1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 *  Copyright (C) 2017 Zihao Yu
5 */
6
7#include <linux/elf.h>
8#include <linux/err.h>
9#include <linux/errno.h>
10#include <linux/hashtable.h>
11#include <linux/kernel.h>
12#include <linux/log2.h>
13#include <linux/moduleloader.h>
14#include <linux/vmalloc.h>
15#include <linux/sizes.h>
16#include <linux/pgtable.h>
17#include <asm/alternative.h>
18#include <asm/sections.h>
19
20struct used_bucket {
21	struct list_head head;
22	struct hlist_head *bucket;
23};
24
25struct relocation_head {
26	struct hlist_node node;
27	struct list_head *rel_entry;
28	void *location;
29};
30
31struct relocation_entry {
32	struct list_head head;
33	Elf_Addr value;
34	unsigned int type;
35};
36
37struct relocation_handlers {
38	int (*reloc_handler)(struct module *me, void *location, Elf_Addr v);
39	int (*accumulate_handler)(struct module *me, void *location,
40				  long buffer);
41};
42
43/*
44 * The auipc+jalr instruction pair can reach any PC-relative offset
45 * in the range [-2^31 - 2^11, 2^31 - 2^11)
46 */
47static bool riscv_insn_valid_32bit_offset(ptrdiff_t val)
48{
49#ifdef CONFIG_32BIT
50	return true;
51#else
52	return (-(1L << 31) - (1L << 11)) <= val && val < ((1L << 31) - (1L << 11));
53#endif
54}
55
56static int riscv_insn_rmw(void *location, u32 keep, u32 set)
57{
58	__le16 *parcel = location;
59	u32 insn = (u32)le16_to_cpu(parcel[0]) | (u32)le16_to_cpu(parcel[1]) << 16;
60
61	insn &= keep;
62	insn |= set;
63
64	parcel[0] = cpu_to_le16(insn);
65	parcel[1] = cpu_to_le16(insn >> 16);
66	return 0;
67}
68
69static int riscv_insn_rvc_rmw(void *location, u16 keep, u16 set)
70{
71	__le16 *parcel = location;
72	u16 insn = le16_to_cpu(*parcel);
73
74	insn &= keep;
75	insn |= set;
76
77	*parcel = cpu_to_le16(insn);
78	return 0;
79}
80
81static int apply_r_riscv_32_rela(struct module *me, void *location, Elf_Addr v)
82{
83	if (v != (u32)v) {
84		pr_err("%s: value %016llx out of range for 32-bit field\n",
85		       me->name, (long long)v);
86		return -EINVAL;
87	}
88	*(u32 *)location = v;
89	return 0;
90}
91
92static int apply_r_riscv_64_rela(struct module *me, void *location, Elf_Addr v)
93{
94	*(u64 *)location = v;
95	return 0;
96}
97
98static int apply_r_riscv_branch_rela(struct module *me, void *location,
99				     Elf_Addr v)
100{
101	ptrdiff_t offset = (void *)v - location;
102	u32 imm12 = (offset & 0x1000) << (31 - 12);
103	u32 imm11 = (offset & 0x800) >> (11 - 7);
104	u32 imm10_5 = (offset & 0x7e0) << (30 - 10);
105	u32 imm4_1 = (offset & 0x1e) << (11 - 4);
106
107	return riscv_insn_rmw(location, 0x1fff07f, imm12 | imm11 | imm10_5 | imm4_1);
108}
109
110static int apply_r_riscv_jal_rela(struct module *me, void *location,
111				  Elf_Addr v)
112{
113	ptrdiff_t offset = (void *)v - location;
114	u32 imm20 = (offset & 0x100000) << (31 - 20);
115	u32 imm19_12 = (offset & 0xff000);
116	u32 imm11 = (offset & 0x800) << (20 - 11);
117	u32 imm10_1 = (offset & 0x7fe) << (30 - 10);
118
119	return riscv_insn_rmw(location, 0xfff, imm20 | imm19_12 | imm11 | imm10_1);
120}
121
122static int apply_r_riscv_rvc_branch_rela(struct module *me, void *location,
123					 Elf_Addr v)
124{
125	ptrdiff_t offset = (void *)v - location;
126	u16 imm8 = (offset & 0x100) << (12 - 8);
127	u16 imm7_6 = (offset & 0xc0) >> (6 - 5);
128	u16 imm5 = (offset & 0x20) >> (5 - 2);
129	u16 imm4_3 = (offset & 0x18) << (12 - 5);
130	u16 imm2_1 = (offset & 0x6) << (12 - 10);
131
132	return riscv_insn_rvc_rmw(location, 0xe383,
133			imm8 | imm7_6 | imm5 | imm4_3 | imm2_1);
134}
135
