1// SPDX-License-Identifier: GPL-2.0
2#include <linux/moduleloader.h>
3#include <linux/workqueue.h>
4#include <linux/netdevice.h>
5#include <linux/filter.h>
6#include <linux/cache.h>
7#include <linux/if_vlan.h>
8
9#include <asm/cacheflush.h>
10#include <asm/ptrace.h>
11
12#include "bpf_jit_32.h"
13
14static inline bool is_simm13(unsigned int value)
15{
16	return value + 0x1000 < 0x2000;
17}
18
19#define SEEN_DATAREF 1 /* might call external helpers */
20#define SEEN_XREG    2 /* ebx is used */
21#define SEEN_MEM     4 /* use mem[] for temporary storage */
22
23#define S13(X)		((X) & 0x1fff)
24#define IMMED		0x00002000
25#define RD(X)		((X) << 25)
26#define RS1(X)		((X) << 14)
27#define RS2(X)		((X))
28#define OP(X)		((X) << 30)
29#define OP2(X)		((X) << 22)
30#define OP3(X)		((X) << 19)
31#define COND(X)		((X) << 25)
32#define F1(X)		OP(X)
33#define F2(X, Y)	(OP(X) | OP2(Y))
34#define F3(X, Y)	(OP(X) | OP3(Y))
35
36#define CONDN		COND(0x0)
37#define CONDE		COND(0x1)
38#define CONDLE		COND(0x2)
39#define CONDL		COND(0x3)
40#define CONDLEU		COND(0x4)
41#define CONDCS		COND(0x5)
42#define CONDNEG		COND(0x6)
43#define CONDVC		COND(0x7)
44#define CONDA		COND(0x8)
45#define CONDNE		COND(0x9)
46#define CONDG		COND(0xa)
47#define CONDGE		COND(0xb)
48#define CONDGU		COND(0xc)
49#define CONDCC		COND(0xd)
50#define CONDPOS		COND(0xe)
51#define CONDVS		COND(0xf)
52
53#define CONDGEU		CONDCC
54#define CONDLU		CONDCS
55
56#define WDISP22(X)	(((X) >> 2) & 0x3fffff)
57
58#define BA		(F2(0, 2) | CONDA)
59#define BGU		(F2(0, 2) | CONDGU)
60#define BLEU		(F2(0, 2) | CONDLEU)
61#define BGEU		(F2(0, 2) | CONDGEU)
62#define BLU		(F2(0, 2) | CONDLU)
63#define BE		(F2(0, 2) | CONDE)
64#define BNE		(F2(0, 2) | CONDNE)
65
66#define BE_PTR		BE
67
68#define SETHI(K, REG)	\
69	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
70#define OR_LO(K, REG)	\
71	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
72
73#define ADD		F3(2, 0x00)
74#define AND		F3(2, 0x01)
75#define ANDCC		F3(2, 0x11)
76#define OR		F3(2, 0x02)
77#define XOR		F3(2, 0x03)
78#define SUB		F3(2, 0x04)
79#define SUBCC		F3(2, 0x14)
80#define MUL		F3(2, 0x0a)	/* umul */
81#define DIV		F3(2, 0x0e)	/* udiv */
82#define SLL		F3(2, 0x25)
83#define SRL		F3(2, 0x26)
84#define JMPL		F3(2, 0x38)
85#define CALL		F1(1)
86#define BR		F2(0, 0x01)
87#define RD_Y		F3(2, 0x28)
88#define WR_Y		F3(2, 0x30)
89
90#define LD32		F3(3, 0x00)
91#define LD8		F3(3, 0x01)
92#define LD16		F3(3, 0x02)
93#define LD64		F3(3, 0x0b)
94#define ST32		F3(3, 0x04)
95
96#define LDPTR		LD32
97#define BASE_STACKFRAME	96
98
99#define LD32I		(LD32 | IMMED)
100#define LD8I		(LD8 | IMMED)
101#define LD16I		(LD16 | IMMED)
102#define LD64I		(LD64 | IMMED)
103#define LDPTRI		(LDPTR | IMMED)
104#define ST32I		(ST32 | IMMED)
105
106#define emit_nop()		\
107do {				\
108	*prog++ = SETHI(0, G0);	\
109} while (0)
110
111#define emit_neg()					\
112do {	/* sub %g0, r_A, r_A */				\
113	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
114} while (0)
115
116#define emit_reg_move(FROM, TO)				\
117do {	/* or %g0, FROM, TO */				\
118	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
119} while (0)
120
121#define emit_clear(REG)					\
122do {	/* or %g0, %g0, REG */				\
123	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
124} while (0)
125
126#define emit_set_const(K, REG)					\
127do {	/* sethi %hi(K), REG */					\
128	*prog++ = SETHI(K, REG);				\
129	/* or REG, %lo(K), REG */				\
130	*prog++ = OR_LO(K, REG);				\
131} while (0)
132
133	/* Emit
134	 *
135	 *	OP	r_A, r_X, r_A
136	 */
137#define emit_alu_X(OPCODE)					\
138do {								\
139	seen |= SEEN_XREG;					\
140	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
141} while (0)
142
143	/* Emit either:
144	 *
145	 *	OP	r_A, K, r_A
146	 *
147	 * or
148	 *
149	 *	sethi	%hi(K), r_TMP
150	 *	or	r_TMP, %lo(K), r_TMP
