1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2016,2017 IBM Corporation.
4 */
5
6#define pr_fmt(fmt) "xive: " fmt
7
8#include <linux/types.h>
9#include <linux/threads.h>
10#include <linux/kernel.h>
11#include <linux/irq.h>
12#include <linux/irqdomain.h>
13#include <linux/debugfs.h>
14#include <linux/smp.h>
15#include <linux/interrupt.h>
16#include <linux/seq_file.h>
17#include <linux/init.h>
18#include <linux/cpu.h>
19#include <linux/of.h>
20#include <linux/slab.h>
21#include <linux/spinlock.h>
22#include <linux/msi.h>
23#include <linux/vmalloc.h>
24
25#include <asm/io.h>
26#include <asm/smp.h>
27#include <asm/machdep.h>
28#include <asm/irq.h>
29#include <asm/errno.h>
30#include <asm/xive.h>
31#include <asm/xive-regs.h>
32#include <asm/xmon.h>
33
34#include "xive-internal.h"
35
36#undef DEBUG_FLUSH
37#undef DEBUG_ALL
38
39#ifdef DEBUG_ALL
40#define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
41					 smp_processor_id(), ## __VA_ARGS__)
42#else
43#define DBG_VERBOSE(fmt...)	do { } while(0)
44#endif
45
46bool __xive_enabled;
47EXPORT_SYMBOL_GPL(__xive_enabled);
48bool xive_cmdline_disabled;
49
50/* We use only one priority for now */
51static u8 xive_irq_priority;
52
53/* TIMA exported to KVM */
54void __iomem *xive_tima;
55EXPORT_SYMBOL_GPL(xive_tima);
56u32 xive_tima_offset;
57
58/* Backend ops */
59static const struct xive_ops *xive_ops;
60
61/* Our global interrupt domain */
62static struct irq_domain *xive_irq_domain;
63
64#ifdef CONFIG_SMP
65/* The IPIs use the same logical irq number when on the same chip */
66static struct xive_ipi_desc {
67	unsigned int irq;
68	char name[16];
69	atomic_t started;
70} *xive_ipis;
71
72/*
73 * Use early_cpu_to_node() for hot-plugged CPUs
74 */
75static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu)
76{
77	return xive_ipis[early_cpu_to_node(cpu)].irq;
78}
79#endif
80
81/* Xive state for each CPU */
82static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
83
84/* An invalid CPU target */
85#define XIVE_INVALID_TARGET	(-1)
86
87/*
88 * Global toggle to switch on/off StoreEOI
89 */
90static bool xive_store_eoi = true;
91
92static bool xive_is_store_eoi(struct xive_irq_data *xd)
93{
94	return xd->flags & XIVE_IRQ_FLAG_STORE_EOI && xive_store_eoi;
95}
96
97/*
98 * Read the next entry in a queue, return its content if it's valid
99 * or 0 if there is no new entry.
100 *
101 * The queue pointer is moved forward unless "just_peek" is set
102 */
103static u32 xive_read_eq(struct xive_q *q, bool just_peek)
104{
105	u32 cur;
106
107	if (!q->qpage)
108		return 0;
109	cur = be32_to_cpup(q->qpage + q->idx);
110
111	/* Check valid bit (31) vs current toggle polarity */
112	if ((cur >> 31) == q->toggle)
113		return 0;
114
115	/* If consuming from the queue ... */
116	if (!just_peek) {
117		/* Next entry */
118		q->idx = (q->idx + 1) & q->msk;
119
120		/* Wrap around: flip valid toggle */
121		if (q->idx == 0)
122			q->toggle ^= 1;
123	}
124	/* Mask out the valid bit (31) */
125	return cur & 0x7fffffff;
126}
127
128/*
129 * Scans all the queue that may have interrupts in them
130 * (based on "pending_prio") in priority order until an
131 * interrupt is found or all the queues are empty.
132 *
133 * Then updates the CPPR (Current Processor Priority
134 * Register) based on the most favored interrupt found
135 * (0xff if none) and return what was found (0 if none).
136 *
137 * If just_peek is set, return the most favored pending
138 * interrupt if any but don't update the queue pointers.
139 *
140 * Note: This function can operate generically on any number
141 * of queues (up to 8). The current implementation of the XIVE
142 * driver only uses a single queue however.
143 *
144 * Note2: This will also "flush" "the pending_count" of a queue
145 * into the "count" when that queue is observed to be empty.