136static int apply_r_riscv_rvc_jump_rela(struct module *me, void *location,
137				       Elf_Addr v)
138{
139	ptrdiff_t offset = (void *)v - location;
140	u16 imm11 = (offset & 0x800) << (12 - 11);
141	u16 imm10 = (offset & 0x400) >> (10 - 8);
142	u16 imm9_8 = (offset & 0x300) << (12 - 11);
143	u16 imm7 = (offset & 0x80) >> (7 - 6);
144	u16 imm6 = (offset & 0x40) << (12 - 11);
145	u16 imm5 = (offset & 0x20) >> (5 - 2);
146	u16 imm4 = (offset & 0x10) << (12 - 5);
147	u16 imm3_1 = (offset & 0xe) << (12 - 10);
148
149	return riscv_insn_rvc_rmw(location, 0xe003,
150			imm11 | imm10 | imm9_8 | imm7 | imm6 | imm5 | imm4 | imm3_1);
151}
152
153static int apply_r_riscv_pcrel_hi20_rela(struct module *me, void *location,
154					 Elf_Addr v)
155{
156	ptrdiff_t offset = (void *)v - location;
157
158	if (!riscv_insn_valid_32bit_offset(offset)) {
159		pr_err(
160		  "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
161		  me->name, (long long)v, location);
162		return -EINVAL;
163	}
164
165	return riscv_insn_rmw(location, 0xfff, (offset + 0x800) & 0xfffff000);
166}
167
168static int apply_r_riscv_pcrel_lo12_i_rela(struct module *me, void *location,
169					   Elf_Addr v)
170{
171	/*
172	 * v is the lo12 value to fill. It is calculated before calling this
173	 * handler.
174	 */
175	return riscv_insn_rmw(location, 0xfffff, (v & 0xfff) << 20);
176}
177
178static int apply_r_riscv_pcrel_lo12_s_rela(struct module *me, void *location,
179					   Elf_Addr v)
180{
181	/*
182	 * v is the lo12 value to fill. It is calculated before calling this
183	 * handler.
184	 */
185	u32 imm11_5 = (v & 0xfe0) << (31 - 11);
186	u32 imm4_0 = (v & 0x1f) << (11 - 4);
187
188	return riscv_insn_rmw(location, 0x1fff07f, imm11_5 | imm4_0);
189}
190
191static int apply_r_riscv_hi20_rela(struct module *me, void *location,
192				   Elf_Addr v)
193{
194	if (IS_ENABLED(CONFIG_CMODEL_MEDLOW)) {
195		pr_err(
196		  "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
197		  me->name, (long long)v, location);
198		return -EINVAL;
199	}
200
201	return riscv_insn_rmw(location, 0xfff, ((s32)v + 0x800) & 0xfffff000);
202}
203
204static int apply_r_riscv_lo12_i_rela(struct module *me, void *location,
205				     Elf_Addr v)
206{
207	/* Skip medlow checking because of filtering by HI20 already */
208	s32 hi20 = ((s32)v + 0x800) & 0xfffff000;
209	s32 lo12 = ((s32)v - hi20);
210
211	return riscv_insn_rmw(location, 0xfffff, (lo12 & 0xfff) << 20);
212}
213
214static int apply_r_riscv_lo12_s_rela(struct module *me, void *location,
215				     Elf_Addr v)
216{
217	/* Skip medlow checking because of filtering by HI20 already */
218	s32 hi20 = ((s32)v + 0x800) & 0xfffff000;
219	s32 lo12 = ((s32)v - hi20);
220	u32 imm11_5 = (lo12 & 0xfe0) << (31 - 11);
221	u32 imm4_0 = (lo12 & 0x1f) << (11 - 4);
222
223	return riscv_insn_rmw(location, 0x1fff07f, imm11_5 | imm4_0);
224}
225
226static int apply_r_riscv_got_hi20_rela(struct module *me, void *location,
227				       Elf_Addr v)
228{
229	ptrdiff_t offset = (void *)v - location;
230
231	/* Always emit the got entry */
232	if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) {
233		offset = (void *)module_emit_got_entry(me, v) - location;
234	} else {
235		pr_err(
236		  "%s: can not generate the GOT entry for symbol = %016llx from PC = %p\n",
237		  me->name, (long long)v, location);
238		return -EINVAL;
239	}
240
241	return riscv_insn_rmw(location, 0xfff, (offset + 0x800) & 0xfffff000);
242}
243
244static int apply_r_riscv_call_plt_rela(struct module *me, void *location,
245				       Elf_Addr v)
246{
247	ptrdiff_t offset = (void *)v - location;