151	 *	OP	r_A, r_TMP, r_A
152	 *
153	 * depending upon whether K fits in a signed 13-bit
154	 * immediate instruction field.  Emit nothing if K
155	 * is zero.
156	 */
157#define emit_alu_K(OPCODE, K)					\
158do {								\
159	if (K || OPCODE == AND || OPCODE == MUL) {		\
160		unsigned int _insn = OPCODE;			\
161		_insn |= RS1(r_A) | RD(r_A);			\
162		if (is_simm13(K)) {				\
163			*prog++ = _insn | IMMED | S13(K);	\
164		} else {					\
165			emit_set_const(K, r_TMP);		\
166			*prog++ = _insn | RS2(r_TMP);		\
167		}						\
168	}							\
169} while (0)
170
171#define emit_loadimm(K, DEST)						\
172do {									\
173	if (is_simm13(K)) {						\
174		/* or %g0, K, DEST */					\
175		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
176	} else {							\
177		emit_set_const(K, DEST);				\
178	}								\
179} while (0)
180
181#define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
182do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
183	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(void *));	\
184	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
185} while (0)
186
187#define emit_load32(BASE, STRUCT, FIELD, DEST)				\
188do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
189	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u32));	\
190	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
191} while (0)
192
193#define emit_load16(BASE, STRUCT, FIELD, DEST)				\
194do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
195	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u16));	\
196	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
197} while (0)
198
199#define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
200do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
201	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
202} while (0)
203
204#define emit_load8(BASE, STRUCT, FIELD, DEST)				\
205do {	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u8));	\
206	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
207} while (0)
208
209#define BIAS (-4)
210
211#define emit_ldmem(OFF, DEST)						\
212do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
213} while (0)
214
215#define emit_stmem(OFF, SRC)						\
216do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
217} while (0)
218
219#ifdef CONFIG_SMP
220#define emit_load_cpu(REG)						\
221	emit_load32(G6, struct thread_info, cpu, REG)
222#else
223#define emit_load_cpu(REG)	emit_clear(REG)
224#endif
225
226#define emit_skb_loadptr(FIELD, DEST) \
227	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
228#define emit_skb_load32(FIELD, DEST) \
229	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
230#define emit_skb_load16(FIELD, DEST) \
231	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
232#define __emit_skb_load8(FIELD, DEST) \
233	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
234#define emit_skb_load8(FIELD, DEST) \
235	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
236
237#define emit_jmpl(BASE, IMM_OFF, LREG) \
238	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
239
240#define emit_call(FUNC)					\
241do {	void *_here = image + addrs[i] - 8;		\
242	unsigned int _off = (void *)(FUNC) - _here;	\
243	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
244	emit_nop();					\
245} while (0)
246
247#define emit_branch(BR_OPC, DEST)			\
248do {	unsigned int _here = addrs[i] - 8;		\
249	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
250} while (0)
251
252#define emit_branch_off(BR_OPC, OFF)			\
253do {	*prog++ = BR_OPC | WDISP22(OFF);		\
254} while (0)
255
256#define emit_jump(DEST)		emit_branch(BA, DEST)
257
258#define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
259#define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
260
261#define emit_cmp(R1, R2) \
262	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
