d->pdev);
808	return 0;
809}
810
811/*
812 * There is no shared per-transport initialization code, so
813 * we will just initialize each interface one by one and
814 * add them to a list
815 */
816
817static struct platform_driver uml_net_driver = {
818	.driver = {
819		.name = DRIVER_NAME,
820	},
821};
822
823
824static void vector_device_release(struct device *dev)
825{
826	struct vector_device *device = dev_get_drvdata(dev);
827	struct net_device *netdev = device->dev;
828
829	list_del(&device->list);
830	kfree(device);
831	free_netdev(netdev);
832}
833
834/* Bog standard recv using recvmsg - not used normally unless the user
835 * explicitly specifies not to use recvmmsg vector RX.
836 */
837
838static int vector_legacy_rx(struct vector_private *vp)
839{
840	int pkt_len;
841	struct user_msghdr hdr;
842	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
843	int iovpos = 0;
844	struct sk_buff *skb;
845	int header_check;
846
847	hdr.msg_name = NULL;
848	hdr.msg_namelen = 0;
849	hdr.msg_iov = (struct iovec *) &iov;
850	hdr.msg_control = NULL;
851	hdr.msg_controllen = 0;
852	hdr.msg_flags = 0;
853
854	if (vp->header_size > 0) {
855		iov[0].iov_base = vp->header_rxbuffer;
856		iov[0].iov_len = vp->header_size;
857	}
858
859	skb = prep_skb(vp, &hdr);
860
861	if (skb == NULL) {
862		/* Read a packet into drop_buffer and don't do
863		 * anything with it.
864		 */
865		iov[iovpos].iov_base = drop_buffer;
866		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
867		hdr.msg_iovlen = 1;
868		vp->dev->stats.rx_dropped++;
869	}
870
871	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
872	if (pkt_len < 0) {
873		vp->in_error = true;
874		return pkt_len;
875	}
876
877	if (skb != NULL) {
878		if (pkt_len > vp->header_size) {
879			if (vp->header_size > 0) {
880				header_check = vp->verify_header(
881					vp->header_rxbuffer, skb, vp);
882				if (header_check < 0) {
883					dev_kfree_skb_irq(skb);
884					vp->dev->stats.rx_dropped++;
885					vp->estats.rx_encaps_errors++;
886					return 0;
887				}
888				if (header_check > 0) {
889					vp->estats.rx_csum_offload_good++;
890					skb->ip_summed = CHECKSUM_UNNECESSARY;
891				}
892			}
893			pskb_trim(skb, pkt_len - vp->rx_header_size);
894			skb->protocol = eth_type_trans(skb, skb->dev);
895			vp->dev->stats.rx_bytes += skb->len;
896			vp->dev->stats.rx_packets++;
897			napi_gro_receive(&vp->napi, skb);
898		} else {
899			dev_kfree_skb_irq(skb);
900		}
901	}
902	return pkt_len;
903}
904
905/*
906 * Packet at a time TX which falls back to vector TX if the
907 * underlying transport is busy.
908 */
909
910
911
912static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
913{
914	struct iovec iov[3 + MAX_IOV_SIZE];
915	int iov_count, pkt_len = 0;
916
917	iov[0].iov_base = vp->header_txbuffer;
918	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
919
920	if (iov_count < 1)
921		goto drop;
922
923	pkt_len = uml_vector_writev(
924		vp->fds->tx_fd,
925		(struct iovec *) &iov,
926		iov_count
927	);
928
929	if (pkt_len < 0)
930		goto drop;
931
932	netif_trans_update(vp->dev);
933	netif_wake_queue(vp->dev);
934
935	if (pkt_len > 0) {
936		vp->dev->stats.tx_bytes += skb->len;
937		vp->dev->stats.tx_packets++;
938	} else {
939		vp->dev->stats.tx_dropped++;
940	}
941	consume_skb(skb);
942	return pkt_len;
943drop:
944	vp->dev->stats.tx_dropped++;
945	consume_skb(skb);
946	if (pkt_len < 0)
947		vp->in_error = true;
948	return pkt_len;
949}
950
951/*
952 * Receive as many messages as we can in one call using the special
953 * mmsg vector matched to an skb vector which we prepared earlier.
