1// SPDX-License-Identifier: GPL-2.0
2/* irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
6 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
7 */
8
9#include <linux/sched.h>
10#include <linux/linkage.h>
11#include <linux/ptrace.h>
12#include <linux/errno.h>
13#include <linux/kernel_stat.h>
14#include <linux/signal.h>
15#include <linux/mm.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/random.h>
19#include <linux/init.h>
20#include <linux/delay.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/ftrace.h>
24#include <linux/irq.h>
25
26#include <asm/ptrace.h>
27#include <asm/processor.h>
28#include <linux/atomic.h>
29#include <asm/irq.h>
30#include <asm/io.h>
31#include <asm/iommu.h>
32#include <asm/upa.h>
33#include <asm/oplib.h>
34#include <asm/prom.h>
35#include <asm/timer.h>
36#include <asm/smp.h>
37#include <asm/starfire.h>
38#include <linux/uaccess.h>
39#include <asm/cache.h>
40#include <asm/cpudata.h>
41#include <asm/auxio.h>
42#include <asm/head.h>
43#include <asm/hypervisor.h>
44#include <asm/cacheflush.h>
45#include <asm/softirq_stack.h>
46
47#include "entry.h"
48#include "cpumap.h"
49#include "kstack.h"
50
51struct ino_bucket *ivector_table;
52unsigned long ivector_table_pa;
53
54/* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses.  Therefore we access all INO buckets
56 * using bypass accesses only.
57 */
58static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59{
60	unsigned long ret;
61
62	__asm__ __volatile__("ldxa	[%1] %2, %0"
63			     : "=&r" (ret)
64			     : "r" (bucket_pa +
65				    offsetof(struct ino_bucket,
66					     __irq_chain_pa)),
67			       "i" (ASI_PHYS_USE_EC));
68
69	return ret;
70}
71
72static void bucket_clear_chain_pa(unsigned long bucket_pa)
73{
74	__asm__ __volatile__("stxa	%%g0, [%0] %1"
75			     : /* no outputs */
76			     : "r" (bucket_pa +
77				    offsetof(struct ino_bucket,
78					     __irq_chain_pa)),
79			       "i" (ASI_PHYS_USE_EC));
80}
81
82static unsigned int bucket_get_irq(unsigned long bucket_pa)
83{
84	unsigned int ret;
85
86	__asm__ __volatile__("lduwa	[%1] %2, %0"
87			     : "=&r" (ret)
88			     : "r" (bucket_pa +
89				    offsetof(struct ino_bucket,
90					     __irq)),
91			       "i" (ASI_PHYS_USE_EC));
92
93	return ret;
94}
95
96static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
97{
98	__asm__ __volatile__("stwa	%0, [%1] %2"
99			     : /* no outputs */
100			     : "r" (irq),
101			       "r" (bucket_pa +
102				    offsetof(struct ino_bucket,
103					     __irq)),
104			       "i" (ASI_PHYS_USE_EC));
105}
106
107#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
108
109static unsigned long hvirq_major __initdata;
110static int __init early_hvirq_major(char *p)
111{
112	int rc = kstrtoul(p, 10, &hvirq_major);
113
114	return rc;
115}
116early_param("hvirq", early_hvirq_major);
117
118static int hv_irq_version;
119
120/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
121 * based interfaces, but:
122 *
123 * 1) Several OSs, Solaris and Linux included, use them even when only
124 *    negotiating version 1.0 (or failing to negotiate at all).  So the
125 *    hypervisor has a workaround that provides the VIRQ interfaces even
126 *    when only verion 1.0 of the API is in use.
127 *
128 * 2) Second, and more importantly, with major version 2.0 these VIRQ
129 *    interfaces only were actually hooked up for LDC interrupts, even
130 *    though the Hypervisor specification clearly stated:
131 *
132 *	The new interrupt API functions will be available to a guest
133 *	when it negotiates version 2.0 in the interrupt API group 0x2. When
134 *	a guest negotiates version 2.0, all interrupt sources will only
135 *	support using the cookie interface, and any attempt to use the
136 *	version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
137 *	ENOTSUPPORTED error being returned.
138 *
139 *   with an emphasis on "all interrupt sources".