263
264#define emit_cmpi(R1, IMM) \
265	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
266
267#define emit_btst(R1, R2) \
268	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
269
270#define emit_btsti(R1, IMM) \
271	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
272
273#define emit_sub(R1, R2, R3) \
274	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
275
276#define emit_subi(R1, IMM, R3) \
277	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
278
279#define emit_add(R1, R2, R3) \
280	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
281
282#define emit_addi(R1, IMM, R3) \
283	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
284
285#define emit_and(R1, R2, R3) \
286	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
287
288#define emit_andi(R1, IMM, R3) \
289	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
290
291#define emit_alloc_stack(SZ) \
292	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
293
294#define emit_release_stack(SZ) \
295	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
296
297/* A note about branch offset calculations.  The addrs[] array,
298 * indexed by BPF instruction, records the address after all the
299 * sparc instructions emitted for that BPF instruction.
300 *
301 * The most common case is to emit a branch at the end of such
302 * a code sequence.  So this would be two instructions, the
303 * branch and its delay slot.
304 *
305 * Therefore by default the branch emitters calculate the branch
306 * offset field as:
307 *
308 *	destination - (addrs[i] - 8)
309 *
310 * This "addrs[i] - 8" is the address of the branch itself or
311 * what "." would be in assembler notation.  The "8" part is
312 * how we take into consideration the branch and its delay
313 * slot mentioned above.
314 *
315 * Sometimes we need to emit a branch earlier in the code
316 * sequence.  And in these situations we adjust "destination"
317 * to accommodate this difference.  For example, if we needed
318 * to emit a branch (and its delay slot) right before the
319 * final instruction emitted for a BPF opcode, we'd use
320 * "destination + 4" instead of just plain "destination" above.
321 *
322 * This is why you see all of these funny emit_branch() and
323 * emit_jump() calls with adjusted offsets.
324 */
325
326void bpf_jit_compile(struct bpf_prog *fp)
327{
328	unsigned int cleanup_addr, proglen, oldproglen = 0;
329	u32 temp[8], *prog, *func, seen = 0, pass;
330	const struct sock_filter *filter = fp->insns;
331	int i, flen = fp->len, pc_ret0 = -1;
332	unsigned int *addrs;
333	void *image;
334
335	if (!bpf_jit_enable)
336		return;
337
338	addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
339	if (addrs == NULL)
340		return;
341
342	/* Before first pass, make a rough estimation of addrs[]
343	 * each bpf instruction is translated to less than 64 bytes
344	 */
345	for (proglen = 0, i = 0; i < flen; i++) {
346		proglen += 64;
347		addrs[i] = proglen;
348	}
349	cleanup_addr = proglen; /* epilogue address */
350	image = NULL;
351	for (pass = 0; pass < 10; pass++) {
352		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
353
354		/* no prologue/epilogue for trivial filters (RET something) */
355		proglen = 0;
356		prog = temp;
357
358		/* Prologue */
359		if (seen_or_pass0) {
360			if (seen_or_pass0 & SEEN_MEM) {
361				unsigned int sz = BASE_STACKFRAME;
362				sz += BPF_MEMWORDS * sizeof(u32);
363				emit_alloc_stack(sz);
364			}
365
366			/* Make sure we dont leek kernel memory. */
367			if (seen_or_pass0 & SEEN_XREG)
368				emit_clear(r_X);
369
370			/* If this filter needs to access skb data,
371			 * load %o4 and %o5 with:
372			 *  %o4 = skb->len - skb->data_len
373			 *  %o5 = skb->data
374			 * And also back up %o7 into r_saved_O7 so we can
375			 * invoke the stubs using 'call'.