954 */
955
956static int vector_mmsg_rx(struct vector_private *vp, int budget)
957{
958	int packet_count, i;
959	struct vector_queue *qi = vp->rx_queue;
960	struct sk_buff *skb;
961	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
962	void **skbuff_vector = qi->skbuff_vector;
963	int header_check;
964
965	/* Refresh the vector and make sure it is with new skbs and the
966	 * iovs are updated to point to them.
967	 */
968
969	prep_queue_for_rx(qi);
970
971	/* Fire the Lazy Gun - get as many packets as we can in one go. */
972
973	if (budget > qi->max_depth)
974		budget = qi->max_depth;
975
976	packet_count = uml_vector_recvmmsg(
977		vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
978
979	if (packet_count < 0)
980		vp->in_error = true;
981
982	if (packet_count <= 0)
983		return packet_count;
984
985	/* We treat packet processing as enqueue, buffer refresh as dequeue
986	 * The queue_depth tells us how many buffers have been used and how
987	 * many do we need to prep the next time prep_queue_for_rx() is called.
988	 */
989
990	qi->queue_depth = packet_count;
991
992	for (i = 0; i < packet_count; i++) {
993		skb = (*skbuff_vector);
994		if (mmsg_vector->msg_len > vp->header_size) {
995			if (vp->header_size > 0) {
996				header_check = vp->verify_header(
997					mmsg_vector->msg_hdr.msg_iov->iov_base,
998					skb,
999					vp
1000				);
1001				if (header_check < 0) {
1002				/* Overlay header failed to verify - discard.
1003				 * We can actually keep this skb and reuse it,
1004				 * but that will make the prep logic too
1005				 * complex.
1006				 */
1007					dev_kfree_skb_irq(skb);
1008					vp->estats.rx_encaps_errors++;
1009					continue;
1010				}
1011				if (header_check > 0) {
1012					vp->estats.rx_csum_offload_good++;
1013					skb->ip_summed = CHECKSUM_UNNECESSARY;
1014				}
1015			}
1016			pskb_trim(skb,
1017				mmsg_vector->msg_len - vp->rx_header_size);
1018			skb->protocol = eth_type_trans(skb, skb->dev);
1019			/*
1020			 * We do not need to lock on updating stats here
1021			 * The interrupt loop is non-reentrant.
1022			 */
1023			vp->dev->stats.rx_bytes += skb->len;
1024			vp->dev->stats.rx_packets++;
1025			napi_gro_receive(&vp->napi, skb);
1026		} else {
1027			/* Overlay header too short to do anything - discard.
1028			 * We can actually keep this skb and reuse it,
1029			 * but that will make the prep logic too complex.
1030			 */
1031			if (skb != NULL)
1032				dev_kfree_skb_irq(skb);
1033		}
1034		(*skbuff_vector) = NULL;
1035		/* Move to the next buffer element */
1036		mmsg_vector++;
1037		skbuff_vector++;
1038	}
1039	if (packet_count > 0) {
1040		if (vp->estats.rx_queue_max < packet_count)
1041			vp->estats.rx_queue_max = packet_count;
1042		vp->estats.rx_queue_running_average =
1043			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1044	}
1045	return packet_count;
1046}
1047
1048static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1049{
1050	struct vector_private *vp = netdev_priv(dev);
1051	int queue_depth = 0;
1052
1053	if (vp->in_error) {
1054		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1055		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1056			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1057		return NETDEV_TX_BUSY;
1058	}
1059
1060	if ((vp->options & VECTOR_TX) == 0) {
1061		writev_tx(vp, skb);
1062		return NETDEV_TX_OK;
1063	}
1064
1065	/* We do BQL only in the vector path, no point doing it in
1066	 * packet at a time mode as there is no device queue
1067	 */
1068
1069	netdev_sent_queue(vp->dev, skb->len);
1070	queue_depth = vector_enqueue(vp->tx_queue, skb);
1071
1072	if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1073		mod_timer(&vp->tl, vp->coalesce);
1074		return NETDEV_TX_OK;
1075	} else {
1076		queue_depth = vector_send(vp->tx_queue);
1077		if (queue_depth > 0)
