1// SPDX-License-Identifier: GPL-2.0
2/* Performance event support for sparc64.
3 *
4 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
5 *
6 * This code is based almost entirely upon the x86 perf event
7 * code, which is:
8 *
9 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 *  Copyright (C) 2009 Jaswinder Singh Rajput
12 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
14 */
15
16#include <linux/perf_event.h>
17#include <linux/kprobes.h>
18#include <linux/ftrace.h>
19#include <linux/kernel.h>
20#include <linux/kdebug.h>
21#include <linux/mutex.h>
22
23#include <asm/stacktrace.h>
24#include <asm/cpudata.h>
25#include <linux/uaccess.h>
26#include <linux/atomic.h>
27#include <linux/sched/clock.h>
28#include <asm/nmi.h>
29#include <asm/pcr.h>
30#include <asm/cacheflush.h>
31
32#include "kernel.h"
33#include "kstack.h"
34
35/* Two classes of sparc64 chips currently exist.  All of which have
36 * 32-bit counters which can generate overflow interrupts on the
37 * transition from 0xffffffff to 0.
38 *
39 * All chips upto and including SPARC-T3 have two performance
40 * counters.  The two 32-bit counters are accessed in one go using a
41 * single 64-bit register.
42 *
43 * On these older chips both counters are controlled using a single
44 * control register.  The only way to stop all sampling is to clear
45 * all of the context (user, supervisor, hypervisor) sampling enable
46 * bits.  But these bits apply to both counters, thus the two counters
47 * can't be enabled/disabled individually.
48 *
49 * Furthermore, the control register on these older chips have two
50 * event fields, one for each of the two counters.  It's thus nearly
51 * impossible to have one counter going while keeping the other one
52 * stopped.  Therefore it is possible to get overflow interrupts for
53 * counters not currently "in use" and that condition must be checked
54 * in the overflow interrupt handler.
55 *
56 * So we use a hack, in that we program inactive counters with the
57 * "sw_count0" and "sw_count1" events.  These count how many times
58 * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
59 * unusual way to encode a NOP and therefore will not trigger in
60 * normal code.
61 *
62 * Starting with SPARC-T4 we have one control register per counter.
63 * And the counters are stored in individual registers.  The registers
64 * for the counters are 64-bit but only a 32-bit counter is
65 * implemented.  The event selections on SPARC-T4 lack any
66 * restrictions, therefore we can elide all of the complicated
67 * conflict resolution code we have for SPARC-T3 and earlier chips.
68 */
69
70#define MAX_HWEVENTS			4
71#define MAX_PCRS			4
72#define MAX_PERIOD			((1UL << 32) - 1)
73
74#define PIC_UPPER_INDEX			0
75#define PIC_LOWER_INDEX			1
76#define PIC_NO_INDEX			-1
77
78struct cpu_hw_events {
79	/* Number of events currently scheduled onto this cpu.
80	 * This tells how many entries in the arrays below
81	 * are valid.
82	 */
83	int			n_events;
84
85	/* Number of new events added since the last hw_perf_disable().
86	 * This works because the perf event layer always adds new
87	 * events inside of a perf_{disable,enable}() sequence.
88	 */
89	int			n_added;
90
91	/* Array of events current scheduled on this cpu.  */
92	struct perf_event	*event[MAX_HWEVENTS];
93
94	/* Array of encoded longs, specifying the %pcr register
95	 * encoding and the mask of PIC counters this even can
96	 * be scheduled on.  See perf_event_encode() et al.
97	 */
98	unsigned long		events[MAX_HWEVENTS];
99
100	/* The current counter index assigned to an event.  When the
101	 * event hasn't been programmed into the cpu yet, this will
102	 * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
103	 * we ought to schedule the event.
104	 */
105	int			current_idx[MAX_HWEVENTS];
106
107	/* Software copy of %pcr register(s) on this cpu.  */
108	u64			pcr[MAX_HWEVENTS];
109
110	/* Enabled/disable state.  */
111	int			enabled;
112
113	unsigned int		txn_flags;
114};
115static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
116
117/* An event map describes the characteristics of a performance
118 * counter event.  In particular it gives the encoding as well as
119 * a mask telling which counters the event can be measured on.
120 *
121 * The mask is unused on SPARC-T4 and later.
122 */
123struct perf_event_map {
124	u16	encoding;
125	u8	pic_mask;
126#define PIC_NONE	0x00
127#define PIC_UPPER	0x01
128#define PIC_LOWER	0x02
129};
130
131/* Encode a perf_event_map entry into a long.  */
132static unsigned long perf_event_encode(const struct perf_event_map *pmap)
133{
134	return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
135}
136
137static u8 perf_event_get_msk(unsigned long val)
138{
139	return val & 0xff;
140}
141
142static u64 perf_event_get_enc(unsigned long val)
143{
144	return val >> 16;
145}
146
147#define C(x) PERF_COUNT_HW_CACHE_##x
148
149#define CACHE_OP_UNSUPPORTED	0xfffe
150#define CACHE_OP_NONSENSE	0xffff
151
152typedef struct perf_event_map cache_map_t
153				[PERF_COUNT_HW_CACHE_MAX]
154				[PERF_COUNT_HW_CACHE_OP_MAX]
155				[PERF_COUNT_HW_CACHE_RESULT_MAX];
156
157struct sparc_pmu {
158	const struct perf_event_map	*(*event_map)(int);
159	const cache_map_t		*cache_map;
160	int				max_events;
161	u32				(*read_pmc)(int);
162	void				(*write_pmc)(int, u64);
163	int				upper_shift;
164	int				lower_shift;
165	int				event_mask;
166	int				user_bit;
167	int				priv_bit;
168	int				hv_bit;
169	int				irq_bit;
170	int				upper_nop;
171	int				lower_nop;
172	unsigned int			flags;
173#define SPARC_PMU_ALL_EXCLUDES_SAME	0x00000001
174#define SPARC_PMU_HAS_CONFLICTS		0x00000002
175	int				max_hw_events;
176	int				num_pcrs;
177	int				num_pic_regs;
178};
179
180static u32 sparc_default_read_pmc(int idx)
181{
182	u64 val;
183
184	val = pcr_ops->read_pic(0);
185	if (idx == PIC_UPPER_INDEX)
186		val >>= 32;
187
188	return val & 0xffffffff;
189}
190
191static void sparc_default_write_pmc(int idx, u64 val)
192{
193	u64 shift, mask, pic;
194
195	shift = 0;
196	if (idx == PIC_UPPER_INDEX)
197		shift = 32;
198
199	mask = ((u64) 0xffffffff) << shift;
200	val <<= shift;
201
202	pic = pcr_ops->read_pic(0);
203	pic &= ~mask;
204	pic |= val;
205	pcr_ops->write_pic(0, pic);
206}
207
208static const struct perf_event_map ultra3_perfmon_event_map[] = {
209	[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
210	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
211	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
212	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
213};
214
215static const struct perf_event_map *ultra3_event_map(int event_id)
216{
217	return &ultra3_perfmon_event_map[event_id];
218}
219
220static const cache_map_t ultra3_cache_map = {
221[C(L1D)] = {
222	[C(OP_READ)] = {
223		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
224		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
225	},
226	[C(OP_WRITE)] = {
227		[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
228		[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
229	},
230	[C(OP_PREFETCH)] = {
231		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
232		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
233	},
234},
235[C(L1I)] = {
236	[C(OP_READ)] = {
237		[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
238		[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
239	},
240	[ C(OP_WRITE) ] = {
241		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
242		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
243	},
244	[ C(OP_PREFETCH) ] = {
245		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
247	},
248},
249[C(LL)] = {
250	[C(OP_READ)] = {
251		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
252		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
253	},
254	[C(OP_WRITE)] = {
255		[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
256		[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
257	},
258	[C(OP_PREFETCH)] = {
259		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
260		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
261	},
262},
263[C(DTLB)] = {
264	[C(OP_READ)] = {
265		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
266		[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
267	},
268	[ C(OP_WRITE) ] = {
269		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
