1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10#include <linux/sizes.h>
11
12#include <asm/pgtable-bits.h>
13
14#ifndef CONFIG_MMU
15#define KERNEL_LINK_ADDR	PAGE_OFFSET
16#define KERN_VIRT_SIZE		(UL(-1))
17#else
18
19#define ADDRESS_SPACE_END	(UL(-1))
20
21#ifdef CONFIG_64BIT
22/* Leave 2GB for kernel and BPF at the end of the address space */
23#define KERNEL_LINK_ADDR	(ADDRESS_SPACE_END - SZ_2G + 1)
24#else
25#define KERNEL_LINK_ADDR	PAGE_OFFSET
26#endif
27
28/* Number of entries in the page global directory */
29#define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
30/* Number of entries in the page table */
31#define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
32
33/*
34 * Half of the kernel address space (1/4 of the entries of the page global
35 * directory) is for the direct mapping.
36 */
37#define KERN_VIRT_SIZE          ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38
39#define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
40#define VMALLOC_END      PAGE_OFFSET
41#define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
42
43#define BPF_JIT_REGION_SIZE	(SZ_128M)
44#ifdef CONFIG_64BIT
45#define BPF_JIT_REGION_START	(BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46#define BPF_JIT_REGION_END	(MODULES_END)
47#else
48#define BPF_JIT_REGION_START	(PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49#define BPF_JIT_REGION_END	(VMALLOC_END)
50#endif
51
52/* Modules always live before the kernel */
53#ifdef CONFIG_64BIT
54/* This is used to define the end of the KASAN shadow region */
55#define MODULES_LOWEST_VADDR	(KERNEL_LINK_ADDR - SZ_2G)
56#define MODULES_VADDR		(PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57#define MODULES_END		(PFN_ALIGN((unsigned long)&_start))
58#endif
59
60/*
61 * Roughly size the vmemmap space to be large enough to fit enough
62 * struct pages to map half the virtual address space. Then
63 * position vmemmap directly below the VMALLOC region.
64 */
65#define VA_BITS_SV32 32
66#ifdef CONFIG_64BIT
67#define VA_BITS_SV39 39
68#define VA_BITS_SV48 48
69#define VA_BITS_SV57 57
70
71#define VA_BITS		(pgtable_l5_enabled ? \
72				VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39))
73#else
74#define VA_BITS		VA_BITS_SV32
75#endif
76
77#define VMEMMAP_SHIFT \
78	(VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
79#define VMEMMAP_SIZE	BIT(VMEMMAP_SHIFT)
80#define VMEMMAP_END	VMALLOC_START
81#define VMEMMAP_START	(VMALLOC_START - VMEMMAP_SIZE)
82
83/*
84 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
85 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
86 */
87#define vmemmap		((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT))
88
89#define PCI_IO_SIZE      SZ_16M
90#define PCI_IO_END       VMEMMAP_START
91#define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
92
93#define FIXADDR_TOP      PCI_IO_START
94#ifdef CONFIG_64BIT
95#define MAX_FDT_SIZE	 PMD_SIZE
96#define FIX_FDT_SIZE	 (MAX_FDT_SIZE + SZ_2M)
97#define FIXADDR_SIZE     (PMD_SIZE + FIX_FDT_SIZE)
98#else
99#define MAX_FDT_SIZE	 PGDIR_SIZE
100#define FIX_FDT_SIZE	 MAX_FDT_SIZE
101#define FIXADDR_SIZE     (PGDIR_SIZE + FIX_FDT_SIZE)
102#endif
103#define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
104
105#endif
106
107#ifdef CONFIG_XIP_KERNEL
108#define XIP_OFFSET		SZ_32M
109#define XIP_OFFSET_MASK		(SZ_32M - 1)
110#else
111#define XIP_OFFSET		0
112#endif
113
114#ifndef __ASSEMBLY__
115
116#include <asm/page.h>
117#include <asm/tlbflush.h>
118#include <linux/mm_types.h>
119#include <asm/compat.h>
