1// SPDX-License-Identifier: GPL-2.0
2/*
3 * unaligned.c: Unaligned load/store trap handling with special
4 *              cases for the kernel to do them more quickly.
5 *
6 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 */
9
10
11#include <linux/jiffies.h>
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/extable.h>
16#include <asm/asi.h>
17#include <asm/ptrace.h>
18#include <asm/pstate.h>
19#include <asm/processor.h>
20#include <linux/uaccess.h>
21#include <linux/smp.h>
22#include <linux/bitops.h>
23#include <linux/perf_event.h>
24#include <linux/ratelimit.h>
25#include <linux/context_tracking.h>
26#include <asm/fpumacro.h>
27#include <asm/cacheflush.h>
28#include <asm/setup.h>
29
30#include "entry.h"
31#include "kernel.h"
32
33enum direction {
34	load,    /* ld, ldd, ldh, ldsh */
35	store,   /* st, std, sth, stsh */
36	both,    /* Swap, ldstub, cas, ... */
37	fpld,
38	fpst,
39	invalid,
40};
41
42static inline enum direction decode_direction(unsigned int insn)
43{
44	unsigned long tmp = (insn >> 21) & 1;
45
46	if (!tmp)
47		return load;
48	else {
49		switch ((insn>>19)&0xf) {
50		case 15: /* swap* */
51			return both;
52		default:
53			return store;
54		}
55	}
56}
57
58/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
59static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
60{
61	unsigned int tmp;
62
63	tmp = ((insn >> 19) & 0xf);
64	if (tmp == 11 || tmp == 14) /* ldx/stx */
65		return 8;
66	tmp &= 3;
67	if (!tmp)
68		return 4;
69	else if (tmp == 3)
70		return 16;	/* ldd/std - Although it is actually 8 */
71	else if (tmp == 2)
72		return 2;
73	else {
74		printk("Impossible unaligned trap. insn=%08x\n", insn);
75		die_if_kernel("Byte sized unaligned access?!?!", regs);
76
77		/* GCC should never warn that control reaches the end
78		 * of this function without returning a value because
79		 * die_if_kernel() is marked with attribute 'noreturn'.
80		 * Alas, some versions do...
81		 */
82
83		return 0;
84	}
85}
86
87static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
88{
89	if (insn & 0x800000) {
90		if (insn & 0x2000)
91			return (unsigned char)(regs->tstate >> 24);	/* %asi */
92		else
93			return (unsigned char)(insn >> 5);		/* imm_asi */
94	} else
95		return ASI_P;
96}
97
98/* 0x400000 = signed, 0 = unsigned */
99static inline int decode_signedness(unsigned int insn)
100{
101	return (insn & 0x400000);
102}
103
104static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
105				       unsigned int rd, int from_kernel)
106{
107	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
108		if (from_kernel != 0)
109			__asm__ __volatile__("flushw");
110		else
111			flushw_user();
112	}
113}
114
115static inline long sign_extend_imm13(long imm)
116{
117	return imm << 51 >> 51;
118}
119
120static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
121{
122	unsigned long value, fp;
123
124	if (reg < 16)
125		return (!reg ? 0 : regs->u_regs[reg]);
126
127	fp = regs->u_regs[UREG_FP];
128
129	if (regs->tstate & TSTATE_PRIV) {
130		struct reg_window *win;
131		win = (struct reg_window *)(fp + STACK_BIAS);
132		value = win->locals[reg - 16];
133	} else if (!test_thread_64bit_stack(fp)) {
134		struct reg_window32 __user *win32;
135		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
136		get_user(value, &win32->locals[reg - 16]);
137	} else {
138		struct reg_window __user *win;
139		win = (struct reg_window __user *)(fp + STACK_BIAS);
140		get_user(value, &win->locals[reg - 16]);
141	}
142	return value;
143}
144
145static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
146{
147	unsigned long fp;
148
149	if (reg < 16)
150		return &regs->u_regs[reg];
151
152	fp = regs->u_regs[UREG_FP];
153
154	if (regs->tstate & TSTATE_PRIV) {
155		struct reg_window *win;
156		win = (struct reg_window *)(fp + STACK_BIAS);
157		return &win->locals[reg - 16];
158	} else if (!test_thread_64bit_stack(fp)) {
159		struct reg_window32 *win32;
160		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
161		return (unsigned long *)&win32->locals[reg - 16];
162	} else {
163		struct reg_window *win;
164		win = (struct reg_window *)(fp + STACK_BIAS);
165		return &win->locals[reg - 16];
166	}
167}
168
169unsigned long compute_effective_address(struct pt_regs *regs,
170					unsigned int insn, unsigned int rd)
171{
172	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