248	u32 hi20, lo12;
249
250	if (!riscv_insn_valid_32bit_offset(offset)) {
251		/* Only emit the plt entry if offset over 32-bit range */
252		if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) {
253			offset = (void *)module_emit_plt_entry(me, v) - location;
254		} else {
255			pr_err(
256			  "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
257			  me->name, (long long)v, location);
258			return -EINVAL;
259		}
260	}
261
262	hi20 = (offset + 0x800) & 0xfffff000;
263	lo12 = (offset - hi20) & 0xfff;
264	riscv_insn_rmw(location, 0xfff, hi20);
265	return riscv_insn_rmw(location + 4, 0xfffff, lo12 << 20);
266}
267
268static int apply_r_riscv_call_rela(struct module *me, void *location,
269				   Elf_Addr v)
270{
271	ptrdiff_t offset = (void *)v - location;
272	u32 hi20, lo12;
273
274	if (!riscv_insn_valid_32bit_offset(offset)) {
275		pr_err(
276		  "%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
277		  me->name, (long long)v, location);
278		return -EINVAL;
279	}
280
281	hi20 = (offset + 0x800) & 0xfffff000;
282	lo12 = (offset - hi20) & 0xfff;
283	riscv_insn_rmw(location, 0xfff, hi20);
284	return riscv_insn_rmw(location + 4, 0xfffff, lo12 << 20);
285}
286
287static int apply_r_riscv_relax_rela(struct module *me, void *location,
288				    Elf_Addr v)
289{
290	return 0;
291}
292
293static int apply_r_riscv_align_rela(struct module *me, void *location,
294				    Elf_Addr v)
295{
296	pr_err(
297	  "%s: The unexpected relocation type 'R_RISCV_ALIGN' from PC = %p\n",
298	  me->name, location);
299	return -EINVAL;
300}
301
302static int apply_r_riscv_add8_rela(struct module *me, void *location, Elf_Addr v)
303{
304	*(u8 *)location += (u8)v;
305	return 0;
306}
307
308static int apply_r_riscv_add16_rela(struct module *me, void *location,
309				    Elf_Addr v)
310{
311	*(u16 *)location += (u16)v;
312	return 0;
313}
314
315static int apply_r_riscv_add32_rela(struct module *me, void *location,
316				    Elf_Addr v)
317{
318	*(u32 *)location += (u32)v;
319	return 0;
320}
321
322static int apply_r_riscv_add64_rela(struct module *me, void *location,
323				    Elf_Addr v)
324{
325	*(u64 *)location += (u64)v;
326	return 0;
327}
328
329static int apply_r_riscv_sub8_rela(struct module *me, void *location, Elf_Addr v)
330{
331	*(u8 *)location -= (u8)v;
332	return 0;
333}
334
335static int apply_r_riscv_sub16_rela(struct module *me, void *location,
336				    Elf_Addr v)
337{
338	*(u16 *)location -= (u16)v;
339	return 0;
340}
341
342static int apply_r_riscv_sub32_rela(struct module *me, void *location,
343				    Elf_Addr v)
344{
345	*(u32 *)location -= (u32)v;
346	return 0;
347}
348
349static int apply_r_riscv_sub64_rela(struct module *me, void *location,
350				    Elf_Addr v)
351{
352	*(u64 *)location -= (u64)v;
353	return 0;
354}
355
356static int dynamic_linking_not_supported(struct module *me, void *location,
357					 Elf_Addr v)
358{
359	pr_err("%s: Dynamic linking not supported in kernel modules PC = %p\n",
360	       me->name, location);
361	return -EINVAL;
362}
363
364static int tls_not_supported(struct module *me, void *location, Elf_Addr v)
365{
366	pr_err("%s: Thread local storage not supported in kernel modules PC = %p\n",
367	       me->name, location);
368	return -EINVAL;
369}
370
371static int apply_r_riscv_sub6_rela(struct module *me, void *location, Elf_Addr v)
372{
373	u8 *byte = location;
374	u8 value = v;
375
376	*byte = (*byte - (value & 0x3f)) & 0x3f;
377	return 0;
378}
379
380static int apply_r_riscv_set6_rela(struct module *me, void *location, Elf_Addr v)
381{
382	u8 *byte = location;