120
121#define __page_val_to_pfn(_val)  (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
122
123#ifdef CONFIG_64BIT
124#include <asm/pgtable-64.h>
125
126#define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1))
127#define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1))
128#define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1))
129
130#define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS)
131#define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39)
132#define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64)
133#define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64)
134#else
135#include <asm/pgtable-32.h>
136#endif /* CONFIG_64BIT */
137
138#include <linux/page_table_check.h>
139
140#ifdef CONFIG_XIP_KERNEL
141#define XIP_FIXUP(addr) ({							\
142	uintptr_t __a = (uintptr_t)(addr);					\
143	(__a >= CONFIG_XIP_PHYS_ADDR && \
144	 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ?	\
145		__a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
146		__a;								\
147	})
148#else
149#define XIP_FIXUP(addr)		(addr)
150#endif /* CONFIG_XIP_KERNEL */
151
152struct pt_alloc_ops {
153	pte_t *(*get_pte_virt)(phys_addr_t pa);
154	phys_addr_t (*alloc_pte)(uintptr_t va);
155#ifndef __PAGETABLE_PMD_FOLDED
156	pmd_t *(*get_pmd_virt)(phys_addr_t pa);
157	phys_addr_t (*alloc_pmd)(uintptr_t va);
158	pud_t *(*get_pud_virt)(phys_addr_t pa);
159	phys_addr_t (*alloc_pud)(uintptr_t va);
160	p4d_t *(*get_p4d_virt)(phys_addr_t pa);
161	phys_addr_t (*alloc_p4d)(uintptr_t va);
162#endif
163};
164
165extern struct pt_alloc_ops pt_ops __initdata;
166
167#ifdef CONFIG_MMU
168/* Number of PGD entries that a user-mode program can use */
169#define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
170
171/* Page protection bits */
172#define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
173
174#define PAGE_NONE		__pgprot(_PAGE_PROT_NONE | _PAGE_READ)
175#define PAGE_READ		__pgprot(_PAGE_BASE | _PAGE_READ)
176#define PAGE_WRITE		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
177#define PAGE_EXEC		__pgprot(_PAGE_BASE | _PAGE_EXEC)
178#define PAGE_READ_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
179#define PAGE_WRITE_EXEC		__pgprot(_PAGE_BASE | _PAGE_READ |	\
180					 _PAGE_EXEC | _PAGE_WRITE)
181
182#define PAGE_COPY		PAGE_READ
183#define PAGE_COPY_EXEC		PAGE_READ_EXEC
184#define PAGE_SHARED		PAGE_WRITE
185#define PAGE_SHARED_EXEC	PAGE_WRITE_EXEC
186
187#define _PAGE_KERNEL		(_PAGE_READ \
188				| _PAGE_WRITE \
189				| _PAGE_PRESENT \
190				| _PAGE_ACCESSED \
191				| _PAGE_DIRTY \
192				| _PAGE_GLOBAL)
193
194#define PAGE_KERNEL		__pgprot(_PAGE_KERNEL)
195#define PAGE_KERNEL_READ	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
196#define PAGE_KERNEL_EXEC	__pgprot(_PAGE_KERNEL | _PAGE_EXEC)
197#define PAGE_KERNEL_READ_EXEC	__pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
198					 | _PAGE_EXEC)
199
200#define PAGE_TABLE		__pgprot(_PAGE_TABLE)
201
202#define _PAGE_IOREMAP	((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
203#define PAGE_KERNEL_IO		__pgprot(_PAGE_IOREMAP)
204
205extern pgd_t swapper_pg_dir[];
206extern pgd_t trampoline_pg_dir[];
207extern pgd_t early_pg_dir[];
208
209#ifdef CONFIG_TRANSPARENT_HUGEPAGE
210static inline int pmd_present(pmd_t pmd)
211{
212	/*
213	 * Checking for _PAGE_LEAF is needed too because:
214	 * When splitting a THP, split_huge_page() will temporarily clear
215	 * the present bit, in this situation, pmd_present() and
216	 * pmd_trans_huge() still needs to return true.