1078			napi_schedule(&vp->napi);
1079	}
1080
1081	return NETDEV_TX_OK;
1082}
1083
1084static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1085{
1086	struct net_device *dev = dev_id;
1087	struct vector_private *vp = netdev_priv(dev);
1088
1089	if (!netif_running(dev))
1090		return IRQ_NONE;
1091	napi_schedule(&vp->napi);
1092	return IRQ_HANDLED;
1093
1094}
1095
1096static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1097{
1098	struct net_device *dev = dev_id;
1099	struct vector_private *vp = netdev_priv(dev);
1100
1101	if (!netif_running(dev))
1102		return IRQ_NONE;
1103	/* We need to pay attention to it only if we got
1104	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1105	 * we ignore it. In the future, it may be worth
1106	 * it to improve the IRQ controller a bit to make
1107	 * tweaking the IRQ mask less costly
1108	 */
1109
1110	napi_schedule(&vp->napi);
1111	return IRQ_HANDLED;
1112
1113}
1114
1115static int irq_rr;
1116
1117static int vector_net_close(struct net_device *dev)
1118{
1119	struct vector_private *vp = netdev_priv(dev);
1120	unsigned long flags;
1121
1122	netif_stop_queue(dev);
1123	del_timer(&vp->tl);
1124
1125	if (vp->fds == NULL)
1126		return 0;
1127
1128	/* Disable and free all IRQS */
1129	if (vp->rx_irq > 0) {
1130		um_free_irq(vp->rx_irq, dev);
1131		vp->rx_irq = 0;
1132	}
1133	if (vp->tx_irq > 0) {
1134		um_free_irq(vp->tx_irq, dev);
1135		vp->tx_irq = 0;
1136	}
1137	napi_disable(&vp->napi);
1138	netif_napi_del(&vp->napi);
1139	if (vp->fds->rx_fd > 0) {
1140		if (vp->bpf)
1141			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1142		os_close_file(vp->fds->rx_fd);
1143		vp->fds->rx_fd = -1;
1144	}
1145	if (vp->fds->tx_fd > 0) {
1146		os_close_file(vp->fds->tx_fd);
1147		vp->fds->tx_fd = -1;
1148	}
1149	if (vp->bpf != NULL)
1150		kfree(vp->bpf->filter);
1151	kfree(vp->bpf);
1152	vp->bpf = NULL;
1153	kfree(vp->fds->remote_addr);
1154	kfree(vp->transport_data);
1155	kfree(vp->header_rxbuffer);
1156	kfree(vp->header_txbuffer);
1157	if (vp->rx_queue != NULL)
1158		destroy_queue(vp->rx_queue);
1159	if (vp->tx_queue != NULL)
1160		destroy_queue(vp->tx_queue);
1161	kfree(vp->fds);
1162	vp->fds = NULL;
1163	spin_lock_irqsave(&vp->lock, flags);
1164	vp->opened = false;
1165	vp->in_error = false;
1166	spin_unlock_irqrestore(&vp->lock, flags);
1167	return 0;
1168}
1169
1170static int vector_poll(struct napi_struct *napi, int budget)
1171{
1172	struct vector_private *vp = container_of(napi, struct vector_private, napi);
1173	int work_done = 0;
1174	int err;
1175	bool tx_enqueued = false;
1176
1177	if ((vp->options & VECTOR_TX) != 0)
1178		tx_enqueued = (vector_send(vp->tx_queue) > 0);
1179	if ((vp->options & VECTOR_RX) > 0)
1180		err = vector_mmsg_rx(vp, budget);
1181	else {
1182		err = vector_legacy_rx(vp);
1183		if (err > 0)
1184			err = 1;
1185	}
1186	if (err > 0)
1187		work_done += err;
1188
1189	if (tx_enqueued || err > 0)
1190		napi_schedule(napi);
1191	if (work_done < budget)
1192		napi_complete_done(napi, work_done);
1193	return work_done;
1194}
1195
1196static void vector_reset_tx(struct work_struct *work)
1197{
1198	struct vector_private *vp =
1199		container_of(work, struct vector_private, reset_tx);
1200	netdev_reset_queue(vp->dev);
1201	netif_start_queue(vp->dev);
1202	netif_wake_queue(vp->dev);
1203}
1204
1205static int vector_net_open(struct net_device *dev)
1206{
1207	struct vector_private *vp = netdev_priv(dev);
1208	unsigned long flags;
1209	int err = -EINVAL;
1210	struct vector_device *vdevice;
1211
1212	spin_lock_irqsave(&vp->lock, flags);
1213	if (vp->opened) {
1214		spin_unlock_irqrestore(&vp->lock, flags);
1215		return -ENXIO;
1216	}
1217	vp->opened = true;
1218	spin_unlock_irqrestore(&vp->lock, flags);
1219
1220	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1221
1222	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1223