376			 */
377			if (seen_or_pass0 & SEEN_DATAREF) {
378				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
379				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
380				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
381				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
382			}
383		}
384		emit_reg_move(O7, r_saved_O7);
385
386		/* Make sure we dont leak kernel information to the user. */
387		if (bpf_needs_clear_a(&filter[0]))
388			emit_clear(r_A); /* A = 0 */
389
390		for (i = 0; i < flen; i++) {
391			unsigned int K = filter[i].k;
392			unsigned int t_offset;
393			unsigned int f_offset;
394			u32 t_op, f_op;
395			u16 code = bpf_anc_helper(&filter[i]);
396			int ilen;
397
398			switch (code) {
399			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
400				emit_alu_X(ADD);
401				break;
402			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
403				emit_alu_K(ADD, K);
404				break;
405			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
406				emit_alu_X(SUB);
407				break;
408			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
409				emit_alu_K(SUB, K);
410				break;
411			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
412				emit_alu_X(AND);
413				break;
414			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
415				emit_alu_K(AND, K);
416				break;
417			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
418				emit_alu_X(OR);
419				break;
420			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
421				emit_alu_K(OR, K);
422				break;
423			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
424			case BPF_ALU | BPF_XOR | BPF_X:
425				emit_alu_X(XOR);
426				break;
427			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
428				emit_alu_K(XOR, K);
429				break;
430			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
431				emit_alu_X(SLL);
432				break;
433			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
434				emit_alu_K(SLL, K);
435				break;
436			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
437				emit_alu_X(SRL);
438				break;
439			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
440				emit_alu_K(SRL, K);
441				break;
442			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
443				emit_alu_X(MUL);
444				break;
445			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
446				emit_alu_K(MUL, K);
447				break;
448			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
449				if (K == 1)
450					break;
451				emit_write_y(G0);
452				/* The Sparc v8 architecture requires
453				 * three instructions between a %y
454				 * register write and the first use.
455				 */
456				emit_nop();
457				emit_nop();
458				emit_nop();
459				emit_alu_K(DIV, K);
460				break;
461			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
462				emit_cmpi(r_X, 0);
463				if (pc_ret0 > 0) {
464					t_offset = addrs[pc_ret0 - 1];
465					emit_branch(BE, t_offset + 20);
466					emit_nop(); /* delay slot */
467				} else {
468					emit_branch_off(BNE, 16);
469					emit_nop();
470					emit_jump(cleanup_addr + 20);
471					emit_clear(r_A);
472				}
473				emit_write_y(G0);
474				/* The Sparc v8 architecture requires
475				 * three instructions between a %y
476				 * register write and the first use.
477				 */
478				emit_nop();
479				emit_nop();
480				emit_nop();
481				emit_alu_X(DIV);
482				break;
483			case BPF_ALU | BPF_NEG:
484				emit_neg();
485				break;
486			case BPF_RET | BPF_K:
487				if (!K) {
488					if (pc_ret0 == -1)
489						pc_ret0 = i;
490					emit_clear(r_A);
491				} else {
492					emit_loadimm(K, r_A);
493				}
494				fallthrough;
495			case BPF_RET | BPF_A:
496				if (seen_or_pass0) {
497					if (i != flen - 1) {
498						emit_jump(cleanup_addr);
499						emit_nop();