217	 */
218	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
219}
220#else
221static inline int pmd_present(pmd_t pmd)
222{
223	return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
224}
225#endif
226
227static inline int pmd_none(pmd_t pmd)
228{
229	return (pmd_val(pmd) == 0);
230}
231
232static inline int pmd_bad(pmd_t pmd)
233{
234	return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
235}
236
237#define pmd_leaf	pmd_leaf
238static inline bool pmd_leaf(pmd_t pmd)
239{
240	return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
241}
242
243static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
244{
245	WRITE_ONCE(*pmdp, pmd);
246}
247
248static inline void pmd_clear(pmd_t *pmdp)
249{
250	set_pmd(pmdp, __pmd(0));
251}
252
253static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
254{
255	unsigned long prot_val = pgprot_val(prot);
256
257	ALT_THEAD_PMA(prot_val);
258
259	return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
260}
261
262static inline unsigned long _pgd_pfn(pgd_t pgd)
263{
264	return __page_val_to_pfn(pgd_val(pgd));
265}
266
267static inline struct page *pmd_page(pmd_t pmd)
268{
269	return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
270}
271
272static inline unsigned long pmd_page_vaddr(pmd_t pmd)
273{
274	return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
275}
276
277static inline pte_t pmd_pte(pmd_t pmd)
278{
279	return __pte(pmd_val(pmd));
280}
281
282static inline pte_t pud_pte(pud_t pud)
283{
284	return __pte(pud_val(pud));
285}
286
287#ifdef CONFIG_RISCV_ISA_SVNAPOT
288#include <asm/cpufeature.h>
289
290static __always_inline bool has_svnapot(void)
291{
292	return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
293}
294
295static inline unsigned long pte_napot(pte_t pte)
296{
297	return pte_val(pte) & _PAGE_NAPOT;
298}
299
300static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
301{
302	int pos = order - 1 + _PAGE_PFN_SHIFT;
303	unsigned long napot_bit = BIT(pos);
304	unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
305
306	return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
307}
308
309#else
310
311static __always_inline bool has_svnapot(void) { return false; }
312
313static inline unsigned long pte_napot(pte_t pte)
314{
315	return 0;
316}
317
318#endif /* CONFIG_RISCV_ISA_SVNAPOT */
319
320/* Yields the page frame number (PFN) of a page table entry */
321static inline unsigned long pte_pfn(pte_t pte)
322{
323	unsigned long res  = __page_val_to_pfn(pte_val(pte));
324
325	if (has_svnapot() && pte_napot(pte))
326		res = res & (res - 1UL);
327
328	return res;
329}
330
331#define pte_page(x)     pfn_to_page(pte_pfn(x))
332
333/* Constructs a page table entry */
334static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
335{
336	unsigned long prot_val = pgprot_val(prot);
337
338	ALT_THEAD_PMA(prot_val);
339
340	return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
341}
342
343#define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
344
345static inline int pte_present(pte_t pte)
346{
347	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
348}
349
350static inline int pte_none(pte_t pte)
351{
352	return (pte_val(pte) == 0);
353}
354
355static inline int pte_write(pte_t pte)
356{
357	return pte_val(pte) & _PAGE_WRITE;
358}
359
360static inline int pte_exec(pte_t pte)
361{
362	return pte_val(pte) & _PAGE_EXEC;
363}
364
365static inline int pte_user(pte_t pte)
366{
367	return pte_val(pte) & _PAGE_USER;
368}
369
370static inline int pte_huge(pte_t pte)
371{
372	return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
