1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
4 *
5 * Use the z/Architecture Vector Extension Facility to accelerate the
6 * computing of CRC-32 checksums.
7 *
8 * This CRC-32 implementation algorithm processes the most-significant
9 * bit first (BE).
10 *
11 * Copyright IBM Corp. 2015
12 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
13 */
14
15#include <linux/types.h>
16#include <asm/fpu.h>
17#include "crc32-vx.h"
18
19/* Vector register range containing CRC-32 constants */
20#define CONST_R1R2		9
21#define CONST_R3R4		10
22#define CONST_R5		11
23#define CONST_R6		12
24#define CONST_RU_POLY		13
25#define CONST_CRC_POLY		14
26
27/*
28 * The CRC-32 constant block contains reduction constants to fold and
29 * process particular chunks of the input data stream in parallel.
30 *
31 * For the CRC-32 variants, the constants are precomputed according to
32 * these definitions:
33 *
34 *	R1 = x4*128+64 mod P(x)
35 *	R2 = x4*128    mod P(x)
36 *	R3 = x128+64   mod P(x)
37 *	R4 = x128      mod P(x)
38 *	R5 = x96       mod P(x)
39 *	R6 = x64       mod P(x)
40 *
41 *	Barret reduction constant, u, is defined as floor(x**64 / P(x)).
42 *
43 *	where P(x) is the polynomial in the normal domain and the P'(x) is the
44 *	polynomial in the reversed (bitreflected) domain.
45 *
46 * Note that the constant definitions below are extended in order to compute
47 * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
48 * The rightmost doubleword can be 0 to prevent contribution to the result or
49 * can be multiplied by 1 to perform an XOR without the need for a separate
50 * VECTOR EXCLUSIVE OR instruction.
51 *
52 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
53 *
54 *	P(x)  = 0x04C11DB7
55 *	P'(x) = 0xEDB88320
56 */
57
58static unsigned long constants_CRC_32_BE[] = {
59	0x08833794c, 0x0e6228b11,	/* R1, R2 */
60	0x0c5b9cd4c, 0x0e8a45605,	/* R3, R4 */
61	0x0f200aa66, 1UL << 32,		/* R5, x32 */
62	0x0490d678d, 1,			/* R6, 1 */
63	0x104d101df, 0,			/* u */
64	0x104C11DB7, 0,			/* P(x) */
65};
66
67/**
68 * crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers
69 * @crc: Initial CRC value, typically ~0.
70 * @buf: Input buffer pointer, performance might be improved if the
71 *	  buffer is on a doubleword boundary.
72 * @size: Size of the buffer, must be 64 bytes or greater.
73 *
74 * Register usage:
75 *	V0:	Initial CRC value and intermediate constants and results.
76 *	V1..V4:	Data for CRC computation.
77 *	V5..V8:	Next data chunks that are fetched from the input buffer.
78 *	V9..V14: CRC-32 constants.
79 */
80u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
81{
82	/* Load CRC-32 constants */
83	fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE);
84	fpu_vzero(0);
85
86	/* Load the initial CRC value into the leftmost word of V0. */
87	fpu_vlvgf(0, crc, 0);
88
89	/* Load a 64-byte data chunk and XOR with CRC */
90	fpu_vlm(1, 4, buf);
91	fpu_vx(1, 0, 1);
92	buf += 64;
93	size -= 64;
94
95	while (size >= 64) {
96		/* Load the next 64-byte data chunk into V5 to V8 */
97		fpu_vlm(5, 8, buf);
98
99		/*
100		 * Perform a GF(2) multiplication of the doublewords in V1 with
101		 * the reduction constants in V0.  The intermediate result is
102		 * then folded (accumulated) with the next data chunk in V5 and
103		 * stored in V1.  Repeat this step for the register contents
104		 * in V2, V3, and V4 respectively.
105		 */
106		fpu_vgfmag(1, CONST_R1R2, 1, 5);
107		fpu_vgfmag(2, CONST_R1R2, 2, 6);
108		fpu_vgfmag(3, CONST_R1R2, 3, 7);
109		fpu_vgfmag(4, CONST_R1R2, 4, 8);
110		buf += 64;
111		size -= 64;
112	}
113
114	/* Fold V1 to V4 into a single 128-bit value in V1 */
115	fpu_vgfmag(1, CONST_R3R4, 1, 2);
116	fpu_vgfmag(1, CONST_R3R4, 1, 3);
117	fpu_vgfmag(1, CONST_R3R4, 1, 4);
118
119	while (size >= 16) {
120		fpu_vl(2, buf);
121		fpu_vgfmag(1, CONST_R3R4, 1, 2);
122		buf += 16;
123		size -= 16;
124	}
125
126	/*
127	 * The R5 constant is used to fold a 128-bit value into an 96-bit value
128	 * that is XORed with the next 96-bit input data chunk.  To use a single
129	 * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
130	 * form an intermediate 96-bit value (with appended zeros) which is then
131	 * XORed with the intermediate reduction result.
132	 */
133	fpu_vgfmg(1, CONST_R5, 1);
134
135	/*
136	 * Further reduce the remaining 96-bit value to a 64-bit value using a
137	 * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
138	 * intermediate result is then XORed with the product of the leftmost
139	 * doubleword with R6.	The result is a 64-bit value and is subject to
140	 * the Barret reduction.
141	 */
142	fpu_vgfmg(1, CONST_R6, 1);
143
144	/*
145	 * The input values to the Barret reduction are the degree-63 polynomial
146	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
147	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
148	 * P(x).
149	 *
150	 * The Barret reduction algorithm is defined as:
151	 *
152	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
153	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
154	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
155	 *
156	 * Note: To compensate the division by x^32, use the vector unpack
157	 * instruction to move the leftmost word into the leftmost doubleword
158	 * of the vector register.  The rightmost doubleword is multiplied
159	 * with zero to not contribute to the intermediate results.
160	 */
161
162	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
163	fpu_vupllf(2, 1);
164	fpu_vgfmg(2, CONST_RU_POLY, 2);
165
166	/*
167	 * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
168	 * V2 and XOR the intermediate result, T2(x),  with the value in V1.
169	 * The final result is in the rightmost word of V2.
170	 */
171	fpu_vupllf(2, 2);
172	fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
173	return fpu_vlgvf(2, 3);
174}
175