270		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
271	},
272	[ C(OP_PREFETCH) ] = {
273		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
274		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
275	},
276},
277[C(ITLB)] = {
278	[C(OP_READ)] = {
279		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
280		[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
281	},
282	[ C(OP_WRITE) ] = {
283		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
284		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
285	},
286	[ C(OP_PREFETCH) ] = {
287		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
288		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
289	},
290},
291[C(BPU)] = {
292	[C(OP_READ)] = {
293		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
294		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
295	},
296	[ C(OP_WRITE) ] = {
297		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
298		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
299	},
300	[ C(OP_PREFETCH) ] = {
301		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
302		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
303	},
304},
305[C(NODE)] = {
306	[C(OP_READ)] = {
307		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
308		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
309	},
310	[ C(OP_WRITE) ] = {
311		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
312		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
313	},
314	[ C(OP_PREFETCH) ] = {
315		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
316		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
317	},
318},
319};
320
321static const struct sparc_pmu ultra3_pmu = {
322	.event_map	= ultra3_event_map,
323	.cache_map	= &ultra3_cache_map,
324	.max_events	= ARRAY_SIZE(ultra3_perfmon_event_map),
325	.read_pmc	= sparc_default_read_pmc,
326	.write_pmc	= sparc_default_write_pmc,
327	.upper_shift	= 11,
328	.lower_shift	= 4,
329	.event_mask	= 0x3f,
330	.user_bit	= PCR_UTRACE,
331	.priv_bit	= PCR_STRACE,
332	.upper_nop	= 0x1c,
333	.lower_nop	= 0x14,
334	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
335			   SPARC_PMU_HAS_CONFLICTS),
336	.max_hw_events	= 2,
337	.num_pcrs	= 1,
338	.num_pic_regs	= 1,
339};
340
341/* Niagara1 is very limited.  The upper PIC is hard-locked to count
342 * only instructions, so it is free running which creates all kinds of
343 * problems.  Some hardware designs make one wonder if the creator
344 * even looked at how this stuff gets used by software.
345 */
346static const struct perf_event_map niagara1_perfmon_event_map[] = {
347	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
348	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
349	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
350	[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
351};
352
353static const struct perf_event_map *niagara1_event_map(int event_id)
354{
355	return &niagara1_perfmon_event_map[event_id];
356}
357
358static const cache_map_t niagara1_cache_map = {
359[C(L1D)] = {
360	[C(OP_READ)] = {
361		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
362		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
363	},
364	[C(OP_WRITE)] = {
365		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
366		[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
367	},
368	[C(OP_PREFETCH)] = {
369		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
370		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
371	},
372},
373[C(L1I)] = {
374	[C(OP_READ)] = {
375		[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
376		[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
377	},
378	[ C(OP_WRITE) ] = {
379		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
380		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
381	},
382	[ C(OP_PREFETCH) ] = {
383		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
384		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
385	},
386},
387[C(LL)] = {
388	[C(OP_READ)] = {
389		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
390		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
391	},
392	[C(OP_WRITE)] = {
393		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
394		[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
395	},
396	[C(OP_PREFETCH)] = {
397		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
398		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
399	},
400},
401[C(DTLB)] = {
402	[C(OP_READ)] = {
403		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
404		[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
405	},
406	[ C(OP_WRITE) ] = {
407		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
408		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
409	},
410	[ C(OP_PREFETCH) ] = {
411		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
412		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
413	},
414},
415[C(ITLB)] = {
416	[C(OP_READ)] = {
417		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
418		[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
419	},
420	[ C(OP_WRITE) ] = {
421		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
422		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
423	},
424	[ C(OP_PREFETCH) ] = {
425		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
426		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
427	},
428},
429[C(BPU)] = {
430	[C(OP_READ)] = {
431		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
432		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
433	},
434	[ C(OP_WRITE) ] = {
435		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
436		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
437	},
438	[ C(OP_PREFETCH) ] = {
439		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
440		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
441	},
442},
443[C(NODE)] = {
444	[C(OP_READ)] = {
445		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
446		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
447	},
448	[ C(OP_WRITE) ] = {
449		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
450		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
451	},
452	[ C(OP_PREFETCH) ] = {
453		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
454		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
455	},
456},
457};
458
459static const struct sparc_pmu niagara1_pmu = {
460	.event_map	= niagara1_event_map,
461	.cache_map	= &niagara1_cache_map,
462	.max_events	= ARRAY_SIZE(niagara1_perfmon_event_map),
463	.read_pmc	= sparc_default_read_pmc,
464	.write_pmc	= sparc_default_write_pmc,
465	.upper_shift	= 0,
466	.lower_shift	= 4,
467	.event_mask	= 0x7,
468	.user_bit	= PCR_UTRACE,
469	.priv_bit	= PCR_STRACE,
470	.upper_nop	= 0x0,
471	.lower_nop	= 0x0,
472	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
473			   SPARC_PMU_HAS_CONFLICTS),
474	.max_hw_events	= 2,
475	.num_pcrs	= 1,
476	.num_pic_regs	= 1,
477};
478
479static const struct perf_event_map niagara2_perfmon_event_map[] = {
480	[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
481	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
482	[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
483	[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
484	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
485	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
486};
487
488static const struct perf_event_map *niagara2_event_map(int event_id)
489{
490	return &niagara2_perfmon_event_map[event_id];
491}
492
493static const cache_map_t niagara2_cache_map = {
494[C(L1D)] = {
495	[C(OP_READ)] = {
496		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
497		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
498	},
499	[C(OP_WRITE)] = {
500		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
501		[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
502	},
503	[C(OP_PREFETCH)] = {
504		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
505		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
506	},
507},
508[C(L1I)] = {
509	[C(OP_READ)] = {
510		[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
511		[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
512	},
513	[ C(OP_WRITE) ] = {
514		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
515		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