383	u8 value = v;
384
385	*byte = (*byte & 0xc0) | (value & 0x3f);
386	return 0;
387}
388
389static int apply_r_riscv_set8_rela(struct module *me, void *location, Elf_Addr v)
390{
391	*(u8 *)location = (u8)v;
392	return 0;
393}
394
395static int apply_r_riscv_set16_rela(struct module *me, void *location,
396				    Elf_Addr v)
397{
398	*(u16 *)location = (u16)v;
399	return 0;
400}
401
402static int apply_r_riscv_set32_rela(struct module *me, void *location,
403				    Elf_Addr v)
404{
405	*(u32 *)location = (u32)v;
406	return 0;
407}
408
409static int apply_r_riscv_32_pcrel_rela(struct module *me, void *location,
410				       Elf_Addr v)
411{
412	*(u32 *)location = v - (uintptr_t)location;
413	return 0;
414}
415
416static int apply_r_riscv_plt32_rela(struct module *me, void *location,
417				    Elf_Addr v)
418{
419	ptrdiff_t offset = (void *)v - location;
420
421	if (!riscv_insn_valid_32bit_offset(offset)) {
422		/* Only emit the plt entry if offset over 32-bit range */
423		if (IS_ENABLED(CONFIG_MODULE_SECTIONS)) {
424			offset = (void *)module_emit_plt_entry(me, v) - location;
425		} else {
426			pr_err("%s: target %016llx can not be addressed by the 32-bit offset from PC = %p\n",
427			       me->name, (long long)v, location);
428			return -EINVAL;
429		}
430	}
431
432	*(u32 *)location = (u32)offset;
433	return 0;
434}
435
436static int apply_r_riscv_set_uleb128(struct module *me, void *location, Elf_Addr v)
437{
438	*(long *)location = v;
439	return 0;
440}
441
442static int apply_r_riscv_sub_uleb128(struct module *me, void *location, Elf_Addr v)
443{
444	*(long *)location -= v;
445	return 0;
446}
447
448static int apply_6_bit_accumulation(struct module *me, void *location, long buffer)
449{
450	u8 *byte = location;
451	u8 value = buffer;
452
453	if (buffer > 0x3f) {
454		pr_err("%s: value %ld out of range for 6-bit relocation.\n",
455		       me->name, buffer);
456		return -EINVAL;
457	}
458
459	*byte = (*byte & 0xc0) | (value & 0x3f);
460	return 0;
461}
462
463static int apply_8_bit_accumulation(struct module *me, void *location, long buffer)
464{
465	if (buffer > U8_MAX) {
466		pr_err("%s: value %ld out of range for 8-bit relocation.\n",
467		       me->name, buffer);
468		return -EINVAL;
469	}
470	*(u8 *)location = (u8)buffer;
471	return 0;
472}
473
474static int apply_16_bit_accumulation(struct module *me, void *location, long buffer)
475{
476	if (buffer > U16_MAX) {
477		pr_err("%s: value %ld out of range for 16-bit relocation.\n",
478		       me->name, buffer);
479		return -EINVAL;
480	}
481	*(u16 *)location = (u16)buffer;
482	return 0;
483}
484
485static int apply_32_bit_accumulation(struct module *me, void *location, long buffer)
486{
487	if (buffer > U32_MAX) {
488		pr_err("%s: value %ld out of range for 32-bit relocation.\n",
489		       me->name, buffer);
490		return -EINVAL;
491	}
492	*(u32 *)location = (u32)buffer;
493	return 0;
494}
495
496static int apply_64_bit_accumulation(struct module *me, void *location, long buffer)
497{
498	*(u64 *)location = (u64)buffer;
499	return 0;
500}
501
502static int apply_uleb128_accumulation(struct module *me, void *location, long buffer)
503{
504	/*
505	 * ULEB128 is a variable length encoding. Encode the buffer into
506	 * the ULEB128 data format.
507	 */
508	u8 *p = location;
509
510	while (buffer != 0) {
511		u8 value = buffer & 0x7f;
512
513		buffer >>= 7;
514		value |= (!!buffer) << 7;
515
516		*p++ = value;
517	}
518	return 0;
519}
520
521/*
522 * Relocations defined in the riscv-elf-psabi-doc.
523 * This handles static linking only.