140 *
141 * To correct this, major version 3.0 was created which does actually
142 * support VIRQs for all interrupt sources (not just LDC devices).  So
143 * if we want to move completely over the cookie based VIRQs we must
144 * negotiate major version 3.0 or later of HV_GRP_INTR.
145 */
146static bool sun4v_cookie_only_virqs(void)
147{
148	if (hv_irq_version >= 3)
149		return true;
150	return false;
151}
152
153static void __init irq_init_hv(void)
154{
155	unsigned long hv_error, major, minor = 0;
156
157	if (tlb_type != hypervisor)
158		return;
159
160	if (hvirq_major)
161		major = hvirq_major;
162	else
163		major = 3;
164
165	hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
166	if (!hv_error)
167		hv_irq_version = major;
168	else
169		hv_irq_version = 1;
170
171	pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
172		hv_irq_version,
173		sun4v_cookie_only_virqs() ? "enabled" : "disabled");
174}
175
176/* This function is for the timer interrupt.*/
177int __init arch_probe_nr_irqs(void)
178{
179	return 1;
180}
181
182#define DEFAULT_NUM_IVECS	(0xfffU)
183static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
184#define NUM_IVECS (nr_ivec)
185
186static unsigned int __init size_nr_ivec(void)
187{
188	if (tlb_type == hypervisor) {
189		switch (sun4v_chip_type) {
190		/* Athena's devhandle|devino is large.*/
191		case SUN4V_CHIP_SPARC64X:
192			nr_ivec = 0xffff;
193			break;
194		}
195	}
196	return nr_ivec;
197}
198
199struct irq_handler_data {
200	union {
201		struct {
202			unsigned int dev_handle;
203			unsigned int dev_ino;
204		};
205		unsigned long sysino;
206	};
207	struct ino_bucket bucket;
208	unsigned long	iclr;
209	unsigned long	imap;
210};
211
212static inline unsigned int irq_data_to_handle(struct irq_data *data)
213{
214	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
215
216	return ihd->dev_handle;
217}
218
219static inline unsigned int irq_data_to_ino(struct irq_data *data)
220{
221	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
222
223	return ihd->dev_ino;
224}
225
226static inline unsigned long irq_data_to_sysino(struct irq_data *data)
227{
228	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
229
230	return ihd->sysino;
231}
232
233void irq_free(unsigned int irq)
234{
235	void *data = irq_get_handler_data(irq);
236
237	kfree(data);
238	irq_set_handler_data(irq, NULL);
239	irq_free_descs(irq, 1);
240}
241
242unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
243{
244	int irq;
245
246	irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
247	if (irq <= 0)
248		goto out;
249
250	return irq;
251out:
252	return 0;
253}
254
255static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
256{
257	unsigned long hv_err, cookie;
258	struct ino_bucket *bucket;
259	unsigned int irq = 0U;
260
261	hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
262	if (hv_err) {
263		pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
264		goto out;
265	}
266
267	if (cookie & ((1UL << 63UL))) {
268		cookie = ~cookie;
269		bucket = (struct ino_bucket *) __va(cookie);
270		irq = bucket->__irq;
271	}
272out:
273	return irq;
274}
275
276static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
277{
278	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
279	struct ino_bucket *bucket;
280	unsigned int irq;
281
282	bucket = &ivector_table[sysino];
283	irq = bucket_get_irq(__pa(bucket));
284
285	return irq;
286}
287
288void ack_bad_irq(unsigned int irq)
289{
290	pr_crit("BAD IRQ ack %d\n", irq);
291}
292
293void irq_install_pre_handler(int irq,
294			     void (*func)(unsigned int, void *, void *),
295			     void *arg1, void *arg2)
296{
297	pr_warn("IRQ pre handler NOT supported.\n");
298}
299
300/*
301 * /proc/interrupts printing:
302 */