516	},
517	[ C(OP_PREFETCH) ] = {
518		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
519		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
520	},
521},
522[C(LL)] = {
523	[C(OP_READ)] = {
524		[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
525		[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
526	},
527	[C(OP_WRITE)] = {
528		[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
529		[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
530	},
531	[C(OP_PREFETCH)] = {
532		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
533		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
534	},
535},
536[C(DTLB)] = {
537	[C(OP_READ)] = {
538		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
539		[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
540	},
541	[ C(OP_WRITE) ] = {
542		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
543		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
544	},
545	[ C(OP_PREFETCH) ] = {
546		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
547		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
548	},
549},
550[C(ITLB)] = {
551	[C(OP_READ)] = {
552		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
553		[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
554	},
555	[ C(OP_WRITE) ] = {
556		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
557		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
558	},
559	[ C(OP_PREFETCH) ] = {
560		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
561		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
562	},
563},
564[C(BPU)] = {
565	[C(OP_READ)] = {
566		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
567		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
568	},
569	[ C(OP_WRITE) ] = {
570		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
571		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
572	},
573	[ C(OP_PREFETCH) ] = {
574		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
575		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
576	},
577},
578[C(NODE)] = {
579	[C(OP_READ)] = {
580		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
581		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
582	},
583	[ C(OP_WRITE) ] = {
584		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
585		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
586	},
587	[ C(OP_PREFETCH) ] = {
588		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
589		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
590	},
591},
592};
593
594static const struct sparc_pmu niagara2_pmu = {
595	.event_map	= niagara2_event_map,
596	.cache_map	= &niagara2_cache_map,
597	.max_events	= ARRAY_SIZE(niagara2_perfmon_event_map),
598	.read_pmc	= sparc_default_read_pmc,
599	.write_pmc	= sparc_default_write_pmc,
600	.upper_shift	= 19,
601	.lower_shift	= 6,
602	.event_mask	= 0xfff,
603	.user_bit	= PCR_UTRACE,
604	.priv_bit	= PCR_STRACE,
605	.hv_bit		= PCR_N2_HTRACE,
606	.irq_bit	= 0x30,
607	.upper_nop	= 0x220,
608	.lower_nop	= 0x220,
609	.flags		= (SPARC_PMU_ALL_EXCLUDES_SAME |
610			   SPARC_PMU_HAS_CONFLICTS),
611	.max_hw_events	= 2,
612	.num_pcrs	= 1,
613	.num_pic_regs	= 1,
614};
615
616static const struct perf_event_map niagara4_perfmon_event_map[] = {
617	[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
618	[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
619	[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
620	[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
621	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
622	[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
623};
624
625static const struct perf_event_map *niagara4_event_map(int event_id)
626{
627	return &niagara4_perfmon_event_map[event_id];
628}
629
630static const cache_map_t niagara4_cache_map = {
631[C(L1D)] = {
632	[C(OP_READ)] = {
633		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
634		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
635	},
636	[C(OP_WRITE)] = {
637		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
638		[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
639	},
640	[C(OP_PREFETCH)] = {
641		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
642		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
643	},
644},
645[C(L1I)] = {
646	[C(OP_READ)] = {
647		[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
648		[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
649	},
650	[ C(OP_WRITE) ] = {
651		[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
652		[ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
653	},
654	[ C(OP_PREFETCH) ] = {
655		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
656		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
657	},
658},
659[C(LL)] = {
660	[C(OP_READ)] = {
661		[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
662		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
663	},
664	[C(OP_WRITE)] = {
665		[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
666		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
667	},
668	[C(OP_PREFETCH)] = {
669		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
670		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
671	},
672},
673[C(DTLB)] = {
674	[C(OP_READ)] = {
675		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
676		[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
677	},
678	[ C(OP_WRITE) ] = {
679		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
680		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
681	},
682	[ C(OP_PREFETCH) ] = {
683		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
684		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
685	},
686},
687[C(ITLB)] = {
688	[C(OP_READ)] = {
689		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
690		[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
691	},
692	[ C(OP_WRITE) ] = {
693		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
694		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
695	},
696	[ C(OP_PREFETCH) ] = {
697		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
698		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
699	},
700},
701[C(BPU)] = {
702	[C(OP_READ)] = {
703		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
704		[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
705	},
706	[ C(OP_WRITE) ] = {
707		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
708		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
709	},
710	[ C(OP_PREFETCH) ] = {
711		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
712		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
713	},
714},
715[C(NODE)] = {
716	[C(OP_READ)] = {
717		[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
718		[C(RESULT_MISS)  ] = { CACHE_OP_UNSUPPORTED },
719	},
720	[ C(OP_WRITE) ] = {
721		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
722		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
723	},
724	[ C(OP_PREFETCH) ] = {
725		[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
726		[ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
727	},
728},
729};
730
731static u32 sparc_vt_read_pmc(int idx)
732{
733	u64 val = pcr_ops->read_pic(idx);
734
735	return val & 0xffffffff;
736}
737
738static void sparc_vt_write_pmc(int idx, u64 val)
739{
740	u64 pcr;
741
742	pcr = pcr_ops->read_pcr(idx);
743	/* ensure ov and ntc are reset */
744	pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
745
746	pcr_ops->write_pic(idx, val & 0xffffffff);
747
748	pcr_ops->write_pcr(idx, pcr);
749}
750
751static const struct sparc_pmu niagara4_pmu = {
752	.event_map	= niagara4_event_map,
753	.cache_map	= &niagara4_cache_map,
754	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
755	.read_pmc	= sparc_vt_read_pmc,
756	.write_pmc	= sparc_vt_write_pmc,
757	.upper_shift	= 5,
758	.lower_shift	= 5,
759	.event_mask	= 0x7ff,
760	.user_bit	= PCR_N4_UTRACE,
761	.priv_bit	= PCR_N4_STRACE,
762
763	/* We explicitly don't support hypervisor tracing.  The T4
764	 * generates the overflow event for precise events via a trap
765	 * which will not be generated (ie. it's completely lost) if
766	 * we happen to be in the hypervisor when the event triggers.
767	 * Essentially, the overflow event reporting is completely
768	 * unusable when you have hypervisor mode tracing enabled.