524 */
525static const struct relocation_handlers reloc_handlers[] = {
526	[R_RISCV_32]		= { .reloc_handler = apply_r_riscv_32_rela },
527	[R_RISCV_64]		= { .reloc_handler = apply_r_riscv_64_rela },
528	[R_RISCV_RELATIVE]	= { .reloc_handler = dynamic_linking_not_supported },
529	[R_RISCV_COPY]		= { .reloc_handler = dynamic_linking_not_supported },
530	[R_RISCV_JUMP_SLOT]	= { .reloc_handler = dynamic_linking_not_supported },
531	[R_RISCV_TLS_DTPMOD32]	= { .reloc_handler = dynamic_linking_not_supported },
532	[R_RISCV_TLS_DTPMOD64]	= { .reloc_handler = dynamic_linking_not_supported },
533	[R_RISCV_TLS_DTPREL32]	= { .reloc_handler = dynamic_linking_not_supported },
534	[R_RISCV_TLS_DTPREL64]	= { .reloc_handler = dynamic_linking_not_supported },
535	[R_RISCV_TLS_TPREL32]	= { .reloc_handler = dynamic_linking_not_supported },
536	[R_RISCV_TLS_TPREL64]	= { .reloc_handler = dynamic_linking_not_supported },
537	/* 12-15 undefined */
538	[R_RISCV_BRANCH]	= { .reloc_handler = apply_r_riscv_branch_rela },
539	[R_RISCV_JAL]		= { .reloc_handler = apply_r_riscv_jal_rela },
540	[R_RISCV_CALL]		= { .reloc_handler = apply_r_riscv_call_rela },
541	[R_RISCV_CALL_PLT]	= { .reloc_handler = apply_r_riscv_call_plt_rela },
542	[R_RISCV_GOT_HI20]	= { .reloc_handler = apply_r_riscv_got_hi20_rela },
543	[R_RISCV_TLS_GOT_HI20]	= { .reloc_handler = tls_not_supported },
544	[R_RISCV_TLS_GD_HI20]	= { .reloc_handler = tls_not_supported },
545	[R_RISCV_PCREL_HI20]	= { .reloc_handler = apply_r_riscv_pcrel_hi20_rela },
546	[R_RISCV_PCREL_LO12_I]	= { .reloc_handler = apply_r_riscv_pcrel_lo12_i_rela },
547	[R_RISCV_PCREL_LO12_S]	= { .reloc_handler = apply_r_riscv_pcrel_lo12_s_rela },
548	[R_RISCV_HI20]		= { .reloc_handler = apply_r_riscv_hi20_rela },
549	[R_RISCV_LO12_I]	= { .reloc_handler = apply_r_riscv_lo12_i_rela },
550	[R_RISCV_LO12_S]	= { .reloc_handler = apply_r_riscv_lo12_s_rela },
551	[R_RISCV_TPREL_HI20]	= { .reloc_handler = tls_not_supported },
552	[R_RISCV_TPREL_LO12_I]	= { .reloc_handler = tls_not_supported },
553	[R_RISCV_TPREL_LO12_S]	= { .reloc_handler = tls_not_supported },
554	[R_RISCV_TPREL_ADD]	= { .reloc_handler = tls_not_supported },
555	[R_RISCV_ADD8]		= { .reloc_handler = apply_r_riscv_add8_rela,
556				    .accumulate_handler = apply_8_bit_accumulation },
557	[R_RISCV_ADD16]		= { .reloc_handler = apply_r_riscv_add16_rela,
558				    .accumulate_handler = apply_16_bit_accumulation },
559	[R_RISCV_ADD32]		= { .reloc_handler = apply_r_riscv_add32_rela,
560				    .accumulate_handler = apply_32_bit_accumulation },
561	[R_RISCV_ADD64]		= { .reloc_handler = apply_r_riscv_add64_rela,
562				    .accumulate_handler = apply_64_bit_accumulation },
563	[R_RISCV_SUB8]		= { .reloc_handler = apply_r_riscv_sub8_rela,
564				    .accumulate_handler = apply_8_bit_accumulation },
565	[R_RISCV_SUB16]		= { .reloc_handler = apply_r_riscv_sub16_rela,
566				    .accumulate_handler = apply_16_bit_accumulation },
567	[R_RISCV_SUB32]		= { .reloc_handler = apply_r_riscv_sub32_rela,
568				    .accumulate_handler = apply_32_bit_accumulation },
569	[R_RISCV_SUB64]		= { .reloc_handler = apply_r_riscv_sub64_rela,
570				    .accumulate_handler = apply_64_bit_accumulation },
571	/* 41-42 reserved for future standard use */
572	[R_RISCV_ALIGN]		= { .reloc_handler = apply_r_riscv_align_rela },
573	[R_RISCV_RVC_BRANCH]	= { .reloc_handler = apply_r_riscv_rvc_branch_rela },
574	[R_RISCV_RVC_JUMP]	= { .reloc_handler = apply_r_riscv_rvc_jump_rela },
575	/* 46-50 reserved for future standard use */
576	[R_RISCV_RELAX]		= { .reloc_handler = apply_r_riscv_relax_rela },
577	[R_RISCV_SUB6]		= { .reloc_handler = apply_r_riscv_sub6_rela,
578				    .accumulate_handler = apply_6_bit_accumulation },
579	[R_RISCV_SET6]		= { .reloc_handler = apply_r_riscv_set6_rela,
580				    .accumulate_handler = apply_6_bit_accumulation },
581	[R_RISCV_SET8]		= { .reloc_handler = apply_r_riscv_set8_rela,
582				    .accumulate_handler = apply_8_bit_accumulation },
583	[R_RISCV_SET16]		= { .reloc_handler = apply_r_riscv_set16_rela,