373}
374
375static inline int pte_dirty(pte_t pte)
376{
377	return pte_val(pte) & _PAGE_DIRTY;
378}
379
380static inline int pte_young(pte_t pte)
381{
382	return pte_val(pte) & _PAGE_ACCESSED;
383}
384
385static inline int pte_special(pte_t pte)
386{
387	return pte_val(pte) & _PAGE_SPECIAL;
388}
389
390/* static inline pte_t pte_rdprotect(pte_t pte) */
391
392static inline pte_t pte_wrprotect(pte_t pte)
393{
394	return __pte(pte_val(pte) & ~(_PAGE_WRITE));
395}
396
397/* static inline pte_t pte_mkread(pte_t pte) */
398
399static inline pte_t pte_mkwrite_novma(pte_t pte)
400{
401	return __pte(pte_val(pte) | _PAGE_WRITE);
402}
403
404/* static inline pte_t pte_mkexec(pte_t pte) */
405
406static inline pte_t pte_mkdirty(pte_t pte)
407{
408	return __pte(pte_val(pte) | _PAGE_DIRTY);
409}
410
411static inline pte_t pte_mkclean(pte_t pte)
412{
413	return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
414}
415
416static inline pte_t pte_mkyoung(pte_t pte)
417{
418	return __pte(pte_val(pte) | _PAGE_ACCESSED);
419}
420
421static inline pte_t pte_mkold(pte_t pte)
422{
423	return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
424}
425
426static inline pte_t pte_mkspecial(pte_t pte)
427{
428	return __pte(pte_val(pte) | _PAGE_SPECIAL);
429}
430
431static inline pte_t pte_mkhuge(pte_t pte)
432{
433	return pte;
434}
435
436#ifdef CONFIG_RISCV_ISA_SVNAPOT
437#define pte_leaf_size(pte)	(pte_napot(pte) ?				\
438					napot_cont_size(napot_cont_order(pte)) :\
439					PAGE_SIZE)
440#endif
441
442#ifdef CONFIG_NUMA_BALANCING
443/*
444 * See the comment in include/asm-generic/pgtable.h
445 */
446static inline int pte_protnone(pte_t pte)
447{
448	return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
449}
450
451static inline int pmd_protnone(pmd_t pmd)
452{
453	return pte_protnone(pmd_pte(pmd));
454}
455#endif
456
457/* Modify page protection bits */
458static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
459{
460	unsigned long newprot_val = pgprot_val(newprot);
461
462	ALT_THEAD_PMA(newprot_val);
463
464	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
465}
466
467#define pgd_ERROR(e) \
468	pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
469
470
471/* Commit new configuration to MMU hardware */
472static inline void update_mmu_cache_range(struct vm_fault *vmf,
473		struct vm_area_struct *vma, unsigned long address,
474		pte_t *ptep, unsigned int nr)
475{
476	/*
477	 * The kernel assumes that TLBs don't cache invalid entries, but
478	 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
479	 * cache flush; it is necessary even after writing invalid entries.
480	 * Relying on flush_tlb_fix_spurious_fault would suffice, but
481	 * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
482	 */
483	while (nr--)
484		local_flush_tlb_page(address + nr * PAGE_SIZE);
485}
486#define update_mmu_cache(vma, addr, ptep) \
487	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
488
489#define __HAVE_ARCH_UPDATE_MMU_TLB
490#define update_mmu_tlb update_mmu_cache
491
492static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
493		unsigned long address, pmd_t *pmdp)
494{
495	pte_t *ptep = (pte_t *)pmdp;
496
497	update_mmu_cache(vma, address, ptep);
498}
499
500#define __HAVE_ARCH_PTE_SAME
501static inline int pte_same(pte_t pte_a, pte_t pte_b)
502{
503	return pte_val(pte_a) == pte_val(pte_b);
504}
505
506/*
507 * Certain architectures need to do special things when PTEs within
508 * a page table are directly modified.  Thus, the following hook is
509 * made available.