769	 */
770	.hv_bit		= 0,
771
772	.irq_bit	= PCR_N4_TOE,
773	.upper_nop	= 0,
774	.lower_nop	= 0,
775	.flags		= 0,
776	.max_hw_events	= 4,
777	.num_pcrs	= 4,
778	.num_pic_regs	= 4,
779};
780
781static const struct sparc_pmu sparc_m7_pmu = {
782	.event_map	= niagara4_event_map,
783	.cache_map	= &niagara4_cache_map,
784	.max_events	= ARRAY_SIZE(niagara4_perfmon_event_map),
785	.read_pmc	= sparc_vt_read_pmc,
786	.write_pmc	= sparc_vt_write_pmc,
787	.upper_shift	= 5,
788	.lower_shift	= 5,
789	.event_mask	= 0x7ff,
790	.user_bit	= PCR_N4_UTRACE,
791	.priv_bit	= PCR_N4_STRACE,
792
793	/* We explicitly don't support hypervisor tracing. */
794	.hv_bit		= 0,
795
796	.irq_bit	= PCR_N4_TOE,
797	.upper_nop	= 0,
798	.lower_nop	= 0,
799	.flags		= 0,
800	.max_hw_events	= 4,
801	.num_pcrs	= 4,
802	.num_pic_regs	= 4,
803};
804static const struct sparc_pmu *sparc_pmu __read_mostly;
805
806static u64 event_encoding(u64 event_id, int idx)
807{
808	if (idx == PIC_UPPER_INDEX)
809		event_id <<= sparc_pmu->upper_shift;
810	else
811		event_id <<= sparc_pmu->lower_shift;
812	return event_id;
813}
814
815static u64 mask_for_index(int idx)
816{
817	return event_encoding(sparc_pmu->event_mask, idx);
818}
819
820static u64 nop_for_index(int idx)
821{
822	return event_encoding(idx == PIC_UPPER_INDEX ?
823			      sparc_pmu->upper_nop :
824			      sparc_pmu->lower_nop, idx);
825}
826
827static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
828{
829	u64 enc, val, mask = mask_for_index(idx);
830	int pcr_index = 0;
831
832	if (sparc_pmu->num_pcrs > 1)
833		pcr_index = idx;
834
835	enc = perf_event_get_enc(cpuc->events[idx]);
836
837	val = cpuc->pcr[pcr_index];
838	val &= ~mask;
839	val |= event_encoding(enc, idx);
840	cpuc->pcr[pcr_index] = val;
841
842	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
843}
844
845static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
846{
847	u64 mask = mask_for_index(idx);
848	u64 nop = nop_for_index(idx);
849	int pcr_index = 0;
850	u64 val;
851
852	if (sparc_pmu->num_pcrs > 1)
853		pcr_index = idx;
854
855	val = cpuc->pcr[pcr_index];
856	val &= ~mask;
857	val |= nop;
858	cpuc->pcr[pcr_index] = val;
859
860	pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
861}
862
863static u64 sparc_perf_event_update(struct perf_event *event,
864				   struct hw_perf_event *hwc, int idx)
865{
866	int shift = 64 - 32;
867	u64 prev_raw_count, new_raw_count;
868	s64 delta;
869
870again:
871	prev_raw_count = local64_read(&hwc->prev_count);
872	new_raw_count = sparc_pmu->read_pmc(idx);
873
874	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
875			     new_raw_count) != prev_raw_count)
876		goto again;
877
878	delta = (new_raw_count << shift) - (prev_raw_count << shift);
879	delta >>= shift;
880
881	local64_add(delta, &event->count);
882	local64_sub(delta, &hwc->period_left);
883
884	return new_raw_count;
885}
886
887static int sparc_perf_event_set_period(struct perf_event *event,
888				       struct hw_perf_event *hwc, int idx)
889{
890	s64 left = local64_read(&hwc->period_left);
891	s64 period = hwc->sample_period;
892	int ret = 0;
893
894	/* The period may have been changed by PERF_EVENT_IOC_PERIOD */
895	if (unlikely(period != hwc->last_period))
896		left = period - (hwc->last_period - left);
897
898	if (unlikely(left <= -period)) {
899		left = period;
900		local64_set(&hwc->period_left, left);
901		hwc->last_period = period;
902		ret = 1;
903	}
904
905	if (unlikely(left <= 0)) {
906		left += period;
907		local64_set(&hwc->period_left, left);
908		hwc->last_period = period;
909		ret = 1;
910	}
911	if (left > MAX_PERIOD)
912		left = MAX_PERIOD;
913
914	local64_set(&hwc->prev_count, (u64)-left);
915
916	sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
917
918	perf_event_update_userpage(event);
919
920	return ret;
921}
922
923static void read_in_all_counters(struct cpu_hw_events *cpuc)
924{
925	int i;
926
927	for (i = 0; i < cpuc->n_events; i++) {
928		struct perf_event *cp = cpuc->event[i];
929
930		if (cpuc->current_idx[i] != PIC_NO_INDEX &&
931		    cpuc->current_idx[i] != cp->hw.idx) {
932			sparc_perf_event_update(cp, &cp->hw,
933						cpuc->current_idx[i]);
934			cpuc->current_idx[i] = PIC_NO_INDEX;
935			if (cp->hw.state & PERF_HES_STOPPED)
936				cp->hw.state |= PERF_HES_ARCH;
937		}
938	}
939}
940
941/* On this PMU all PICs are programmed using a single PCR.  Calculate
942 * the combined control register value.
943 *
944 * For such chips we require that all of the events have the same
945 * configuration, so just fetch the settings from the first entry.
946 */
947static void calculate_single_pcr(struct cpu_hw_events *cpuc)
948{
949	int i;
950
951	if (!cpuc->n_added)
952		goto out;
953
954	/* Assign to counters all unassigned events.  */
955	for (i = 0; i < cpuc->n_events; i++) {
956		struct perf_event *cp = cpuc->event[i];
957		struct hw_perf_event *hwc = &cp->hw;
958		int idx = hwc->idx;
959		u64 enc;
960
961		if (cpuc->current_idx[i] != PIC_NO_INDEX)
962			continue;
963
964		sparc_perf_event_set_period(cp, hwc, idx);
965		cpuc->current_idx[i] = idx;
966
967		enc = perf_event_get_enc(cpuc->events[i]);
968		cpuc->pcr[0] &= ~mask_for_index(idx);
969		if (hwc->state & PERF_HES_ARCH) {
970			cpuc->pcr[0] |= nop_for_index(idx);
971		} else {
972			cpuc->pcr[0] |= event_encoding(enc, idx);
973			hwc->state = 0;
974		}
975	}
976out:
977	cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
978}
979
980static void sparc_pmu_start(struct perf_event *event, int flags);
981
982/* On this PMU each PIC has its own PCR control register.  */
983static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
984{
985	int i;
986
987	if (!cpuc->n_added)
988		goto out;
989
990	for (i = 0; i < cpuc->n_events; i++) {
991		struct perf_event *cp = cpuc->event[i];
992		struct hw_perf_event *hwc = &cp->hw;
993		int idx = hwc->idx;
994
995		if (cpuc->current_idx[i] != PIC_NO_INDEX)
996			continue;
997
998		cpuc->current_idx[i] = idx;
999
1000		if (cp->hw.state & PERF_HES_ARCH)
1001			continue;
1002
1003		sparc_pmu_start(cp, PERF_EF_RELOAD);
1004	}
1005out:
1006	for (i = 0; i < cpuc->n_events; i++) {
1007		struct perf_event *cp = cpuc->event[i];
1008		int idx = cp->hw.idx;
1009
1010		cpuc->pcr[idx] |= cp->hw.config_base;
1011	}
1012}
1013
1014/* If performance event entries have been added, move existing events
1015 * around (if necessary) and then assign new entries to counters.