584				    .accumulate_handler = apply_16_bit_accumulation },
585	[R_RISCV_SET32]		= { .reloc_handler = apply_r_riscv_set32_rela,
586				    .accumulate_handler = apply_32_bit_accumulation },
587	[R_RISCV_32_PCREL]	= { .reloc_handler = apply_r_riscv_32_pcrel_rela },
588	[R_RISCV_IRELATIVE]	= { .reloc_handler = dynamic_linking_not_supported },
589	[R_RISCV_PLT32]		= { .reloc_handler = apply_r_riscv_plt32_rela },
590	[R_RISCV_SET_ULEB128]	= { .reloc_handler = apply_r_riscv_set_uleb128,
591				    .accumulate_handler = apply_uleb128_accumulation },
592	[R_RISCV_SUB_ULEB128]	= { .reloc_handler = apply_r_riscv_sub_uleb128,
593				    .accumulate_handler = apply_uleb128_accumulation },
594	/* 62-191 reserved for future standard use */
595	/* 192-255 nonstandard ABI extensions  */
596};
597
598static void
599process_accumulated_relocations(struct module *me,
600				struct hlist_head **relocation_hashtable,
601				struct list_head *used_buckets_list)
602{
603	/*
604	 * Only ADD/SUB/SET/ULEB128 should end up here.
605	 *
606	 * Each bucket may have more than one relocation location. All
607	 * relocations for a location are stored in a list in a bucket.
608	 *
609	 * Relocations are applied to a temp variable before being stored to the
610	 * provided location to check for overflow. This also allows ULEB128 to
611	 * properly decide how many entries are needed before storing to
612	 * location. The final value is stored into location using the handler
613	 * for the last relocation to an address.
614	 *
615	 * Three layers of indexing:
616	 *	- Each of the buckets in use
617	 *	- Groups of relocations in each bucket by location address
618	 *	- Each relocation entry for a location address
619	 */
620	struct used_bucket *bucket_iter;
621	struct used_bucket *bucket_iter_tmp;
622	struct relocation_head *rel_head_iter;
623	struct hlist_node *rel_head_iter_tmp;
624	struct relocation_entry *rel_entry_iter;
625	struct relocation_entry *rel_entry_iter_tmp;
626	int curr_type;
627	void *location;
628	long buffer;
629
630	list_for_each_entry_safe(bucket_iter, bucket_iter_tmp,
631				 used_buckets_list, head) {
632		hlist_for_each_entry_safe(rel_head_iter, rel_head_iter_tmp,
633					  bucket_iter->bucket, node) {
634			buffer = 0;
635			location = rel_head_iter->location;
636			list_for_each_entry_safe(rel_entry_iter,
637						 rel_entry_iter_tmp,
638						 rel_head_iter->rel_entry,
639						 head) {
640				curr_type = rel_entry_iter->type;
641				reloc_handlers[curr_type].reloc_handler(
642					me, &buffer, rel_entry_iter->value);
643				kfree(rel_entry_iter);
644			}
645			reloc_handlers[curr_type].accumulate_handler(
646				me, location, buffer);
647			kfree(rel_head_iter);
648		}
649		kfree(bucket_iter);
650	}
651
652	kfree(*relocation_hashtable);
653}
654
655static int add_relocation_to_accumulate(struct module *me, int type,
656					void *location,
657					unsigned int hashtable_bits, Elf_Addr v,
658					struct hlist_head *relocation_hashtable,
659					struct list_head *used_buckets_list)
660{
661	struct relocation_entry *entry;
662	struct relocation_head *rel_head;
663	struct hlist_head *current_head;
664	struct used_bucket *bucket;
665	unsigned long hash;
666
667	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
668
669	if (!entry)
670		return -ENOMEM;
671
672	INIT_LIST_HEAD(&entry->head);
673	entry->type = type;
674	entry->value = v;
675
676	hash = hash_min((uintptr_t)location, hashtable_bits);
677
678	current_head = &relocation_hashtable[hash];
679
680	/*
681	 * Search for the relocation_head for the relocations that happen at the
682	 * provided location
683	 */
684	bool found = false;
685	struct relocation_head *rel_head_iter;
686
687	hlist_for_each_entry(rel_head_iter, current_head, node) {
688		if (rel_head_iter->location == location) {
689			found = true;
690			rel_head = rel_head_iter;
691			break;
692		}
693	}
694
695	/*
696	 * If there has not yet been any relocations at the provided location,
697	 * create a relocation_head for that location and populate it with this
698	 * relocation_entry.