1224	if (vp->fds == NULL)
1225		goto out_close;
1226
1227	if (build_transport_data(vp) < 0)
1228		goto out_close;
1229
1230	if ((vp->options & VECTOR_RX) > 0) {
1231		vp->rx_queue = create_queue(
1232			vp,
1233			get_depth(vp->parsed),
1234			vp->rx_header_size,
1235			MAX_IOV_SIZE
1236		);
1237		vp->rx_queue->queue_depth = get_depth(vp->parsed);
1238	} else {
1239		vp->header_rxbuffer = kmalloc(
1240			vp->rx_header_size,
1241			GFP_KERNEL
1242		);
1243		if (vp->header_rxbuffer == NULL)
1244			goto out_close;
1245	}
1246	if ((vp->options & VECTOR_TX) > 0) {
1247		vp->tx_queue = create_queue(
1248			vp,
1249			get_depth(vp->parsed),
1250			vp->header_size,
1251			MAX_IOV_SIZE
1252		);
1253	} else {
1254		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1255		if (vp->header_txbuffer == NULL)
1256			goto out_close;
1257	}
1258
1259	netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1260			      get_depth(vp->parsed));
1261	napi_enable(&vp->napi);
1262
1263	/* READ IRQ */
1264	err = um_request_irq(
1265		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1266			IRQ_READ, vector_rx_interrupt,
1267			IRQF_SHARED, dev->name, dev);
1268	if (err < 0) {
1269		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1270		err = -ENETUNREACH;
1271		goto out_close;
1272	}
1273	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1274	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1275	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1276
1277	/* WRITE IRQ - we need it only if we have vector TX */
1278	if ((vp->options & VECTOR_TX) > 0) {
1279		err = um_request_irq(
1280			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1281				IRQ_WRITE, vector_tx_interrupt,
1282				IRQF_SHARED, dev->name, dev);
1283		if (err < 0) {
1284			netdev_err(dev,
1285				"vector_open: failed to get tx irq(%d)\n", err);
1286			err = -ENETUNREACH;
1287			goto out_close;
1288		}
1289		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1290		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1291	}
1292
1293	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1294		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1295			vp->options |= VECTOR_BPF;
1296	}
1297	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1298		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1299
1300	if (vp->bpf != NULL)
1301		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1302
1303	netif_start_queue(dev);
1304	vector_reset_stats(vp);
1305
1306	/* clear buffer - it can happen that the host side of the interface
1307	 * is full when we get here. In this case, new data is never queued,
1308	 * SIGIOs never arrive, and the net never works.
1309	 */
1310
1311	napi_schedule(&vp->napi);
1312
1313	vdevice = find_device(vp->unit);
1314	vdevice->opened = 1;
1315
1316	if ((vp->options & VECTOR_TX) != 0)
1317		add_timer(&vp->tl);
1318	return 0;
1319out_close:
1320	vector_net_close(dev);
1321	return err;
1322}
1323
1324
1325static void vector_net_set_multicast_list(struct net_device *dev)
1326{
1327	/* TODO: - we can do some BPF games here */
1328	return;
1329}
1330
1331static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1332{
1333	struct vector_private *vp = netdev_priv(dev);
1334
1335	vp->estats.tx_timeout_count++;
1336	netif_trans_update(dev);
1337	schedule_work(&vp->reset_tx);
1338}
1339
1340static netdev_features_t vector_fix_features(struct net_device *dev,
1341	netdev_features_t features)
1342{
1343	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1344	return features;
1345}
1346
1347static int vector_set_features(struct net_device *dev,
1348	netdev_features_t features)
1349{
1350	struct vector_private *vp = netdev_priv(dev);
1351	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1352	 * no way to negotiate it on raw sockets, so we can change
1353	 * only our side.