1016 */
1017static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1018{
1019	if (cpuc->n_added)
1020		read_in_all_counters(cpuc);
1021
1022	if (sparc_pmu->num_pcrs == 1) {
1023		calculate_single_pcr(cpuc);
1024	} else {
1025		calculate_multiple_pcrs(cpuc);
1026	}
1027}
1028
1029static void sparc_pmu_enable(struct pmu *pmu)
1030{
1031	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1032	int i;
1033
1034	if (cpuc->enabled)
1035		return;
1036
1037	cpuc->enabled = 1;
1038	barrier();
1039
1040	if (cpuc->n_events)
1041		update_pcrs_for_enable(cpuc);
1042
1043	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1044		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1045}
1046
1047static void sparc_pmu_disable(struct pmu *pmu)
1048{
1049	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1050	int i;
1051
1052	if (!cpuc->enabled)
1053		return;
1054
1055	cpuc->enabled = 0;
1056	cpuc->n_added = 0;
1057
1058	for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1059		u64 val = cpuc->pcr[i];
1060
1061		val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1062			 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1063		cpuc->pcr[i] = val;
1064		pcr_ops->write_pcr(i, cpuc->pcr[i]);
1065	}
1066}
1067
1068static int active_event_index(struct cpu_hw_events *cpuc,
1069			      struct perf_event *event)
1070{
1071	int i;
1072
1073	for (i = 0; i < cpuc->n_events; i++) {
1074		if (cpuc->event[i] == event)
1075			break;
1076	}
1077	BUG_ON(i == cpuc->n_events);
1078	return cpuc->current_idx[i];
1079}
1080
1081static void sparc_pmu_start(struct perf_event *event, int flags)
1082{
1083	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1084	int idx = active_event_index(cpuc, event);
1085
1086	if (flags & PERF_EF_RELOAD) {
1087		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1088		sparc_perf_event_set_period(event, &event->hw, idx);
1089	}
1090
1091	event->hw.state = 0;
1092
1093	sparc_pmu_enable_event(cpuc, &event->hw, idx);
1094
1095	perf_event_update_userpage(event);
1096}
1097
1098static void sparc_pmu_stop(struct perf_event *event, int flags)
1099{
1100	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1101	int idx = active_event_index(cpuc, event);
1102
1103	if (!(event->hw.state & PERF_HES_STOPPED)) {
1104		sparc_pmu_disable_event(cpuc, &event->hw, idx);
1105		event->hw.state |= PERF_HES_STOPPED;
1106	}
1107
1108	if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1109		sparc_perf_event_update(event, &event->hw, idx);
1110		event->hw.state |= PERF_HES_UPTODATE;
1111	}
1112}
1113
1114static void sparc_pmu_del(struct perf_event *event, int _flags)
1115{
1116	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1117	unsigned long flags;
1118	int i;
1119
1120	local_irq_save(flags);
1121
1122	for (i = 0; i < cpuc->n_events; i++) {
1123		if (event == cpuc->event[i]) {
1124			/* Absorb the final count and turn off the
1125			 * event.
1126			 */
1127			sparc_pmu_stop(event, PERF_EF_UPDATE);
1128
1129			/* Shift remaining entries down into
1130			 * the existing slot.
1131			 */
1132			while (++i < cpuc->n_events) {
1133				cpuc->event[i - 1] = cpuc->event[i];
1134				cpuc->events[i - 1] = cpuc->events[i];
1135				cpuc->current_idx[i - 1] =
1136					cpuc->current_idx[i];
1137			}
1138
1139			perf_event_update_userpage(event);
1140
1141			cpuc->n_events--;
1142			break;
1143		}
1144	}
1145
1146	local_irq_restore(flags);
1147}
1148
1149static void sparc_pmu_read(struct perf_event *event)
1150{
1151	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1152	int idx = active_event_index(cpuc, event);
1153	struct hw_perf_event *hwc = &event->hw;
1154
1155	sparc_perf_event_update(event, hwc, idx);
1156}
1157
1158static atomic_t active_events = ATOMIC_INIT(0);
1159static DEFINE_MUTEX(pmc_grab_mutex);
1160
1161static void perf_stop_nmi_watchdog(void *unused)
1162{
1163	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1164	int i;
1165
1166	stop_nmi_watchdog(NULL);
1167	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1168		cpuc->pcr[i] = pcr_ops->read_pcr(i);
1169}
1170
1171static void perf_event_grab_pmc(void)
1172{
1173	if (atomic_inc_not_zero(&active_events))
1174		return;
1175
1176	mutex_lock(&pmc_grab_mutex);
1177	if (atomic_read(&active_events) == 0) {
1178		if (atomic_read(&nmi_active) > 0) {
1179			on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1180			BUG_ON(atomic_read(&nmi_active) != 0);
1181		}
1182		atomic_inc(&active_events);
1183	}
1184	mutex_unlock(&pmc_grab_mutex);
1185}
1186
1187static void perf_event_release_pmc(void)
1188{
1189	if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1190		if (atomic_read(&nmi_active) == 0)
1191			on_each_cpu(start_nmi_watchdog, NULL, 1);
1192		mutex_unlock(&pmc_grab_mutex);
1193	}
1194}
1195
1196static const struct perf_event_map *sparc_map_cache_event(u64 config)
1197{
1198	unsigned int cache_type, cache_op, cache_result;
1199	const struct perf_event_map *pmap;
1200
1201	if (!sparc_pmu->cache_map)
1202		return ERR_PTR(-ENOENT);
1203
1204	cache_type = (config >>  0) & 0xff;
1205	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1206		return ERR_PTR(-EINVAL);
1207
1208	cache_op = (config >>  8) & 0xff;
1209	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1210		return ERR_PTR(-EINVAL);
1211
1212	cache_result = (config >> 16) & 0xff;
1213	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1214		return ERR_PTR(-EINVAL);
1215
1216	pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1217
1218	if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1219		return ERR_PTR(-ENOENT);
1220
1221	if (pmap->encoding == CACHE_OP_NONSENSE)
1222		return ERR_PTR(-EINVAL);
1223
1224	return pmap;
1225}
1226
1227static void hw_perf_event_destroy(struct perf_event *event)
1228{
1229	perf_event_release_pmc();
1230}
1231
1232/* Make sure all events can be scheduled into the hardware at
1233 * the same time.  This is simplified by the fact that we only
1234 * need to support 2 simultaneous HW events.