699	 */
700	if (!found) {
701		rel_head = kmalloc(sizeof(*rel_head), GFP_KERNEL);
702
703		if (!rel_head) {
704			kfree(entry);
705			return -ENOMEM;
706		}
707
708		rel_head->rel_entry =
709			kmalloc(sizeof(struct list_head), GFP_KERNEL);
710
711		if (!rel_head->rel_entry) {
712			kfree(entry);
713			kfree(rel_head);
714			return -ENOMEM;
715		}
716
717		INIT_LIST_HEAD(rel_head->rel_entry);
718		rel_head->location = location;
719		INIT_HLIST_NODE(&rel_head->node);
720		if (!current_head->first) {
721			bucket =
722				kmalloc(sizeof(struct used_bucket), GFP_KERNEL);
723
724			if (!bucket) {
725				kfree(entry);
726				kfree(rel_head->rel_entry);
727				kfree(rel_head);
728				return -ENOMEM;
729			}
730
731			INIT_LIST_HEAD(&bucket->head);
732			bucket->bucket = current_head;
733			list_add(&bucket->head, used_buckets_list);
734		}
735		hlist_add_head(&rel_head->node, current_head);
736	}
737
738	/* Add relocation to head of discovered rel_head */
739	list_add_tail(&entry->head, rel_head->rel_entry);
740
741	return 0;
742}
743
744static unsigned int
745initialize_relocation_hashtable(unsigned int num_relocations,
746				struct hlist_head **relocation_hashtable)
747{
748	/* Can safely assume that bits is not greater than sizeof(long) */
749	unsigned long hashtable_size = roundup_pow_of_two(num_relocations);
750	/*
751	 * When hashtable_size == 1, hashtable_bits == 0.
752	 * This is valid because the hashing algorithm returns 0 in this case.
753	 */
754	unsigned int hashtable_bits = ilog2(hashtable_size);
755
756	/*
757	 * Double size of hashtable if num_relocations * 1.25 is greater than
758	 * hashtable_size.
759	 */
760	int should_double_size = ((num_relocations + (num_relocations >> 2)) > (hashtable_size));
761
762	hashtable_bits += should_double_size;
763
764	hashtable_size <<= should_double_size;
765
766	*relocation_hashtable = kmalloc_array(hashtable_size,
767					      sizeof(**relocation_hashtable),
768					      GFP_KERNEL);
769	if (!*relocation_hashtable)
770		return 0;
771
772	__hash_init(*relocation_hashtable, hashtable_size);
773
774	return hashtable_bits;
775}
776
777int apply_relocate_add(Elf_Shdr *sechdrs, const char *strtab,
778		       unsigned int symindex, unsigned int relsec,
779		       struct module *me)
780{
781	Elf_Rela *rel = (void *) sechdrs[relsec].sh_addr;
782	int (*handler)(struct module *me, void *location, Elf_Addr v);
783	Elf_Sym *sym;
784	void *location;
785	unsigned int i, type;
786	unsigned int j_idx = 0;
787	Elf_Addr v;
788	int res;
789	unsigned int num_relocations = sechdrs[relsec].sh_size / sizeof(*rel);
790	struct hlist_head *relocation_hashtable;
791	struct list_head used_buckets_list;
792	unsigned int hashtable_bits;
793
794	hashtable_bits = initialize_relocation_hashtable(num_relocations,
795							 &relocation_hashtable);
796
797	if (!relocation_hashtable)
798		return -ENOMEM;
799
800	INIT_LIST_HEAD(&used_buckets_list);
801
802	pr_debug("Applying relocate section %u to %u\n", relsec,
803	       sechdrs[relsec].sh_info);
804
805	for (i = 0; i < num_relocations; i++) {
806		/* This is where to make the change */
807		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
808			+ rel[i].r_offset;
809		/* This is the symbol it is referring to */