1354	 */
1355	if (features & NETIF_F_GRO)
1356		/* All new frame buffers will be GRO-sized */
1357		vp->req_size = 65536;
1358	else
1359		/* All new frame buffers will be normal sized */
1360		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1361	return 0;
1362}
1363
1364#ifdef CONFIG_NET_POLL_CONTROLLER
1365static void vector_net_poll_controller(struct net_device *dev)
1366{
1367	disable_irq(dev->irq);
1368	vector_rx_interrupt(dev->irq, dev);
1369	enable_irq(dev->irq);
1370}
1371#endif
1372
1373static void vector_net_get_drvinfo(struct net_device *dev,
1374				struct ethtool_drvinfo *info)
1375{
1376	strscpy(info->driver, DRIVER_NAME);
1377}
1378
1379static int vector_net_load_bpf_flash(struct net_device *dev,
1380				struct ethtool_flash *efl)
1381{
1382	struct vector_private *vp = netdev_priv(dev);
1383	struct vector_device *vdevice;
1384	const struct firmware *fw;
1385	int result = 0;
1386
1387	if (!(vp->options & VECTOR_BPF_FLASH)) {
1388		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1389		return -1;
1390	}
1391
1392	spin_lock(&vp->lock);
1393
1394	if (vp->bpf != NULL) {
1395		if (vp->opened)
1396			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1397		kfree(vp->bpf->filter);
1398		vp->bpf->filter = NULL;
1399	} else {
1400		vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1401		if (vp->bpf == NULL) {
1402			netdev_err(dev, "failed to allocate memory for firmware\n");
1403			goto flash_fail;
1404		}
1405	}
1406
1407	vdevice = find_device(vp->unit);
1408
1409	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1410		goto flash_fail;
1411
1412	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1413	if (!vp->bpf->filter)
1414		goto free_buffer;
1415
1416	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1417	release_firmware(fw);
1418
1419	if (vp->opened)
1420		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1421
1422	spin_unlock(&vp->lock);
1423
1424	return result;
1425
1426free_buffer:
1427	release_firmware(fw);
1428
1429flash_fail:
1430	spin_unlock(&vp->lock);
1431	if (vp->bpf != NULL)
1432		kfree(vp->bpf->filter);
1433	kfree(vp->bpf);
1434	vp->bpf = NULL;
1435	return -1;
1436}
1437
1438static void vector_get_ringparam(struct net_device *netdev,
1439				 struct ethtool_ringparam *ring,
1440				 struct kernel_ethtool_ringparam *kernel_ring,
1441				 struct netlink_ext_ack *extack)
1442{
1443	struct vector_private *vp = netdev_priv(netdev);
1444
1445	ring->rx_max_pending = vp->rx_queue->max_depth;
1446	ring->tx_max_pending = vp->tx_queue->max_depth;
1447	ring->rx_pending = vp->rx_queue->max_depth;
1448	ring->tx_pending = vp->tx_queue->max_depth;
1449}
1450
1451static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1452{
1453	switch (stringset) {
1454	case ETH_SS_TEST:
1455		*buf = '\0';
1456		break;
1457	case ETH_SS_STATS:
1458		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1459		break;
1460	default:
1461		WARN_ON(1);
1462		break;
1463	}
1464}
1465
1466static int vector_get_sset_count(struct net_device *dev, int sset)
1467{
1468	switch (sset) {
1469	case ETH_SS_TEST:
1470		return 0;
1471	case ETH_SS_STATS:
1472		return VECTOR_NUM_STATS;
1473	default:
1474		return -EOPNOTSUPP;
1475	}
1476}
1477
1478static void vector_get_ethtool_stats(struct net_device *dev,
1479	struct ethtool_stats *estats,
1480	u64 *tmp_stats)
1481{
1482	struct vector_private *vp = netdev_priv(dev);
1483
1484	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1485}
1486
1487static int vector_get_coalesce(struct net_device *netdev,
1488			       struct ethtool_coalesce *ec,
1489			       struct kernel_ethtool_coalesce *kernel_coal,
1490			       struct netlink_ext_ack *extack)
1491{
1492	struct vector_private *vp = netdev_priv(netdev);