303int arch_show_interrupts(struct seq_file *p, int prec)
304{
305	int j;
306
307	seq_printf(p, "NMI: ");
308	for_each_online_cpu(j)
309		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
310	seq_printf(p, "     Non-maskable interrupts\n");
311	return 0;
312}
313
314static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
315{
316	unsigned int tid;
317
318	if (this_is_starfire) {
319		tid = starfire_translate(imap, cpuid);
320		tid <<= IMAP_TID_SHIFT;
321		tid &= IMAP_TID_UPA;
322	} else {
323		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
324			unsigned long ver;
325
326			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
327			if ((ver >> 32UL) == __JALAPENO_ID ||
328			    (ver >> 32UL) == __SERRANO_ID) {
329				tid = cpuid << IMAP_TID_SHIFT;
330				tid &= IMAP_TID_JBUS;
331			} else {
332				unsigned int a = cpuid & 0x1f;
333				unsigned int n = (cpuid >> 5) & 0x1f;
334
335				tid = ((a << IMAP_AID_SHIFT) |
336				       (n << IMAP_NID_SHIFT));
337				tid &= (IMAP_AID_SAFARI |
338					IMAP_NID_SAFARI);
339			}
340		} else {
341			tid = cpuid << IMAP_TID_SHIFT;
342			tid &= IMAP_TID_UPA;
343		}
344	}
345
346	return tid;
347}
348
349#ifdef CONFIG_SMP
350static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
351{
352	cpumask_t mask;
353	int cpuid;
354
355	cpumask_copy(&mask, affinity);
356	if (cpumask_equal(&mask, cpu_online_mask)) {
357		cpuid = map_to_cpu(irq);
358	} else {
359		cpumask_t tmp;
360
361		cpumask_and(&tmp, cpu_online_mask, &mask);
362		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
363	}
364
365	return cpuid;
366}
367#else
368#define irq_choose_cpu(irq, affinity)	\
369	real_hard_smp_processor_id()
370#endif
371
372static void sun4u_irq_enable(struct irq_data *data)
373{
374	struct irq_handler_data *handler_data;
375
376	handler_data = irq_data_get_irq_handler_data(data);
377	if (likely(handler_data)) {
378		unsigned long cpuid, imap, val;
379		unsigned int tid;
380
381		cpuid = irq_choose_cpu(data->irq,
382				       irq_data_get_affinity_mask(data));
383		imap = handler_data->imap;
384
385		tid = sun4u_compute_tid(imap, cpuid);
386
387		val = upa_readq(imap);
388		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
389			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
390		val |= tid | IMAP_VALID;
391		upa_writeq(val, imap);
392		upa_writeq(ICLR_IDLE, handler_data->iclr);
393	}
394}
395
396static int sun4u_set_affinity(struct irq_data *data,
397			       const struct cpumask *mask, bool force)
398{
399	struct irq_handler_data *handler_data;
400
401	handler_data = irq_data_get_irq_handler_data(data);
402	if (likely(handler_data)) {
403		unsigned long cpuid, imap, val;
404		unsigned int tid;
405
406		cpuid = irq_choose_cpu(data->irq, mask);
407		imap = handler_data->imap;
408
409		tid = sun4u_compute_tid(imap, cpuid);
410
411		val = upa_readq(imap);
412		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
413			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
414		val |= tid | IMAP_VALID;
415		upa_writeq(val, imap);
416		upa_writeq(ICLR_IDLE, handler_data->iclr);
417	}
418
419	return 0;
420}
421
422/* Don't do anything.  The desc->status check for IRQ_DISABLED in
423 * handler_irq() will skip the handler call and that will leave the
424 * interrupt in the sent state.  The next ->enable() call will hit the
425 * ICLR register to reset the state machine.
426 *
427 * This scheme is necessary, instead of clearing the Valid bit in the
428 * IMAP register, to handle the case of IMAP registers being shared by
429 * multiple INOs (and thus ICLR registers).  Since we use a different
430 * virtual IRQ for each shared IMAP instance, the generic code thinks
431 * there is only one user so it prematurely calls ->disable() on
432 * free_irq().