1235 *
1236 * As a side effect, the evts[]->hw.idx values will be assigned
1237 * on success.  These are pending indexes.  When the events are
1238 * actually programmed into the chip, these values will propagate
1239 * to the per-cpu cpuc->current_idx[] slots, see the code in
1240 * maybe_change_configuration() for details.
1241 */
1242static int sparc_check_constraints(struct perf_event **evts,
1243				   unsigned long *events, int n_ev)
1244{
1245	u8 msk0 = 0, msk1 = 0;
1246	int idx0 = 0;
1247
1248	/* This case is possible when we are invoked from
1249	 * hw_perf_group_sched_in().
1250	 */
1251	if (!n_ev)
1252		return 0;
1253
1254	if (n_ev > sparc_pmu->max_hw_events)
1255		return -1;
1256
1257	if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1258		int i;
1259
1260		for (i = 0; i < n_ev; i++)
1261			evts[i]->hw.idx = i;
1262		return 0;
1263	}
1264
1265	msk0 = perf_event_get_msk(events[0]);
1266	if (n_ev == 1) {
1267		if (msk0 & PIC_LOWER)
1268			idx0 = 1;
1269		goto success;
1270	}
1271	BUG_ON(n_ev != 2);
1272	msk1 = perf_event_get_msk(events[1]);
1273
1274	/* If both events can go on any counter, OK.  */
1275	if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1276	    msk1 == (PIC_UPPER | PIC_LOWER))
1277		goto success;
1278
1279	/* If one event is limited to a specific counter,
1280	 * and the other can go on both, OK.
1281	 */
1282	if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1283	    msk1 == (PIC_UPPER | PIC_LOWER)) {
1284		if (msk0 & PIC_LOWER)
1285			idx0 = 1;
1286		goto success;
1287	}
1288
1289	if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1290	    msk0 == (PIC_UPPER | PIC_LOWER)) {
1291		if (msk1 & PIC_UPPER)
1292			idx0 = 1;
1293		goto success;
1294	}
1295
1296	/* If the events are fixed to different counters, OK.  */
1297	if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1298	    (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1299		if (msk0 & PIC_LOWER)
1300			idx0 = 1;
1301		goto success;
1302	}
1303
1304	/* Otherwise, there is a conflict.  */
1305	return -1;
1306
1307success:
1308	evts[0]->hw.idx = idx0;
1309	if (n_ev == 2)
1310		evts[1]->hw.idx = idx0 ^ 1;
1311	return 0;
1312}
1313
1314static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1315{
1316	int eu = 0, ek = 0, eh = 0;
1317	struct perf_event *event;
1318	int i, n, first;
1319
1320	if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1321		return 0;
1322
1323	n = n_prev + n_new;
1324	if (n <= 1)
1325		return 0;
1326
1327	first = 1;
1328	for (i = 0; i < n; i++) {
1329		event = evts[i];
1330		if (first) {
1331			eu = event->attr.exclude_user;
1332			ek = event->attr.exclude_kernel;
1333			eh = event->attr.exclude_hv;
1334			first = 0;
1335		} else if (event->attr.exclude_user != eu ||
1336			   event->attr.exclude_kernel != ek ||
1337			   event->attr.exclude_hv != eh) {
1338			return -EAGAIN;
1339		}
1340	}
1341
1342	return 0;
1343}
1344
1345static int collect_events(struct perf_event *group, int max_count,
1346			  struct perf_event *evts[], unsigned long *events,
1347			  int *current_idx)
1348{
1349	struct perf_event *event;
1350	int n = 0;
1351
1352	if (!is_software_event(group)) {
1353		if (n >= max_count)
1354			return -1;
1355		evts[n] = group;
1356		events[n] = group->hw.event_base;
1357		current_idx[n++] = PIC_NO_INDEX;
1358	}
1359	for_each_sibling_event(event, group) {
1360		if (!is_software_event(event) &&
1361		    event->state != PERF_EVENT_STATE_OFF) {
1362			if (n >= max_count)
1363				return -1;
1364			evts[n] = event;
1365			events[n] = event->hw.event_base;
1366			current_idx[n++] = PIC_NO_INDEX;
1367		}
1368	}
1369	return n;
1370}
1371
1372static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1373{
1374	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1375	int n0, ret = -EAGAIN;
1376	unsigned long flags;
1377
1378	local_irq_save(flags);
1379
1380	n0 = cpuc->n_events;
1381	if (n0 >= sparc_pmu->max_hw_events)
1382		goto out;
1383
1384	cpuc->event[n0] = event;
1385	cpuc->events[n0] = event->hw.event_base;
1386	cpuc->current_idx[n0] = PIC_NO_INDEX;
1387
1388	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1389	if (!(ef_flags & PERF_EF_START))
1390		event->hw.state |= PERF_HES_ARCH;
1391
1392	/*
1393	 * If group events scheduling transaction was started,
1394	 * skip the schedulability test here, it will be performed
1395	 * at commit time(->commit_txn) as a whole
1396	 */
1397	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1398		goto nocheck;
1399
1400	if (check_excludes(cpuc->event, n0, 1))
1401		goto out;
1402	if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1403		goto out;
1404
1405nocheck:
1406	cpuc->n_events++;
1407	cpuc->n_added++;
1408
1409	ret = 0;
1410out:
1411	local_irq_restore(flags);
1412	return ret;
1413}
1414
1415static int sparc_pmu_event_init(struct perf_event *event)
1416{
1417	struct perf_event_attr *attr = &event->attr;
1418	struct perf_event *evts[MAX_HWEVENTS];
1419	struct hw_perf_event *hwc = &event->hw;
1420	unsigned long events[MAX_HWEVENTS];
1421	int current_idx_dmy[MAX_HWEVENTS];
1422	const struct perf_event_map *pmap;
1423	int n;
1424
1425	if (atomic_read(&nmi_active) < 0)
1426		return -ENODEV;
1427
1428	/* does not support taken branch sampling */
1429	if (has_branch_stack(event))
1430		return -EOPNOTSUPP;
1431
1432	switch (attr->type) {
1433	case PERF_TYPE_HARDWARE:
1434		if (attr->config >= sparc_pmu->max_events)
1435			return -EINVAL;
1436		pmap = sparc_pmu->event_map(attr->config);
1437		break;
1438
1439	case PERF_TYPE_HW_CACHE:
1440		pmap = sparc_map_cache_event(attr->config);
1441		if (IS_ERR(pmap))
1442			return PTR_ERR(pmap);
1443		break;
1444
1445	case PERF_TYPE_RAW:
1446		pmap = NULL;
1447		break;
1448
1449	default:
1450		return -ENOENT;
1451
1452	}
1453
1454	if (pmap) {
1455		hwc->event_base = perf_event_encode(pmap);
1456	} else {
1457		/*
1458		 * User gives us "(encoding << 16) | pic_mask" for
1459		 * PERF_TYPE_RAW events.