1493
1494	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1495	return 0;
1496}
1497
1498static int vector_set_coalesce(struct net_device *netdev,
1499			       struct ethtool_coalesce *ec,
1500			       struct kernel_ethtool_coalesce *kernel_coal,
1501			       struct netlink_ext_ack *extack)
1502{
1503	struct vector_private *vp = netdev_priv(netdev);
1504
1505	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1506	if (vp->coalesce == 0)
1507		vp->coalesce = 1;
1508	return 0;
1509}
1510
1511static const struct ethtool_ops vector_net_ethtool_ops = {
1512	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1513	.get_drvinfo	= vector_net_get_drvinfo,
1514	.get_link	= ethtool_op_get_link,
1515	.get_ts_info	= ethtool_op_get_ts_info,
1516	.get_ringparam	= vector_get_ringparam,
1517	.get_strings	= vector_get_strings,
1518	.get_sset_count	= vector_get_sset_count,
1519	.get_ethtool_stats = vector_get_ethtool_stats,
1520	.get_coalesce	= vector_get_coalesce,
1521	.set_coalesce	= vector_set_coalesce,
1522	.flash_device	= vector_net_load_bpf_flash,
1523};
1524
1525
1526static const struct net_device_ops vector_netdev_ops = {
1527	.ndo_open		= vector_net_open,
1528	.ndo_stop		= vector_net_close,
1529	.ndo_start_xmit		= vector_net_start_xmit,
1530	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1531	.ndo_tx_timeout		= vector_net_tx_timeout,
1532	.ndo_set_mac_address	= eth_mac_addr,
1533	.ndo_validate_addr	= eth_validate_addr,
1534	.ndo_fix_features	= vector_fix_features,
1535	.ndo_set_features	= vector_set_features,
1536#ifdef CONFIG_NET_POLL_CONTROLLER
1537	.ndo_poll_controller = vector_net_poll_controller,
1538#endif
1539};
1540
1541static void vector_timer_expire(struct timer_list *t)
1542{
1543	struct vector_private *vp = from_timer(vp, t, tl);
1544
1545	vp->estats.tx_kicks++;
1546	napi_schedule(&vp->napi);
1547}
1548
1549
1550
1551static void vector_eth_configure(
1552		int n,
1553		struct arglist *def
1554	)
1555{
1556	struct vector_device *device;
1557	struct net_device *dev;
1558	struct vector_private *vp;
1559	int err;
1560
1561	device = kzalloc(sizeof(*device), GFP_KERNEL);
1562	if (device == NULL) {
1563		printk(KERN_ERR "eth_configure failed to allocate struct "
1564				 "vector_device\n");
1565		return;
1566	}
1567	dev = alloc_etherdev(sizeof(struct vector_private));
1568	if (dev == NULL) {
1569		printk(KERN_ERR "eth_configure: failed to allocate struct "
1570				 "net_device for vec%d\n", n);
1571		goto out_free_device;
1572	}
1573
1574	dev->mtu = get_mtu(def);
1575
1576	INIT_LIST_HEAD(&device->list);
1577	device->unit = n;
1578
1579	/* If this name ends up conflicting with an existing registered
1580	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1581	 * and fail.
1582	 */
1583	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1584	uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1585	vp = netdev_priv(dev);
1586
1587	/* sysfs register */
1588	if (!driver_registered) {
1589		platform_driver_register(&uml_net_driver);
1590		driver_registered = 1;
1591	}
1592	device->pdev.id = n;
1593	device->pdev.name = DRIVER_NAME;
1594	device->pdev.dev.release = vector_device_release;
1595	dev_set_drvdata(&device->pdev.dev, device);
1596	if (platform_device_register(&device->pdev))
1597		goto out_free_netdev;
1598	SET_NETDEV_DEV(dev, &device->pdev.dev);
1599
1600	device->dev = dev;
1601
1602	*vp = ((struct vector_private)
1603		{
1604		.list			= LIST_HEAD_INIT(vp->list),
1605		.dev			= dev,
1606		.unit			= n,
1607		.options		= get_transport_options(def),
1608		.rx_irq			= 0,
1609		.tx_irq			= 0,
1610		.parsed			= def,
1611		.max_packet		= get_mtu(def) + ETH_HEADER_OTHER,
1612		/* TODO - we need to calculate headroom so that ip header