433 *
434 * We have to provide an explicit ->disable() method instead of using
435 * NULL to get the default.  The reason is that if the generic code
436 * sees that, it also hooks up a default ->shutdown method which
437 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
438 */
439static void sun4u_irq_disable(struct irq_data *data)
440{
441}
442
443static void sun4u_irq_eoi(struct irq_data *data)
444{
445	struct irq_handler_data *handler_data;
446
447	handler_data = irq_data_get_irq_handler_data(data);
448	if (likely(handler_data))
449		upa_writeq(ICLR_IDLE, handler_data->iclr);
450}
451
452static void sun4v_irq_enable(struct irq_data *data)
453{
454	unsigned long cpuid = irq_choose_cpu(data->irq,
455					     irq_data_get_affinity_mask(data));
456	unsigned int ino = irq_data_to_sysino(data);
457	int err;
458
459	err = sun4v_intr_settarget(ino, cpuid);
460	if (err != HV_EOK)
461		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
462		       "err(%d)\n", ino, cpuid, err);
463	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
464	if (err != HV_EOK)
465		printk(KERN_ERR "sun4v_intr_setstate(%x): "
466		       "err(%d)\n", ino, err);
467	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
468	if (err != HV_EOK)
469		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
470		       ino, err);
471}
472
473static int sun4v_set_affinity(struct irq_data *data,
474			       const struct cpumask *mask, bool force)
475{
476	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
477	unsigned int ino = irq_data_to_sysino(data);
478	int err;
479
480	err = sun4v_intr_settarget(ino, cpuid);
481	if (err != HV_EOK)
482		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
483		       "err(%d)\n", ino, cpuid, err);
484
485	return 0;
486}
487
488static void sun4v_irq_disable(struct irq_data *data)
489{
490	unsigned int ino = irq_data_to_sysino(data);
491	int err;
492
493	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
494	if (err != HV_EOK)
495		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
496		       "err(%d)\n", ino, err);
497}
498
499static void sun4v_irq_eoi(struct irq_data *data)
500{
501	unsigned int ino = irq_data_to_sysino(data);
502	int err;
503
504	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
505	if (err != HV_EOK)
506		printk(KERN_ERR "sun4v_intr_setstate(%x): "
507		       "err(%d)\n", ino, err);
508}
509
510static void sun4v_virq_enable(struct irq_data *data)
511{
512	unsigned long dev_handle = irq_data_to_handle(data);
513	unsigned long dev_ino = irq_data_to_ino(data);
514	unsigned long cpuid;
515	int err;
516
517	cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
518
519	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
520	if (err != HV_EOK)
521		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
522		       "err(%d)\n",
523		       dev_handle, dev_ino, cpuid, err);
524	err = sun4v_vintr_set_state(dev_handle, dev_ino,
525				    HV_INTR_STATE_IDLE);
526	if (err != HV_EOK)
527		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
528		       "HV_INTR_STATE_IDLE): err(%d)\n",
529		       dev_handle, dev_ino, err);
530	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
531				    HV_INTR_ENABLED);
532	if (err != HV_EOK)
533		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
534		       "HV_INTR_ENABLED): err(%d)\n",
535		       dev_handle, dev_ino, err);
536}
537
538static int sun4v_virt_set_affinity(struct irq_data *data,
539				    const struct cpumask *mask, bool force)
540{
541	unsigned long dev_handle = irq_data_to_handle(data);
542	unsigned long dev_ino = irq_data_to_ino(data);
543	unsigned long cpuid;
544	int err;
545
546	cpuid = irq_choose_cpu(data->irq, mask);
547
548	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
549	if (err != HV_EOK)
550		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