500						break;
501					}
502					if (seen_or_pass0 & SEEN_MEM) {
503						unsigned int sz = BASE_STACKFRAME;
504						sz += BPF_MEMWORDS * sizeof(u32);
505						emit_release_stack(sz);
506					}
507				}
508				/* jmpl %r_saved_O7 + 8, %g0 */
509				emit_jmpl(r_saved_O7, 8, G0);
510				emit_reg_move(r_A, O0); /* delay slot */
511				break;
512			case BPF_MISC | BPF_TAX:
513				seen |= SEEN_XREG;
514				emit_reg_move(r_A, r_X);
515				break;
516			case BPF_MISC | BPF_TXA:
517				seen |= SEEN_XREG;
518				emit_reg_move(r_X, r_A);
519				break;
520			case BPF_ANC | SKF_AD_CPU:
521				emit_load_cpu(r_A);
522				break;
523			case BPF_ANC | SKF_AD_PROTOCOL:
524				emit_skb_load16(protocol, r_A);
525				break;
526			case BPF_ANC | SKF_AD_PKTTYPE:
527				__emit_skb_load8(__pkt_type_offset, r_A);
528				emit_andi(r_A, PKT_TYPE_MAX, r_A);
529				emit_alu_K(SRL, 5);
530				break;
531			case BPF_ANC | SKF_AD_IFINDEX:
532				emit_skb_loadptr(dev, r_A);
533				emit_cmpi(r_A, 0);
534				emit_branch(BE_PTR, cleanup_addr + 4);
535				emit_nop();
536				emit_load32(r_A, struct net_device, ifindex, r_A);
537				break;
538			case BPF_ANC | SKF_AD_MARK:
539				emit_skb_load32(mark, r_A);
540				break;
541			case BPF_ANC | SKF_AD_QUEUE:
542				emit_skb_load16(queue_mapping, r_A);
543				break;
544			case BPF_ANC | SKF_AD_HATYPE:
545				emit_skb_loadptr(dev, r_A);
546				emit_cmpi(r_A, 0);
547				emit_branch(BE_PTR, cleanup_addr + 4);
548				emit_nop();
549				emit_load16(r_A, struct net_device, type, r_A);
550				break;
551			case BPF_ANC | SKF_AD_RXHASH:
552				emit_skb_load32(hash, r_A);
553				break;
554			case BPF_ANC | SKF_AD_VLAN_TAG:
555				emit_skb_load16(vlan_tci, r_A);
556				break;
557			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
558				emit_skb_load32(vlan_all, r_A);
559				emit_cmpi(r_A, 0);
560				emit_branch_off(BE, 12);
561				emit_nop();
562				emit_loadimm(1, r_A);
563				break;
564			case BPF_LD | BPF_W | BPF_LEN:
565				emit_skb_load32(len, r_A);
566				break;
567			case BPF_LDX | BPF_W | BPF_LEN:
568				emit_skb_load32(len, r_X);
569				break;
570			case BPF_LD | BPF_IMM:
571				emit_loadimm(K, r_A);
572				break;
573			case BPF_LDX | BPF_IMM:
574				emit_loadimm(K, r_X);
575				break;
576			case BPF_LD | BPF_MEM:
577				seen |= SEEN_MEM;
578				emit_ldmem(K * 4, r_A);
579				break;
580			case BPF_LDX | BPF_MEM:
581				seen |= SEEN_MEM | SEEN_XREG;
582				emit_ldmem(K * 4, r_X);
583				break;
584			case BPF_ST:
585				seen |= SEEN_MEM;
586				emit_stmem(K * 4, r_A);
587				break;
588			case BPF_STX:
589				seen |= SEEN_MEM | SEEN_XREG;
590				emit_stmem(K * 4, r_X);
591				break;
592
593#define CHOOSE_LOAD_FUNC(K, func) \
594	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
595
596			case BPF_LD | BPF_W | BPF_ABS:
597				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
598common_load:			seen |= SEEN_DATAREF;
599				emit_loadimm(K, r_OFF);
600				emit_call(func);
601				break;
602			case BPF_LD | BPF_H | BPF_ABS:
603				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
604				goto common_load;
605			case BPF_LD | BPF_B | BPF_ABS:
606				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
607				goto common_load;
608			case BPF_LDX | BPF_B | BPF_MSH:
609				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
610				goto common_load;
611			case BPF_LD | BPF_W | BPF_IND:
612				func = bpf_jit_load_word;
613common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
614				if (K) {
615					if (is_simm13(K)) {
616						emit_addi(r_X, K, r_OFF);
617					} else {
618						emit_loadimm(K, r_TMP);
619						emit_add(r_X, r_TMP, r_OFF);
620					}
621				} else {
622					emit_reg_move(r_X, r_OFF);
623				}
624				emit_call(func);
625				break;