173	unsigned int rs1 = (insn >> 14) & 0x1f;
174	unsigned int rs2 = insn & 0x1f;
175	unsigned long addr;
176
177	if (insn & 0x2000) {
178		maybe_flush_windows(rs1, 0, rd, from_kernel);
179		addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
180	} else {
181		maybe_flush_windows(rs1, rs2, rd, from_kernel);
182		addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
183	}
184
185	if (!from_kernel && test_thread_flag(TIF_32BIT))
186		addr &= 0xffffffff;
187
188	return addr;
189}
190
191/* This is just to make gcc think die_if_kernel does return... */
192static void __used unaligned_panic(char *str, struct pt_regs *regs)
193{
194	die_if_kernel(str, regs);
195}
196
197extern int do_int_load(unsigned long *dest_reg, int size,
198		       unsigned long *saddr, int is_signed, int asi);
199
200extern int __do_int_store(unsigned long *dst_addr, int size,
201			  unsigned long src_val, int asi);
202
203static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
204			       struct pt_regs *regs, int asi, int orig_asi)
205{
206	unsigned long zero = 0;
207	unsigned long *src_val_p = &zero;
208	unsigned long src_val;
209
210	if (size == 16) {
211		size = 8;
212		zero = (((long)(reg_num ?
213		        (unsigned int)fetch_reg(reg_num, regs) : 0)) << 32) |
214			(unsigned int)fetch_reg(reg_num + 1, regs);
215	} else if (reg_num) {
216		src_val_p = fetch_reg_addr(reg_num, regs);
217	}
218	src_val = *src_val_p;
219	if (unlikely(asi != orig_asi)) {
220		switch (size) {
221		case 2:
222			src_val = swab16(src_val);
223			break;
224		case 4:
225			src_val = swab32(src_val);
226			break;
227		case 8:
228			src_val = swab64(src_val);
229			break;
230		case 16:
231		default:
232			BUG();
233			break;
234		}
235	}
236	return __do_int_store(dst_addr, size, src_val, asi);
237}
238
239static inline void advance(struct pt_regs *regs)
240{
241	regs->tpc   = regs->tnpc;
242	regs->tnpc += 4;
243	if (test_thread_flag(TIF_32BIT)) {
244		regs->tpc &= 0xffffffff;
245		regs->tnpc &= 0xffffffff;
246	}
247}
248
249static inline int floating_point_load_or_store_p(unsigned int insn)
250{
251	return (insn >> 24) & 1;
252}
253
254static inline int ok_for_kernel(unsigned int insn)
255{
256	return !floating_point_load_or_store_p(insn);
257}
258
259static void kernel_mna_trap_fault(int fixup_tstate_asi)
260{
261	struct pt_regs *regs = current_thread_info()->kern_una_regs;
262	unsigned int insn = current_thread_info()->kern_una_insn;
263	const struct exception_table_entry *entry;
264
265	entry = search_exception_tables(regs->tpc);
266	if (!entry) {
267		unsigned long address;
268
269		address = compute_effective_address(regs, insn,
270						    ((insn >> 25) & 0x1f));
271        	if (address < PAGE_SIZE) {
272                	printk(KERN_ALERT "Unable to handle kernel NULL "
273			       "pointer dereference in mna handler");
274        	} else
275                	printk(KERN_ALERT "Unable to handle kernel paging "
276			       "request in mna handler");
277	        printk(KERN_ALERT " at virtual address %016lx\n",address);
278		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
279			(current->mm ? CTX_HWBITS(current->mm->context) :
280			CTX_HWBITS(current->active_mm->context)));
281		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
282			(current->mm ? (unsigned long) current->mm->pgd :
283			(unsigned long) current->active_mm->pgd));
284	        die_if_kernel("Oops", regs);
285		/* Not reached */
286	}
287	regs->tpc = entry->fixup;
288	regs->tnpc = regs->tpc + 4;
289
290	if (fixup_tstate_asi) {
291		regs->tstate &= ~TSTATE_ASI;
292		regs->tstate |= (ASI_AIUS << 24UL);
293	}
294}
295
296static void log_unaligned(struct pt_regs *regs)
297{
298	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
299
300	if (__ratelimit(&ratelimit)) {
301		printk("Kernel unaligned access at TPC[%lx] %pS\n",
302		       regs->tpc, (void *) regs->tpc);
303	}
304}
305
306asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
307{
308	enum direction dir = decode_direction(insn);
309	int size = decode_access_size(regs, insn);
310	int orig_asi, asi;
311
312	current_thread_info()->kern_una_regs = regs;
313	current_thread_info()->kern_una_insn = insn;
314
315	orig_asi = asi = decode_asi(insn, regs);
316
317	/* If this is a {get,put}_user() on an unaligned userspace pointer,
318	 * just signal a fault and do not log the event.