551		       "err(%d)\n",
552		       dev_handle, dev_ino, cpuid, err);
553
554	return 0;
555}
556
557static void sun4v_virq_disable(struct irq_data *data)
558{
559	unsigned long dev_handle = irq_data_to_handle(data);
560	unsigned long dev_ino = irq_data_to_ino(data);
561	int err;
562
563
564	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
565				    HV_INTR_DISABLED);
566	if (err != HV_EOK)
567		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
568		       "HV_INTR_DISABLED): err(%d)\n",
569		       dev_handle, dev_ino, err);
570}
571
572static void sun4v_virq_eoi(struct irq_data *data)
573{
574	unsigned long dev_handle = irq_data_to_handle(data);
575	unsigned long dev_ino = irq_data_to_ino(data);
576	int err;
577
578	err = sun4v_vintr_set_state(dev_handle, dev_ino,
579				    HV_INTR_STATE_IDLE);
580	if (err != HV_EOK)
581		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
582		       "HV_INTR_STATE_IDLE): err(%d)\n",
583		       dev_handle, dev_ino, err);
584}
585
586static struct irq_chip sun4u_irq = {
587	.name			= "sun4u",
588	.irq_enable		= sun4u_irq_enable,
589	.irq_disable		= sun4u_irq_disable,
590	.irq_eoi		= sun4u_irq_eoi,
591	.irq_set_affinity	= sun4u_set_affinity,
592	.flags			= IRQCHIP_EOI_IF_HANDLED,
593};
594
595static struct irq_chip sun4v_irq = {
596	.name			= "sun4v",
597	.irq_enable		= sun4v_irq_enable,
598	.irq_disable		= sun4v_irq_disable,
599	.irq_eoi		= sun4v_irq_eoi,
600	.irq_set_affinity	= sun4v_set_affinity,
601	.flags			= IRQCHIP_EOI_IF_HANDLED,
602};
603
604static struct irq_chip sun4v_virq = {
605	.name			= "vsun4v",
606	.irq_enable		= sun4v_virq_enable,
607	.irq_disable		= sun4v_virq_disable,
608	.irq_eoi		= sun4v_virq_eoi,
609	.irq_set_affinity	= sun4v_virt_set_affinity,
610	.flags			= IRQCHIP_EOI_IF_HANDLED,
611};
612
613unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
614{
615	struct irq_handler_data *handler_data;
616	struct ino_bucket *bucket;
617	unsigned int irq;
618	int ino;
619
620	BUG_ON(tlb_type == hypervisor);
621
622	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
623	bucket = &ivector_table[ino];
624	irq = bucket_get_irq(__pa(bucket));
625	if (!irq) {
626		irq = irq_alloc(0, ino);
627		bucket_set_irq(__pa(bucket), irq);
628		irq_set_chip_and_handler_name(irq, &sun4u_irq,
629					      handle_fasteoi_irq, "IVEC");
630	}
631
632	handler_data = irq_get_handler_data(irq);
633	if (unlikely(handler_data))
634		goto out;
635
636	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
637	if (unlikely(!handler_data)) {
638		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
639		prom_halt();
640	}
641	irq_set_handler_data(irq, handler_data);
642
643	handler_data->imap  = imap;
644	handler_data->iclr  = iclr;
645
646out:
647	return irq;
648}
649
650static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
651		void (*handler_data_init)(struct irq_handler_data *data,
652		u32 devhandle, unsigned int devino),
653		struct irq_chip *chip)
654{
655	struct irq_handler_data *data;
656	unsigned int irq;
657
658	irq = irq_alloc(devhandle, devino);
659	if (!irq)
660		goto out;
661
662	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
663	if (unlikely(!data)) {
664		pr_err("IRQ handler data allocation failed.\n");
665		irq_free(irq);
666		irq = 0;
667		goto out;
668	}
669
670	irq_set_handler_data(irq, data);
671	handler_data_init(data, devhandle, devino);
672	irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
673	data->imap = ~0UL;
674	data->iclr = ~0UL;
675out:
676	return irq;
677}
678
679static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
680		unsigned int devino)
681{
682	struct irq_handler_data *ihd = irq_get_handler_data(irq);
683	unsigned long hv_error, cookie;
684
685	/* handler_irq needs to find the irq. cookie is seen signed in
686	 * sun4v_dev_mondo and treated as a non ivector_table delivery.