510 */
511static inline void set_pte(pte_t *ptep, pte_t pteval)
512{
513	WRITE_ONCE(*ptep, pteval);
514}
515
516void flush_icache_pte(struct mm_struct *mm, pte_t pte);
517
518static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval)
519{
520	if (pte_present(pteval) && pte_exec(pteval))
521		flush_icache_pte(mm, pteval);
522
523	set_pte(ptep, pteval);
524}
525
526#define PFN_PTE_SHIFT		_PAGE_PFN_SHIFT
527
528static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
529		pte_t *ptep, pte_t pteval, unsigned int nr)
530{
531	page_table_check_ptes_set(mm, ptep, pteval, nr);
532
533	for (;;) {
534		__set_pte_at(mm, ptep, pteval);
535		if (--nr == 0)
536			break;
537		ptep++;
538		pte_val(pteval) += 1 << _PAGE_PFN_SHIFT;
539	}
540}
541#define set_ptes set_ptes
542
543static inline void pte_clear(struct mm_struct *mm,
544	unsigned long addr, pte_t *ptep)
545{
546	__set_pte_at(mm, ptep, __pte(0));
547}
548
549#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS	/* defined in mm/pgtable.c */
550extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
551				 pte_t *ptep, pte_t entry, int dirty);
552#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG	/* defined in mm/pgtable.c */
553extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address,
554				     pte_t *ptep);
555
556#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
557static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
558				       unsigned long address, pte_t *ptep)
559{
560	pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
561
562	page_table_check_pte_clear(mm, pte);
563
564	return pte;
565}
566
567#define __HAVE_ARCH_PTEP_SET_WRPROTECT
568static inline void ptep_set_wrprotect(struct mm_struct *mm,
569				      unsigned long address, pte_t *ptep)
570{
571	atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
572}
573
574#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
575static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
576					 unsigned long address, pte_t *ptep)
577{
578	/*
579	 * This comment is borrowed from x86, but applies equally to RISC-V:
580	 *
581	 * Clearing the accessed bit without a TLB flush
582	 * doesn't cause data corruption. [ It could cause incorrect
583	 * page aging and the (mistaken) reclaim of hot pages, but the
584	 * chance of that should be relatively low. ]
585	 *
586	 * So as a performance optimization don't flush the TLB when
587	 * clearing the accessed bit, it will eventually be flushed by
588	 * a context switch or a VM operation anyway. [ In the rare
589	 * event of it not getting flushed for a long time the delay
590	 * shouldn't really matter because there's no real memory
591	 * pressure for swapout to react to. ]
592	 */
593	return ptep_test_and_clear_young(vma, address, ptep);
594}
595
596#define pgprot_nx pgprot_nx
597static inline pgprot_t pgprot_nx(pgprot_t _prot)
598{
599	return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC);
600}
601
602#define pgprot_noncached pgprot_noncached
603static inline pgprot_t pgprot_noncached(pgprot_t _prot)
604{
605	unsigned long prot = pgprot_val(_prot);
606
607	prot &= ~_PAGE_MTMASK;
608	prot |= _PAGE_IO;
609
610	return __pgprot(prot);
611}
612
613#define pgprot_writecombine pgprot_writecombine
614static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
615{
616	unsigned long prot = pgprot_val(_prot);
617
618	prot &= ~_PAGE_MTMASK;
619	prot |= _PAGE_NOCACHE;
620
621	return __pgprot(prot);
622}
623
624/*
625 * THP functions
626 */
627static inline pmd_t pte_pmd(pte_t pte)
628{
629	return __pmd(pte_val(pte));
630}
631
632static inline pmd_t pmd_mkhuge(pmd_t pmd)
633{
634	return pmd;
635}
636
637static inline pmd_t pmd_mkinvalid(pmd_t pmd)
638{
639	return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
640}
641
642#define __pmd_to_phys(pmd)  (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
643
644static inline unsigned long pmd_pfn(pmd_t pmd)
645{
646	return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
647}
648
649#define __pud_to_phys(pud)  (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
650
651static inline unsigned long pud_pfn(pud_t pud)