319	 */
320	if (asi == ASI_AIUS) {
321		kernel_mna_trap_fault(0);
322		return;
323	}
324
325	log_unaligned(regs);
326
327	if (!ok_for_kernel(insn) || dir == both) {
328		printk("Unsupported unaligned load/store trap for kernel "
329		       "at <%016lx>.\n", regs->tpc);
330		unaligned_panic("Kernel does fpu/atomic "
331				"unaligned load/store.", regs);
332
333		kernel_mna_trap_fault(0);
334	} else {
335		unsigned long addr, *reg_addr;
336		int err;
337
338		addr = compute_effective_address(regs, insn,
339						 ((insn >> 25) & 0x1f));
340		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
341		switch (asi) {
342		case ASI_NL:
343		case ASI_AIUPL:
344		case ASI_AIUSL:
345		case ASI_PL:
346		case ASI_SL:
347		case ASI_PNFL:
348		case ASI_SNFL:
349			asi &= ~0x08;
350			break;
351		}
352		switch (dir) {
353		case load:
354			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
355			err = do_int_load(reg_addr, size,
356					  (unsigned long *) addr,
357					  decode_signedness(insn), asi);
358			if (likely(!err) && unlikely(asi != orig_asi)) {
359				unsigned long val_in = *reg_addr;
360				switch (size) {
361				case 2:
362					val_in = swab16(val_in);
363					break;
364				case 4:
365					val_in = swab32(val_in);
366					break;
367				case 8:
368					val_in = swab64(val_in);
369					break;
370				case 16:
371				default:
372					BUG();
373					break;
374				}
375				*reg_addr = val_in;
376			}
377			break;
378
379		case store:
380			err = do_int_store(((insn>>25)&0x1f), size,
381					   (unsigned long *) addr, regs,
382					   asi, orig_asi);
383			break;
384
385		default:
386			panic("Impossible kernel unaligned trap.");
387			/* Not reached... */
388		}
389		if (unlikely(err))
390			kernel_mna_trap_fault(1);
391		else
392			advance(regs);
393	}
394}
395
396int handle_popc(u32 insn, struct pt_regs *regs)
397{
398	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
399	int ret, rd = ((insn >> 25) & 0x1f);
400	u64 value;
401
402	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
403	if (insn & 0x2000) {
404		maybe_flush_windows(0, 0, rd, from_kernel);
405		value = sign_extend_imm13(insn);
406	} else {
407		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
408		value = fetch_reg(insn & 0x1f, regs);
409	}
410	ret = hweight64(value);
411	if (rd < 16) {
412		if (rd)
413			regs->u_regs[rd] = ret;
414	} else {
415		unsigned long fp = regs->u_regs[UREG_FP];
416
417		if (!test_thread_64bit_stack(fp)) {
418			struct reg_window32 __user *win32;
419			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
420			put_user(ret, &win32->locals[rd - 16]);
421		} else {
422			struct reg_window __user *win;
423			win = (struct reg_window __user *)(fp + STACK_BIAS);
424			put_user(ret, &win->locals[rd - 16]);
425		}
426	}
427	advance(regs);
428	return 1;
429}
430
431extern void do_fpother(struct pt_regs *regs);
432extern void do_privact(struct pt_regs *regs);
433extern void sun4v_data_access_exception(struct pt_regs *regs,
434					unsigned long addr,
435					unsigned long type_ctx);
436
437int handle_ldf_stq(u32 insn, struct pt_regs *regs)
438{
439	unsigned long addr = compute_effective_address(regs, insn, 0);
440	int freg;
441	struct fpustate *f = FPUSTATE;
442	int asi = decode_asi(insn, regs);
443	int flag;
444
445	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
446
447	save_and_clear_fpu();
448	current_thread_info()->xfsr[0] &= ~0x1c000;
449	if (insn & 0x200000) {
450		/* STQ */
451		u64 first = 0, second = 0;
452
453		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
454		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
455		if (freg & 3) {
456			current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