1613		 * is 16 byte aligned all the time
1614		 */
1615		.headroom		= get_headroom(def),
1616		.form_header		= NULL,
1617		.verify_header		= NULL,
1618		.header_rxbuffer	= NULL,
1619		.header_txbuffer	= NULL,
1620		.header_size		= 0,
1621		.rx_header_size		= 0,
1622		.rexmit_scheduled	= false,
1623		.opened			= false,
1624		.transport_data		= NULL,
1625		.in_write_poll		= false,
1626		.coalesce		= 2,
1627		.req_size		= get_req_size(def),
1628		.in_error		= false,
1629		.bpf			= NULL
1630	});
1631
1632	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1633	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1634
1635	timer_setup(&vp->tl, vector_timer_expire, 0);
1636	spin_lock_init(&vp->lock);
1637
1638	/* FIXME */
1639	dev->netdev_ops = &vector_netdev_ops;
1640	dev->ethtool_ops = &vector_net_ethtool_ops;
1641	dev->watchdog_timeo = (HZ >> 1);
1642	/* primary IRQ - fixme */
1643	dev->irq = 0; /* we will adjust this once opened */
1644
1645	rtnl_lock();
1646	err = register_netdevice(dev);
1647	rtnl_unlock();
1648	if (err)
1649		goto out_undo_user_init;
1650
1651	spin_lock(&vector_devices_lock);
1652	list_add(&device->list, &vector_devices);
1653	spin_unlock(&vector_devices_lock);
1654
1655	return;
1656
1657out_undo_user_init:
1658	return;
1659out_free_netdev:
1660	free_netdev(dev);
1661out_free_device:
1662	kfree(device);
1663}
1664
1665
1666
1667
1668/*
1669 * Invoked late in the init
1670 */
1671
1672static int __init vector_init(void)
1673{
1674	struct list_head *ele;
1675	struct vector_cmd_line_arg *def;
1676	struct arglist *parsed;
1677
1678	list_for_each(ele, &vec_cmd_line) {
1679		def = list_entry(ele, struct vector_cmd_line_arg, list);
1680		parsed = uml_parse_vector_ifspec(def->arguments);
1681		if (parsed != NULL)
1682			vector_eth_configure(def->unit, parsed);
1683	}
1684	return 0;
1685}
1686
1687
1688/* Invoked at initial argument parsing, only stores
1689 * arguments until a proper vector_init is called
1690 * later
1691 */
1692
1693static int __init vector_setup(char *str)
1694{
1695	char *error;
1696	int n, err;
1697	struct vector_cmd_line_arg *new;
1698
1699	err = vector_parse(str, &n, &str, &error);
1700	if (err) {
1701		printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1702				 str, error);
1703		return 1;
1704	}
1705	new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1706	if (!new)
1707		panic("%s: Failed to allocate %zu bytes\n", __func__,
1708		      sizeof(*new));
1709	INIT_LIST_HEAD(&new->list);
1710	new->unit = n;
1711	new->arguments = str;
1712	list_add_tail(&new->list, &vec_cmd_line);
1713	return 1;
1714}
1715
1716__setup("vec", vector_setup);
1717__uml_help(vector_setup,
1718"vec[0-9]+:<option>=<value>,<option>=<value>\n"
1719"	 Configure a vector io network device.\n\n"
1720);
1721
1722late_initcall(vector_init);
1723
1724static struct mc_device vector_mc = {
1725	.list		= LIST_HEAD_INIT(vector_mc.list),
1726	.name		= "vec",
1727	.config		= vector_config,
1728	.get_config	= NULL,
1729	.id		= vector_id,
1730	.remove		= vector_remove,
1731};
1732
1733#ifdef CONFIG_INET
1734static int vector_inetaddr_event(
1735	struct notifier_block *this,
1736	unsigned long event,
1737	void *ptr)
1738{
1739	return NOTIFY_DONE;
1740}
1741
1742static struct notifier_block vector_inetaddr_notifier = {
1743	.notifier_call		= vector_inetaddr_event,
1744};
1745
1746static void inet_register(void)
1747{
1748	register_inetaddr_notifier(&vector_inetaddr_notifier);
1749}
1750#else
1751static inline void inet_register(void)
1752{
1753}
1754#endif
1755
1756static int vector_net_init(void)
1757{
1758	mconsole_register_dev(&vector_mc);
1759	inet_register();
1760	return 0;
1761}
1762
1763__initcall(vector_net_init);
1764
1765
1766
1767