810		sym = (Elf_Sym *)sechdrs[symindex].sh_addr
811			+ ELF_RISCV_R_SYM(rel[i].r_info);
812		if (IS_ERR_VALUE(sym->st_value)) {
813			/* Ignore unresolved weak symbol */
814			if (ELF_ST_BIND(sym->st_info) == STB_WEAK)
815				continue;
816			pr_warn("%s: Unknown symbol %s\n",
817				me->name, strtab + sym->st_name);
818			return -ENOENT;
819		}
820
821		type = ELF_RISCV_R_TYPE(rel[i].r_info);
822
823		if (type < ARRAY_SIZE(reloc_handlers))
824			handler = reloc_handlers[type].reloc_handler;
825		else
826			handler = NULL;
827
828		if (!handler) {
829			pr_err("%s: Unknown relocation type %u\n",
830			       me->name, type);
831			return -EINVAL;
832		}
833
834		v = sym->st_value + rel[i].r_addend;
835
836		if (type == R_RISCV_PCREL_LO12_I || type == R_RISCV_PCREL_LO12_S) {
837			unsigned int j = j_idx;
838			bool found = false;
839
840			do {
841				unsigned long hi20_loc =
842					sechdrs[sechdrs[relsec].sh_info].sh_addr
843					+ rel[j].r_offset;
844				u32 hi20_type = ELF_RISCV_R_TYPE(rel[j].r_info);
845
846				/* Find the corresponding HI20 relocation entry */
847				if (hi20_loc == sym->st_value
848				    && (hi20_type == R_RISCV_PCREL_HI20
849					|| hi20_type == R_RISCV_GOT_HI20)) {
850					s32 hi20, lo12;
851					Elf_Sym *hi20_sym =
852						(Elf_Sym *)sechdrs[symindex].sh_addr
853						+ ELF_RISCV_R_SYM(rel[j].r_info);
854					unsigned long hi20_sym_val =
855						hi20_sym->st_value
856						+ rel[j].r_addend;
857
858					/* Calculate lo12 */
859					size_t offset = hi20_sym_val - hi20_loc;
860					if (IS_ENABLED(CONFIG_MODULE_SECTIONS)
861					    && hi20_type == R_RISCV_GOT_HI20) {
862						offset = module_emit_got_entry(
863							 me, hi20_sym_val);
864						offset = offset - hi20_loc;
865					}
866					hi20 = (offset + 0x800) & 0xfffff000;
867					lo12 = offset - hi20;
868					v = lo12;
869					found = true;
870
871					break;
872				}
873
874				j++;
875				if (j > sechdrs[relsec].sh_size / sizeof(*rel))
876					j = 0;
877
878			} while (j_idx != j);
879
880			if (!found) {
881				pr_err(
882				  "%s: Can not find HI20 relocation information\n",
883				  me->name);
884				return -EINVAL;
885			}
886
887			/* Record the previous j-loop end index */
888			j_idx = j;
889		}
890
891		if (reloc_handlers[type].accumulate_handler)
892			res = add_relocation_to_accumulate(me, type, location,
893							   hashtable_bits, v,
894							   relocation_hashtable,
895							   &used_buckets_list);
896		else
897			res = handler(me, location, v);
898		if (res)
899			return res;
900	}
901
902	process_accumulated_relocations(me, &relocation_hashtable,
903					&used_buckets_list);
904
905	return 0;
906}
907
908#if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
909void *module_alloc(unsigned long size)
910{
911	return __vmalloc_node_range(size, 1, MODULES_VADDR,
912				    MODULES_END, GFP_KERNEL,
913				    PAGE_KERNEL, VM_FLUSH_RESET_PERMS,
914				    NUMA_NO_NODE,
915				    __builtin_return_address(0));
916}
917#endif
918
919int module_finalize(const Elf_Ehdr *hdr,
920		    const Elf_Shdr *sechdrs,
921		    struct module *me)
922{
923	const Elf_Shdr *s;
924
925	s = find_section(hdr, sechdrs, ".alternative");
926	if (s)
927		apply_module_alternatives((void *)s->sh_addr, s->sh_size);
928
929	return 0;
930}
931