1460		 */
1461		hwc->event_base = attr->config;
1462	}
1463
1464	/* We save the enable bits in the config_base.  */
1465	hwc->config_base = sparc_pmu->irq_bit;
1466	if (!attr->exclude_user)
1467		hwc->config_base |= sparc_pmu->user_bit;
1468	if (!attr->exclude_kernel)
1469		hwc->config_base |= sparc_pmu->priv_bit;
1470	if (!attr->exclude_hv)
1471		hwc->config_base |= sparc_pmu->hv_bit;
1472
1473	n = 0;
1474	if (event->group_leader != event) {
1475		n = collect_events(event->group_leader,
1476				   sparc_pmu->max_hw_events - 1,
1477				   evts, events, current_idx_dmy);
1478		if (n < 0)
1479			return -EINVAL;
1480	}
1481	events[n] = hwc->event_base;
1482	evts[n] = event;
1483
1484	if (check_excludes(evts, n, 1))
1485		return -EINVAL;
1486
1487	if (sparc_check_constraints(evts, events, n + 1))
1488		return -EINVAL;
1489
1490	hwc->idx = PIC_NO_INDEX;
1491
1492	/* Try to do all error checking before this point, as unwinding
1493	 * state after grabbing the PMC is difficult.
1494	 */
1495	perf_event_grab_pmc();
1496	event->destroy = hw_perf_event_destroy;
1497
1498	if (!hwc->sample_period) {
1499		hwc->sample_period = MAX_PERIOD;
1500		hwc->last_period = hwc->sample_period;
1501		local64_set(&hwc->period_left, hwc->sample_period);
1502	}
1503
1504	return 0;
1505}
1506
1507/*
1508 * Start group events scheduling transaction
1509 * Set the flag to make pmu::enable() not perform the
1510 * schedulability test, it will be performed at commit time
1511 */
1512static void sparc_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1513{
1514	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1515
1516	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
1517
1518	cpuhw->txn_flags = txn_flags;
1519	if (txn_flags & ~PERF_PMU_TXN_ADD)
1520		return;
1521
1522	perf_pmu_disable(pmu);
1523}
1524
1525/*
1526 * Stop group events scheduling transaction
1527 * Clear the flag and pmu::enable() will perform the
1528 * schedulability test.
1529 */
1530static void sparc_pmu_cancel_txn(struct pmu *pmu)
1531{
1532	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1533	unsigned int txn_flags;
1534
1535	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
1536
1537	txn_flags = cpuhw->txn_flags;
1538	cpuhw->txn_flags = 0;
1539	if (txn_flags & ~PERF_PMU_TXN_ADD)
1540		return;
1541
1542	perf_pmu_enable(pmu);
1543}
1544
1545/*
1546 * Commit group events scheduling transaction
1547 * Perform the group schedulability test as a whole
1548 * Return 0 if success
1549 */
1550static int sparc_pmu_commit_txn(struct pmu *pmu)
1551{
1552	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1553	int n;
1554
1555	if (!sparc_pmu)
1556		return -EINVAL;
1557
1558	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1559
1560	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1561		cpuc->txn_flags = 0;
1562		return 0;
1563	}
1564
1565	n = cpuc->n_events;
1566	if (check_excludes(cpuc->event, 0, n))
1567		return -EINVAL;
1568	if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1569		return -EAGAIN;
1570
1571	cpuc->txn_flags = 0;
1572	perf_pmu_enable(pmu);
1573	return 0;
1574}
1575
1576static struct pmu pmu = {
1577	.pmu_enable	= sparc_pmu_enable,
1578	.pmu_disable	= sparc_pmu_disable,
1579	.event_init	= sparc_pmu_event_init,
1580	.add		= sparc_pmu_add,
1581	.del		= sparc_pmu_del,
1582	.start		= sparc_pmu_start,
1583	.stop		= sparc_pmu_stop,
1584	.read		= sparc_pmu_read,
1585	.start_txn	= sparc_pmu_start_txn,
1586	.cancel_txn	= sparc_pmu_cancel_txn,
1587	.commit_txn	= sparc_pmu_commit_txn,
1588};
1589
1590void perf_event_print_debug(void)
1591{
1592	unsigned long flags;
1593	int cpu, i;
1594
1595	if (!sparc_pmu)
1596		return;
1597
1598	local_irq_save(flags);
1599
1600	cpu = smp_processor_id();
1601
1602	pr_info("\n");
1603	for (i = 0; i < sparc_pmu->num_pcrs; i++)
1604		pr_info("CPU#%d: PCR%d[%016llx]\n",
1605			cpu, i, pcr_ops->read_pcr(i));
1606	for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1607		pr_info("CPU#%d: PIC%d[%016llx]\n",
1608			cpu, i, pcr_ops->read_pic(i));
1609
1610	local_irq_restore(flags);
1611}
1612
1613static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1614					    unsigned long cmd, void *__args)
1615{
1616	struct die_args *args = __args;
1617	struct perf_sample_data data;
1618	struct cpu_hw_events *cpuc;
1619	struct pt_regs *regs;
1620	u64 finish_clock;
1621	u64 start_clock;
1622	int i;
1623
1624	if (!atomic_read(&active_events))
1625		return NOTIFY_DONE;
1626
1627	switch (cmd) {
1628	case DIE_NMI:
1629		break;
1630
1631	default:
1632		return NOTIFY_DONE;
1633	}
1634
1635	start_clock = sched_clock();
1636
1637	regs = args->regs;
1638
1639	cpuc = this_cpu_ptr(&cpu_hw_events);
1640
1641	/* If the PMU has the TOE IRQ enable bits, we need to do a
1642	 * dummy write to the %pcr to clear the overflow bits and thus
1643	 * the interrupt.
1644	 *
1645	 * Do this before we peek at the counters to determine
1646	 * overflow so we don't lose any events.