626			case BPF_LD | BPF_H | BPF_IND:
627				func = bpf_jit_load_half;
628				goto common_load_ind;
629			case BPF_LD | BPF_B | BPF_IND:
630				func = bpf_jit_load_byte;
631				goto common_load_ind;
632			case BPF_JMP | BPF_JA:
633				emit_jump(addrs[i + K]);
634				emit_nop();
635				break;
636
637#define COND_SEL(CODE, TOP, FOP)	\
638	case CODE:			\
639		t_op = TOP;		\
640		f_op = FOP;		\
641		goto cond_branch
642
643			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
644			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
645			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
646			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
647			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
648			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
649			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
650			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
651
652cond_branch:			f_offset = addrs[i + filter[i].jf];
653				t_offset = addrs[i + filter[i].jt];
654
655				/* same targets, can avoid doing the test :) */
656				if (filter[i].jt == filter[i].jf) {
657					emit_jump(t_offset);
658					emit_nop();
659					break;
660				}
661
662				switch (code) {
663				case BPF_JMP | BPF_JGT | BPF_X:
664				case BPF_JMP | BPF_JGE | BPF_X:
665				case BPF_JMP | BPF_JEQ | BPF_X:
666					seen |= SEEN_XREG;
667					emit_cmp(r_A, r_X);
668					break;
669				case BPF_JMP | BPF_JSET | BPF_X:
670					seen |= SEEN_XREG;
671					emit_btst(r_A, r_X);
672					break;
673				case BPF_JMP | BPF_JEQ | BPF_K:
674				case BPF_JMP | BPF_JGT | BPF_K:
675				case BPF_JMP | BPF_JGE | BPF_K:
676					if (is_simm13(K)) {
677						emit_cmpi(r_A, K);
678					} else {
679						emit_loadimm(K, r_TMP);
680						emit_cmp(r_A, r_TMP);
681					}
682					break;
683				case BPF_JMP | BPF_JSET | BPF_K:
684					if (is_simm13(K)) {
685						emit_btsti(r_A, K);
686					} else {
687						emit_loadimm(K, r_TMP);
688						emit_btst(r_A, r_TMP);
689					}
690					break;
691				}
692				if (filter[i].jt != 0) {
693					if (filter[i].jf)
694						t_offset += 8;
695					emit_branch(t_op, t_offset);
696					emit_nop(); /* delay slot */
697					if (filter[i].jf) {
698						emit_jump(f_offset);
699						emit_nop();
700					}
701					break;
702				}
703				emit_branch(f_op, f_offset);
704				emit_nop(); /* delay slot */
705				break;
706
707			default:
708				/* hmm, too complex filter, give up with jit compiler */
709				goto out;
710			}
711			ilen = (void *) prog - (void *) temp;
712			if (image) {
713				if (unlikely(proglen + ilen > oldproglen)) {
714					pr_err("bpb_jit_compile fatal error\n");
715					kfree(addrs);
716					module_memfree(image);
717					return;
718				}
719				memcpy(image + proglen, temp, ilen);
720			}
721			proglen += ilen;
722			addrs[i] = proglen;
723			prog = temp;
724		}
725		/* last bpf instruction is always a RET :
726		 * use it to give the cleanup instruction(s) addr
727		 */
728		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
729		if (seen_or_pass0 & SEEN_MEM)
730			cleanup_addr -= 4; /* add %sp, X, %sp; */
731
732		if (image) {
733			if (proglen != oldproglen)
734				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
735				       proglen, oldproglen);
736			break;
737		}
738		if (proglen == oldproglen) {
739			image = module_alloc(proglen);
740			if (!image)
741				goto out;
742		}
743		oldproglen = proglen;
744	}
745
746	if (bpf_jit_enable > 1)
747		bpf_jit_dump(flen, proglen, pass + 1, image);
748
749	if (image) {
750		fp->bpf_func = (void *)image;
751		fp->jited = 1;
752	}
753out:
754	kfree(addrs);
755	return;
756}
757
758void bpf_jit_free(struct bpf_prog *fp)
759{
760	if (fp->jited)
761		module_memfree(fp->bpf_func);
762
763	bpf_prog_unlock_free(fp);
764}
765