652{
653	return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
654}
655
656static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
657{
658	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
659}
660
661#define pmd_write pmd_write
662static inline int pmd_write(pmd_t pmd)
663{
664	return pte_write(pmd_pte(pmd));
665}
666
667#define pud_write pud_write
668static inline int pud_write(pud_t pud)
669{
670	return pte_write(pud_pte(pud));
671}
672
673#define pmd_dirty pmd_dirty
674static inline int pmd_dirty(pmd_t pmd)
675{
676	return pte_dirty(pmd_pte(pmd));
677}
678
679#define pmd_young pmd_young
680static inline int pmd_young(pmd_t pmd)
681{
682	return pte_young(pmd_pte(pmd));
683}
684
685static inline int pmd_user(pmd_t pmd)
686{
687	return pte_user(pmd_pte(pmd));
688}
689
690static inline pmd_t pmd_mkold(pmd_t pmd)
691{
692	return pte_pmd(pte_mkold(pmd_pte(pmd)));
693}
694
695static inline pmd_t pmd_mkyoung(pmd_t pmd)
696{
697	return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
698}
699
700static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
701{
702	return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)));
703}
704
705static inline pmd_t pmd_wrprotect(pmd_t pmd)
706{
707	return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
708}
709
710static inline pmd_t pmd_mkclean(pmd_t pmd)
711{
712	return pte_pmd(pte_mkclean(pmd_pte(pmd)));
713}
714
715static inline pmd_t pmd_mkdirty(pmd_t pmd)
716{
717	return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
718}
719
720static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
721				pmd_t *pmdp, pmd_t pmd)
722{
723	page_table_check_pmd_set(mm, pmdp, pmd);
724	return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd));
725}
726
727static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
728				pud_t *pudp, pud_t pud)
729{
730	page_table_check_pud_set(mm, pudp, pud);
731	return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud));
732}
733
734#ifdef CONFIG_PAGE_TABLE_CHECK
735static inline bool pte_user_accessible_page(pte_t pte)
736{
737	return pte_present(pte) && pte_user(pte);
738}
739
740static inline bool pmd_user_accessible_page(pmd_t pmd)
741{
742	return pmd_leaf(pmd) && pmd_user(pmd);
743}
744
745static inline bool pud_user_accessible_page(pud_t pud)
746{
747	return pud_leaf(pud) && pud_user(pud);
748}
749#endif
750
751#ifdef CONFIG_TRANSPARENT_HUGEPAGE
752static inline int pmd_trans_huge(pmd_t pmd)
753{
754	return pmd_leaf(pmd);
755}
756
757#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
758static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
759					unsigned long address, pmd_t *pmdp,
760					pmd_t entry, int dirty)
761{
762	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
763}
764
765#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
766static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
767					unsigned long address, pmd_t *pmdp)
768{
769	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
770}
771
772#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
773static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
774					unsigned long address, pmd_t *pmdp)
775{
776	pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
777
778	page_table_check_pmd_clear(mm, pmd);
779
780	return pmd;
781}
782
783#define __HAVE_ARCH_PMDP_SET_WRPROTECT
784static inline void pmdp_set_wrprotect(struct mm_struct *mm,
785					unsigned long address, pmd_t *pmdp)
786{
787	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
788}
789
790#define pmdp_establish pmdp_establish
791static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
792				unsigned long address, pmd_t *pmdp, pmd_t pmd)
793{
794	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
795	return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
796}
797
798#define pmdp_collapse_flush pmdp_collapse_flush
799extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
800				 unsigned long address, pmd_t *pmdp);
801#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
802
803/*
804 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
805 * are !pte_none() && !pte_present().