1647	 */
1648	if (sparc_pmu->irq_bit &&
1649	    sparc_pmu->num_pcrs == 1)
1650		pcr_ops->write_pcr(0, cpuc->pcr[0]);
1651
1652	for (i = 0; i < cpuc->n_events; i++) {
1653		struct perf_event *event = cpuc->event[i];
1654		int idx = cpuc->current_idx[i];
1655		struct hw_perf_event *hwc;
1656		u64 val;
1657
1658		if (sparc_pmu->irq_bit &&
1659		    sparc_pmu->num_pcrs > 1)
1660			pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1661
1662		hwc = &event->hw;
1663		val = sparc_perf_event_update(event, hwc, idx);
1664		if (val & (1ULL << 31))
1665			continue;
1666
1667		perf_sample_data_init(&data, 0, hwc->last_period);
1668		if (!sparc_perf_event_set_period(event, hwc, idx))
1669			continue;
1670
1671		if (perf_event_overflow(event, &data, regs))
1672			sparc_pmu_stop(event, 0);
1673	}
1674
1675	finish_clock = sched_clock();
1676
1677	perf_sample_event_took(finish_clock - start_clock);
1678
1679	return NOTIFY_STOP;
1680}
1681
1682static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1683	.notifier_call		= perf_event_nmi_handler,
1684};
1685
1686static bool __init supported_pmu(void)
1687{
1688	if (!strcmp(sparc_pmu_type, "ultra3") ||
1689	    !strcmp(sparc_pmu_type, "ultra3+") ||
1690	    !strcmp(sparc_pmu_type, "ultra3i") ||
1691	    !strcmp(sparc_pmu_type, "ultra4+")) {
1692		sparc_pmu = &ultra3_pmu;
1693		return true;
1694	}
1695	if (!strcmp(sparc_pmu_type, "niagara")) {
1696		sparc_pmu = &niagara1_pmu;
1697		return true;
1698	}
1699	if (!strcmp(sparc_pmu_type, "niagara2") ||
1700	    !strcmp(sparc_pmu_type, "niagara3")) {
1701		sparc_pmu = &niagara2_pmu;
1702		return true;
1703	}
1704	if (!strcmp(sparc_pmu_type, "niagara4") ||
1705	    !strcmp(sparc_pmu_type, "niagara5")) {
1706		sparc_pmu = &niagara4_pmu;
1707		return true;
1708	}
1709	if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1710		sparc_pmu = &sparc_m7_pmu;
1711		return true;
1712	}
1713	return false;
1714}
1715
1716static int __init init_hw_perf_events(void)
1717{
1718	int err;
1719
1720	pr_info("Performance events: ");
1721
1722	err = pcr_arch_init();
1723	if (err || !supported_pmu()) {
1724		pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1725		return 0;
1726	}
1727
1728	pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1729
1730	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1731	register_die_notifier(&perf_event_nmi_notifier);
1732
1733	return 0;
1734}
1735pure_initcall(init_hw_perf_events);
1736
1737void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
1738			   struct pt_regs *regs)
1739{
1740	unsigned long ksp, fp;
1741#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1742	int graph = 0;
1743#endif
1744
1745	stack_trace_flush();
1746
1747	perf_callchain_store(entry, regs->tpc);
1748
1749	ksp = regs->u_regs[UREG_I6];
1750	fp = ksp + STACK_BIAS;
1751	do {
1752		struct sparc_stackf *sf;
1753		struct pt_regs *regs;
1754		unsigned long pc;
1755
1756		if (!kstack_valid(current_thread_info(), fp))
1757			break;
1758
1759		sf = (struct sparc_stackf *) fp;
1760		regs = (struct pt_regs *) (sf + 1);
1761
1762		if (kstack_is_trap_frame(current_thread_info(), regs)) {
1763			if (user_mode(regs))
1764				break;
1765			pc = regs->tpc;
1766			fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1767		} else {
1768			pc = sf->callers_pc;
1769			fp = (unsigned long)sf->fp + STACK_BIAS;
1770		}
1771		perf_callchain_store(entry, pc);
1772#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1773		if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1774			struct ftrace_ret_stack *ret_stack;
1775			ret_stack = ftrace_graph_get_ret_stack(current,
1776							       graph);
1777			if (ret_stack) {
1778				pc = ret_stack->ret;
1779				perf_callchain_store(entry, pc);
1780				graph++;
1781			}
1782		}
1783#endif
1784	} while (entry->nr < entry->max_stack);
1785}
1786
1787static inline int
1788valid_user_frame(const void __user *fp, unsigned long size)
1789{
1790	/* addresses should be at least 4-byte aligned */
1791	if (((unsigned long) fp) & 3)
1792		return 0;
1793
1794	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
1795}
1796
1797static void perf_callchain_user_64(struct perf_callchain_entry_ctx *entry,
1798				   struct pt_regs *regs)
1799{
1800	unsigned long ufp;
1801
1802	ufp = regs->u_regs[UREG_FP] + STACK_BIAS;
1803	do {
1804		struct sparc_stackf __user *usf;
1805		struct sparc_stackf sf;
1806		unsigned long pc;
1807
1808		usf = (struct sparc_stackf __user *)ufp;
1809		if (!valid_user_frame(usf, sizeof(sf)))
1810			break;
1811
1812		if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1813			break;
1814
1815		pc = sf.callers_pc;
1816		ufp = (unsigned long)sf.fp + STACK_BIAS;
1817		perf_callchain_store(entry, pc);
1818	} while (entry->nr < entry->max_stack);
1819}
1820
1821static void perf_callchain_user_32(struct perf_callchain_entry_ctx *entry,
1822				   struct pt_regs *regs)
1823{
1824	unsigned long ufp;
1825
1826	ufp = regs->u_regs[UREG_FP] & 0xffffffffUL;
1827	do {
1828		unsigned long pc;
1829
1830		if (thread32_stack_is_64bit(ufp)) {
1831			struct sparc_stackf __user *usf;
1832			struct sparc_stackf sf;
1833
1834			ufp += STACK_BIAS;
1835			usf = (struct sparc_stackf __user *)ufp;
1836			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1837				break;
1838			pc = sf.callers_pc & 0xffffffff;
1839			ufp = ((unsigned long) sf.fp) & 0xffffffff;
1840		} else {
1841			struct sparc_stackf32 __user *usf;
1842			struct sparc_stackf32 sf;
1843			usf = (struct sparc_stackf32 __user *)ufp;
1844			if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1845				break;
1846			pc = sf.callers_pc;
1847			ufp = (unsigned long)sf.fp;
1848		}
1849		perf_callchain_store(entry, pc);
1850	} while (entry->nr < entry->max_stack);
1851}
1852
1853void
1854perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
1855{
1856	u64 saved_fault_address = current_thread_info()->fault_address;
1857	u8 saved_fault_code = get_thread_fault_code();
1858
1859	perf_callchain_store(entry, regs->tpc);
1860
1861	if (!current->mm)
1862		return;
1863
1864	flushw_user();
1865
1866	pagefault_disable();
1867
1868	if (test_thread_flag(TIF_32BIT))
1869		perf_callchain_user_32(entry, regs);
1870	else
1871		perf_callchain_user_64(entry, regs);
1872
1873	pagefault_enable();
1874
1875	set_thread_fault_code(saved_fault_code);
1876	current_thread_info()->fault_address = saved_fault_address;
1877}
1878