457			do_fpother(regs);
458			return 0;
459		}
460		if (current_thread_info()->fpsaved[0] & flag) {
461			first = *(u64 *)&f->regs[freg];
462			second = *(u64 *)&f->regs[freg+2];
463		}
464		if (asi < 0x80) {
465			do_privact(regs);
466			return 1;
467		}
468		switch (asi) {
469		case ASI_P:
470		case ASI_S: break;
471		case ASI_PL:
472		case ASI_SL:
473			{
474				/* Need to convert endians */
475				u64 tmp = __swab64p(&first);
476
477				first = __swab64p(&second);
478				second = tmp;
479				break;
480			}
481		default:
482			if (tlb_type == hypervisor)
483				sun4v_data_access_exception(regs, addr, 0);
484			else
485				spitfire_data_access_exception(regs, 0, addr);
486			return 1;
487		}
488		if (put_user (first >> 32, (u32 __user *)addr) ||
489		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
490		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
491		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
492			if (tlb_type == hypervisor)
493				sun4v_data_access_exception(regs, addr, 0);
494			else
495				spitfire_data_access_exception(regs, 0, addr);
496		    	return 1;
497		}
498	} else {
499		/* LDF, LDDF, LDQF */
500		u32 data[4] __attribute__ ((aligned(8)));
501		int size, i;
502		int err;
503
504		if (asi < 0x80) {
505			do_privact(regs);
506			return 1;
507		} else if (asi > ASI_SNFL) {
508			if (tlb_type == hypervisor)
509				sun4v_data_access_exception(regs, addr, 0);
510			else
511				spitfire_data_access_exception(regs, 0, addr);
512			return 1;
513		}
514		switch (insn & 0x180000) {
515		case 0x000000: size = 1; break;
516		case 0x100000: size = 4; break;
517		default: size = 2; break;
518		}
519		if (size == 1)
520			freg = (insn >> 25) & 0x1f;
521		else
522			freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
523		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
524
525		for (i = 0; i < size; i++)
526			data[i] = 0;
527
528		err = get_user (data[0], (u32 __user *) addr);
529		if (!err) {
530			for (i = 1; i < size; i++)
531				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
532		}
533		if (err && !(asi & 0x2 /* NF */)) {
534			if (tlb_type == hypervisor)
535				sun4v_data_access_exception(regs, addr, 0);
536			else
537				spitfire_data_access_exception(regs, 0, addr);
538			return 1;
539		}
540		if (asi & 0x8) /* Little */ {
541			u64 tmp;
542
543			switch (size) {
544			case 1: data[0] = le32_to_cpup(data + 0); break;
545			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
546				break;
547			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
548				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
549				*(u64 *)(data + 2) = tmp;
550				break;
551			}
552		}
553		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
554			current_thread_info()->fpsaved[0] = FPRS_FEF;
555			current_thread_info()->gsr[0] = 0;
556		}
557		if (!(current_thread_info()->fpsaved[0] & flag)) {
558			if (freg < 32)
559				memset(f->regs, 0, 32*sizeof(u32));
560			else
561				memset(f->regs+32, 0, 32*sizeof(u32));
562		}
563		memcpy(f->regs + freg, data, size * 4);
564		current_thread_info()->fpsaved[0] |= flag;
565	}
566	advance(regs);
567	return 1;
568}
569
570void handle_ld_nf(u32 insn, struct pt_regs *regs)
571{
572	int rd = ((insn >> 25) & 0x1f);
573	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
574	unsigned long *reg;
575
576	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
577
578	maybe_flush_windows(0, 0, rd, from_kernel);
579	reg = fetch_reg_addr(rd, regs);
580	if (from_kernel || rd < 16) {
581		reg[0] = 0;
582		if ((insn & 0x780000) == 0x180000)
583			reg[1] = 0;
584	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