687	 */
688	ihd->bucket.__irq = irq;
689	cookie = ~__pa(&ihd->bucket);
690
691	hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
692	if (hv_error)
693		pr_err("HV vintr set cookie failed = %ld\n", hv_error);
694
695	return hv_error;
696}
697
698static void cookie_handler_data(struct irq_handler_data *data,
699				u32 devhandle, unsigned int devino)
700{
701	data->dev_handle = devhandle;
702	data->dev_ino = devino;
703}
704
705static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
706				     struct irq_chip *chip)
707{
708	unsigned long hv_error;
709	unsigned int irq;
710
711	irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
712
713	hv_error = cookie_assign(irq, devhandle, devino);
714	if (hv_error) {
715		irq_free(irq);
716		irq = 0;
717	}
718
719	return irq;
720}
721
722static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
723{
724	unsigned int irq;
725
726	irq = cookie_exists(devhandle, devino);
727	if (irq)
728		goto out;
729
730	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
731
732out:
733	return irq;
734}
735
736static void sysino_set_bucket(unsigned int irq)
737{
738	struct irq_handler_data *ihd = irq_get_handler_data(irq);
739	struct ino_bucket *bucket;
740	unsigned long sysino;
741
742	sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
743	BUG_ON(sysino >= nr_ivec);
744	bucket = &ivector_table[sysino];
745	bucket_set_irq(__pa(bucket), irq);
746}
747
748static void sysino_handler_data(struct irq_handler_data *data,
749				u32 devhandle, unsigned int devino)
750{
751	unsigned long sysino;
752
753	sysino = sun4v_devino_to_sysino(devhandle, devino);
754	data->sysino = sysino;
755}
756
757static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
758				     struct irq_chip *chip)
759{
760	unsigned int irq;
761
762	irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
763	if (!irq)
764		goto out;
765
766	sysino_set_bucket(irq);
767out:
768	return irq;
769}
770
771static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
772{
773	int irq;
774
775	irq = sysino_exists(devhandle, devino);
776	if (irq)
777		goto out;
778
779	irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
780out:
781	return irq;
782}
783
784unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
785{
786	unsigned int irq;
787
788	if (sun4v_cookie_only_virqs())
789		irq = sun4v_build_cookie(devhandle, devino);
790	else
791		irq = sun4v_build_sysino(devhandle, devino);
792
793	return irq;
794}
795
796unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
797{
798	int irq;
799
800	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
801	if (!irq)
802		goto out;
803
804	/* This is borrowed from the original function.
805	 */
806	irq_set_status_flags(irq, IRQ_NOAUTOEN);
807
808out:
809	return irq;
810}
811
812void *hardirq_stack[NR_CPUS];
813void *softirq_stack[NR_CPUS];
814
815void __irq_entry handler_irq(int pil, struct pt_regs *regs)
816{
817	unsigned long pstate, bucket_pa;
818	struct pt_regs *old_regs;
819	void *orig_sp;
820
821	clear_softint(1 << pil);
822
823	old_regs = set_irq_regs(regs);
824	irq_enter();
825
826	/* Grab an atomic snapshot of the pending IVECs.  */
827	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
828			     "wrpr	%0, %3, %%pstate\n\t"
829			     "ldx	[%2], %1\n\t"
830			     "stx	%%g0, [%2]\n\t"
831			     "wrpr	%0, 0x0, %%pstate\n\t"
832			     : "=&r" (pstate), "=&r" (bucket_pa)
833			     : "r" (irq_work_pa(smp_processor_id())),
834			       "i" (PSTATE_IE)
835			     : "memory");
836
837	orig_sp = set_hardirq_stack();
838
839	while (bucket_pa) {
840		unsigned long next_pa;
841		unsigned int irq;
842
843		next_pa = bucket_get_chain_pa(bucket_pa);