806 *
807 * Format of swap PTE:
808 *	bit            0:	_PAGE_PRESENT (zero)
809 *	bit       1 to 3:       _PAGE_LEAF (zero)
810 *	bit            5:	_PAGE_PROT_NONE (zero)
811 *	bit            6:	exclusive marker
812 *	bits      7 to 11:	swap type
813 *	bits 12 to XLEN-1:	swap offset
814 */
815#define __SWP_TYPE_SHIFT	7
816#define __SWP_TYPE_BITS		5
817#define __SWP_TYPE_MASK		((1UL << __SWP_TYPE_BITS) - 1)
818#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
819
820#define MAX_SWAPFILES_CHECK()	\
821	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
822
823#define __swp_type(x)	(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
824#define __swp_offset(x)	((x).val >> __SWP_OFFSET_SHIFT)
825#define __swp_entry(type, offset) ((swp_entry_t) \
826	{ (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
827	  ((offset) << __SWP_OFFSET_SHIFT) })
828
829#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
830#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
831
832static inline int pte_swp_exclusive(pte_t pte)
833{
834	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
835}
836
837static inline pte_t pte_swp_mkexclusive(pte_t pte)
838{
839	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
840}
841
842static inline pte_t pte_swp_clear_exclusive(pte_t pte)
843{
844	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
845}
846
847#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
848#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
849#define __swp_entry_to_pmd(swp) __pmd((swp).val)
850#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
851
852/*
853 * In the RV64 Linux scheme, we give the user half of the virtual-address space
854 * and give the kernel the other (upper) half.
855 */
856#ifdef CONFIG_64BIT
857#define KERN_VIRT_START	(-(BIT(VA_BITS)) + TASK_SIZE)
858#else
859#define KERN_VIRT_START	FIXADDR_START
860#endif
861
862/*
863 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
864 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
865 * Task size is:
866 * -        0x9fc00000	(~2.5GB) for RV32.
867 * -      0x4000000000	( 256GB) for RV64 using SV39 mmu
868 * -    0x800000000000	( 128TB) for RV64 using SV48 mmu
869 * - 0x100000000000000	(  64PB) for RV64 using SV57 mmu
870 *
871 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
872 * Instruction Set Manual Volume II: Privileged Architecture" states that
873 * "load and store effective addresses, which are 64bits, must have bits
874 * 63���48 all equal to bit 47, or else a page-fault exception will occur."
875 * Similarly for SV57, bits 63���57 must be equal to bit 56.
876 */
877#ifdef CONFIG_64BIT
878#define TASK_SIZE_64	(PGDIR_SIZE * PTRS_PER_PGD / 2)
879#define TASK_SIZE_MIN	(PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
880
881#ifdef CONFIG_COMPAT
882#define TASK_SIZE_32	(_AC(0x80000000, UL) - PAGE_SIZE)
883#define TASK_SIZE	(is_compat_task() ? \
884			 TASK_SIZE_32 : TASK_SIZE_64)
885#else
886#define TASK_SIZE	TASK_SIZE_64
887#endif
888
889#else
890#define TASK_SIZE	FIXADDR_START
891#define TASK_SIZE_MIN	TASK_SIZE
892#endif
893
894#else /* CONFIG_MMU */
895
896#define PAGE_SHARED		__pgprot(0)
897#define PAGE_KERNEL		__pgprot(0)
898#define swapper_pg_dir		NULL
899#define TASK_SIZE		0xffffffffUL
900#define VMALLOC_START		_AC(0, UL)
901#define VMALLOC_END		TASK_SIZE
902
903#endif /* !CONFIG_MMU */
904
905extern char _start[];
906extern void *_dtb_early_va;
907extern uintptr_t _dtb_early_pa;
908#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
909#define dtb_early_va	(*(void **)XIP_FIXUP(&_dtb_early_va))
910#define dtb_early_pa	(*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
911#else
912#define dtb_early_va	_dtb_early_va
913#define dtb_early_pa	_dtb_early_pa
914#endif /* CONFIG_XIP_KERNEL */
915extern u64 satp_mode;
916
917void paging_init(void);
918void misc_mem_init(void);
919
920/*
921 * ZERO_PAGE is a global shared page that is always zero,
922 * used for zero-mapped memory areas, etc.
923 */
924extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
925#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
926
927#endif /* !__ASSEMBLY__ */
928
929#endif /* _ASM_RISCV_PGTABLE_H */
930