585		put_user(0, (int __user *) reg);
586		if ((insn & 0x780000) == 0x180000)
587			put_user(0, ((int __user *) reg) + 1);
588	} else {
589		put_user(0, (unsigned long __user *) reg);
590		if ((insn & 0x780000) == 0x180000)
591			put_user(0, (unsigned long __user *) reg + 1);
592	}
593	advance(regs);
594}
595
596void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
597{
598	enum ctx_state prev_state = exception_enter();
599	unsigned long pc = regs->tpc;
600	unsigned long tstate = regs->tstate;
601	u32 insn;
602	u64 value;
603	u8 freg;
604	int flag;
605	struct fpustate *f = FPUSTATE;
606
607	if (tstate & TSTATE_PRIV)
608		die_if_kernel("lddfmna from kernel", regs);
609	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
610	if (test_thread_flag(TIF_32BIT))
611		pc = (u32)pc;
612	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
613		int asi = decode_asi(insn, regs);
614		u32 first, second;
615		int err;
616
617		if ((asi > ASI_SNFL) ||
618		    (asi < ASI_P))
619			goto daex;
620		first = second = 0;
621		err = get_user(first, (u32 __user *)sfar);
622		if (!err)
623			err = get_user(second, (u32 __user *)(sfar + 4));
624		if (err) {
625			if (!(asi & 0x2))
626				goto daex;
627			first = second = 0;
628		}
629		save_and_clear_fpu();
630		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
631		value = (((u64)first) << 32) | second;
632		if (asi & 0x8) /* Little */
633			value = __swab64p(&value);
634		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
635		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
636			current_thread_info()->fpsaved[0] = FPRS_FEF;
637			current_thread_info()->gsr[0] = 0;
638		}
639		if (!(current_thread_info()->fpsaved[0] & flag)) {
640			if (freg < 32)
641				memset(f->regs, 0, 32*sizeof(u32));
642			else
643				memset(f->regs+32, 0, 32*sizeof(u32));
644		}
645		*(u64 *)(f->regs + freg) = value;
646		current_thread_info()->fpsaved[0] |= flag;
647	} else {
648daex:
649		if (tlb_type == hypervisor)
650			sun4v_data_access_exception(regs, sfar, sfsr);
651		else
652			spitfire_data_access_exception(regs, sfsr, sfar);
653		goto out;
654	}
655	advance(regs);
656out:
657	exception_exit(prev_state);
658}
659
660void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
661{
662	enum ctx_state prev_state = exception_enter();
663	unsigned long pc = regs->tpc;
664	unsigned long tstate = regs->tstate;
665	u32 insn;
666	u64 value;
667	u8 freg;
668	int flag;
669	struct fpustate *f = FPUSTATE;
670
671	if (tstate & TSTATE_PRIV)
672		die_if_kernel("stdfmna from kernel", regs);
673	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
674	if (test_thread_flag(TIF_32BIT))
675		pc = (u32)pc;
676	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
677		int asi = decode_asi(insn, regs);
678		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
679		value = 0;
680		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
681		if ((asi > ASI_SNFL) ||
682		    (asi < ASI_P))
683			goto daex;
684		save_and_clear_fpu();
685		if (current_thread_info()->fpsaved[0] & flag)
686			value = *(u64 *)&f->regs[freg];
687		switch (asi) {
688		case ASI_P:
689		case ASI_S: break;
690		case ASI_PL:
691		case ASI_SL:
692			value = __swab64p(&value); break;
693		default: goto daex;
694		}
695		if (put_user (value >> 32, (u32 __user *) sfar) ||
696		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
697			goto daex;
698	} else {
699daex:
700		if (tlb_type == hypervisor)
701			sun4v_data_access_exception(regs, sfar, sfsr);
702		else
703			spitfire_data_access_exception(regs, sfsr, sfar);
704		goto out;
705	}
706	advance(regs);
707out:
708	exception_exit(prev_state);
709}
710