844		irq = bucket_get_irq(bucket_pa);
845		bucket_clear_chain_pa(bucket_pa);
846
847		generic_handle_irq(irq);
848
849		bucket_pa = next_pa;
850	}
851
852	restore_hardirq_stack(orig_sp);
853
854	irq_exit();
855	set_irq_regs(old_regs);
856}
857
858#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
859void do_softirq_own_stack(void)
860{
861	void *orig_sp, *sp = softirq_stack[smp_processor_id()];
862
863	sp += THREAD_SIZE - 192 - STACK_BIAS;
864
865	__asm__ __volatile__("mov %%sp, %0\n\t"
866			     "mov %1, %%sp"
867			     : "=&r" (orig_sp)
868			     : "r" (sp));
869	__do_softirq();
870	__asm__ __volatile__("mov %0, %%sp"
871			     : : "r" (orig_sp));
872}
873#endif
874
875#ifdef CONFIG_HOTPLUG_CPU
876void fixup_irqs(void)
877{
878	unsigned int irq;
879
880	for (irq = 0; irq < NR_IRQS; irq++) {
881		struct irq_desc *desc = irq_to_desc(irq);
882		struct irq_data *data;
883		unsigned long flags;
884
885		if (!desc)
886			continue;
887		data = irq_desc_get_irq_data(desc);
888		raw_spin_lock_irqsave(&desc->lock, flags);
889		if (desc->action && !irqd_is_per_cpu(data)) {
890			if (data->chip->irq_set_affinity)
891				data->chip->irq_set_affinity(data,
892					irq_data_get_affinity_mask(data),
893					false);
894		}
895		raw_spin_unlock_irqrestore(&desc->lock, flags);
896	}
897
898	tick_ops->disable_irq();
899}
900#endif
901
902struct sun5_timer {
903	u64	count0;
904	u64	limit0;
905	u64	count1;
906	u64	limit1;
907};
908
909static struct sun5_timer *prom_timers;
910static u64 prom_limit0, prom_limit1;
911
912static void map_prom_timers(void)
913{
914	struct device_node *dp;
915	const unsigned int *addr;
916
917	/* PROM timer node hangs out in the top level of device siblings... */
918	dp = of_find_node_by_path("/");
919	dp = dp->child;
920	while (dp) {
921		if (of_node_name_eq(dp, "counter-timer"))
922			break;
923		dp = dp->sibling;
924	}
925
926	/* Assume if node is not present, PROM uses different tick mechanism
927	 * which we should not care about.
928	 */
929	if (!dp) {
930		prom_timers = (struct sun5_timer *) 0;
931		return;
932	}
933
934	/* If PROM is really using this, it must be mapped by him. */
935	addr = of_get_property(dp, "address", NULL);
936	if (!addr) {
937		prom_printf("PROM does not have timer mapped, trying to continue.\n");
938		prom_timers = (struct sun5_timer *) 0;
939		return;
940	}
941	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
942}
943
944static void kill_prom_timer(void)
945{
946	if (!prom_timers)
947		return;
948
949	/* Save them away for later. */
950	prom_limit0 = prom_timers->limit0;
951	prom_limit1 = prom_timers->limit1;
952
953	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
954	 * We turn both off here just to be paranoid.
955	 */
956	prom_timers->limit0 = 0;
957	prom_timers->limit1 = 0;
958
959	/* Wheee, eat the interrupt packet too... */
960	__asm__ __volatile__(
961"	mov	0x40, %%g2\n"
962"	ldxa	[%%g0] %0, %%g1\n"
963"	ldxa	[%%g2] %1, %%g1\n"
964"	stxa	%%g0, [%%g0] %0\n"
965"	membar	#Sync\n"
966	: /* no outputs */
967	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
968	: "g1", "g2");
969}
970
971void notrace init_irqwork_curcpu(void)
972{
973	int cpu = hard_smp_processor_id();
974
975	trap_block[cpu].irq_worklist_pa = 0UL;
976}
977
978/* Please be very careful with register_one_mondo() and
979 * sun4v_register_mondo_queues().
980 *
981 * On SMP this gets invoked from the CPU trampoline before
982 * the cpu has fully taken over the trap table from OBP,
983 * and its kernel stack + %g6 thread register state is
984 * not fully cooked yet.
985 *
986 * Therefore you cannot make any OBP calls, not even prom_printf,
987 * from these two routines.
988 */
989static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
990				       unsigned long qmask)
991{
992	unsigned long num_entries = (qmask + 1) / 64;
993	unsigned long status;
994
995	status = sun4v_cpu_qconf(type, paddr, num_entries);
996	if (status != HV_EOK) {
997		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
998			    "err %lu\n", type, paddr, num_entries, status);
999		prom_halt();
1000	}
1001}
1002
1003void notrace sun4v_register_mondo_queues(int this_cpu)
1004{
1005	struct trap_per_cpu *tb = &trap_block[this_cpu];
1006
1007	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1008			   tb->cpu_mondo_qmask);
1009	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1010			   tb->dev_mondo_qmask);
1011	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1012			   tb->resum_qmask);
1013	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1014			   tb->nonresum_qmask);
1015}
1016
1017/* Each queue region must be a power of 2 multiple of 64 bytes in
1018 * size.  The base real address must be aligned to the size of the
1019 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
1020 */
1021static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1022{
1023	unsigned long size = PAGE_ALIGN(qmask + 1);
1024	unsigned long order = get_order(size);
1025	unsigned long p;
1026
1027	p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1028	if (!p) {
1029		prom_printf("SUN4V: Error, cannot allocate queue.\n");
1030		prom_halt();
1031	}
1032
1033	*pa_ptr = __pa(p);
1034}
1035
1036static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1037{
1038#ifdef CONFIG_SMP
1039	unsigned long page;
1040	void *mondo, *p;
1041
1042	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1043
1044	/* Make sure mondo block is 64byte aligned */
1045	p = kzalloc(127, GFP_KERNEL);
1046	if (!p) {
1047		prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1048		prom_halt();
1049	}
1050	mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1051	tb->cpu_mondo_block_pa = __pa(mondo);
1052
1053	page = get_zeroed_page(GFP_KERNEL);
1054	if (!page) {
1055		prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1056		prom_halt();
1057	}
1058
1059	tb->cpu_list_pa = __pa(page);
1060#endif
1061}
1062
1063/* Allocate mondo and error queues for all possible cpus.  */
1064static void __init sun4v_init_mondo_queues(void)
1065{
1066	int cpu;
1067
1068	for_each_possible_cpu(cpu) {
1069		struct trap_per_cpu *tb = &trap_block[cpu];
1070
1071		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1072		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1073		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1074		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1075		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1076		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1077				tb->nonresum_qmask);
1078	}
1079}
1080
1081static void __init init_send_mondo_info(void)
1082{
1083	int cpu;
1084
1085	for_each_possible_cpu(cpu) {
1086		struct trap_per_cpu *tb = &trap_block[cpu];
1087
1088		init_cpu_send_mondo_info(tb);
1089	}
1090}
1091
1092static struct irqaction timer_irq_action = {
1093	.name = "timer",
1094};
1095
1096static void __init irq_ivector_init(void)
1097{
1098	unsigned long size, order;
1099	unsigned int ivecs;
1100
1101	/* If we are doing cookie only VIRQs then we do not need the ivector
1102	 * table to process interrupts.
1103	 */
1104	if (sun4v_cookie_only_virqs())
1105		return;
1106
1107	ivecs = size_nr_ivec();
1108	size = sizeof(struct ino_bucket) * ivecs;
1109	order = get_order(size);
1110	ivector_table = (struct ino_bucket *)
1111		__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1112	if (!ivector_table) {
1113		prom_printf("Fatal error, cannot allocate ivector_table\n");
1114		prom_halt();
1115	}
1116	__flush_dcache_range((unsigned long) ivector_table,
1117			     ((unsigned long) ivector_table) + size);
1118
1119	ivector_table_pa = __pa(ivector_table);
1120}
1121
1122/* Only invoked on boot processor.*/
1123void __init init_IRQ(void)
1124{
1125	irq_init_hv();
1126	irq_ivector_init();
1127	map_prom_timers();
1128	kill_prom_timer();
1129
1130	if (tlb_type == hypervisor)
1131		sun4v_init_mondo_queues();
1132
1133	init_send_mondo_info();
1134
1135	if (tlb_type == hypervisor) {
1136		/* Load up the boot cpu's entries.  */
1137		sun4v_register_mondo_queues(hard_smp_processor_id());
1138	}
1139
1140	/* We need to clear any IRQ's pending in the soft interrupt
1141	 * registers, a spurious one could be left around from the
1142	 * PROM timer which we just disabled.
1143	 */
1144	clear_softint(get_softint());
1145
1146	/* Now that ivector table is initialized, it is safe
1147	 * to receive IRQ vector traps.  We will normally take
1148	 * one or two right now, in case some device PROM used
1149	 * to boot us wants to speak to us.  We just ignore them.
1150	 */
1151	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1152			     "or	%%g1, %0, %%g1\n\t"
1153			     "wrpr	%%g1, 0x0, %%pstate"
1154			     : /* No outputs */
1155			     : "i" (PSTATE_IE)
1156			     : "g1");
1157
1158	irq_to_desc(0)->action = &timer_irq_action;
1159}
1160