146 * This is used to keep track of the amount of interrupts
147 * targetting a queue. When an interrupt is moved away from
148 * a queue, we only decrement that queue count once the queue
149 * has been observed empty to avoid races.
150 */
151static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
152{
153	u32 irq = 0;
154	u8 prio = 0;
155
156	/* Find highest pending priority */
157	while (xc->pending_prio != 0) {
158		struct xive_q *q;
159
160		prio = ffs(xc->pending_prio) - 1;
161		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
162
163		/* Try to fetch */
164		irq = xive_read_eq(&xc->queue[prio], just_peek);
165
166		/* Found something ? That's it */
167		if (irq) {
168			if (just_peek || irq_to_desc(irq))
169				break;
170			/*
171			 * We should never get here; if we do then we must
172			 * have failed to synchronize the interrupt properly
173			 * when shutting it down.
174			 */
175			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
176				irq);
177			WARN_ON(1);
178			continue;
179		}
180
181		/* Clear pending bits */
182		xc->pending_prio &= ~(1 << prio);
183
184		/*
185		 * Check if the queue count needs adjusting due to
186		 * interrupts being moved away. See description of
187		 * xive_dec_target_count()
188		 */
189		q = &xc->queue[prio];
190		if (atomic_read(&q->pending_count)) {
191			int p = atomic_xchg(&q->pending_count, 0);
192			if (p) {
193				WARN_ON(p > atomic_read(&q->count));
194				atomic_sub(p, &q->count);
195			}
196		}
197	}
198
199	/* If nothing was found, set CPPR to 0xff */
200	if (irq == 0)
201		prio = 0xff;
202
203	/* Update HW CPPR to match if necessary */
204	if (prio != xc->cppr) {
205		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
206		xc->cppr = prio;
207		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
208	}
209
210	return irq;
211}
212
213/*
214 * This is used to perform the magic loads from an ESB
215 * described in xive-regs.h
216 */
217static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
218{
219	u64 val;
220
221	if (offset == XIVE_ESB_SET_PQ_10 && xive_is_store_eoi(xd))
222		offset |= XIVE_ESB_LD_ST_MO;
223
224	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
225		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
226	else
227		val = in_be64(xd->eoi_mmio + offset);
228
229	return (u8)val;
230}
231
232static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
233{
234	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
235		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
236	else
237		out_be64(xd->eoi_mmio + offset, data);
238}
239
240#if defined(CONFIG_XMON) || defined(CONFIG_DEBUG_FS)
241static void xive_irq_data_dump(struct xive_irq_data *xd, char *buffer, size_t size)
242{
243	u64 val = xive_esb_read(xd, XIVE_ESB_GET);
244
245	snprintf(buffer, size, "flags=%c%c%c PQ=%c%c 0x%016llx 0x%016llx",
246		 xive_is_store_eoi(xd) ? 'S' : ' ',
247		 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
248		 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
249		 val & XIVE_ESB_VAL_P ? 'P' : '-',
250		 val & XIVE_ESB_VAL_Q ? 'Q' : '-',
251		 xd->trig_page, xd->eoi_page);
252}
253#endif
254
255#ifdef CONFIG_XMON
256static notrace void xive_dump_eq(const char *name, struct xive_q *q)
257{
258	u32 i0, i1, idx;
259
260	if (!q->qpage)
261		return;
262	idx = q->idx;
263	i0 = be32_to_cpup(q->qpage + idx);
264	idx = (idx + 1) & q->msk;
265	i1 = be32_to_cpup(q->qpage + idx);
266	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
267		     q->idx, q->toggle, i0, i1);
268}
269
270notrace void xmon_xive_do_dump(int cpu)
271{
272	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
273
274	xmon_printf("CPU %d:", cpu);
275	if (xc) {
276		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
277
278#ifdef CONFIG_SMP
279		{
280			char buffer[128];
281
282			xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer));
283			xmon_printf("IPI=0x%08x %s", xc->hw_ipi, buffer);
284		}
285#endif
286		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
287	}
288	xmon_printf("\n");
289}
290
291static struct irq_data *xive_get_irq_data(u32 hw_irq)
292{
293	unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
294
295	return irq ? irq_get_irq_data(irq) : NULL;
296}
297
298int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
299{
300	int rc;
301	u32 target;
302	u8 prio;
303	u32 lirq;
304
305	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
306	if (rc) {
307		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
308		return rc;
309	}
310
311	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
312		    hw_irq, target, prio, lirq);
313
314	if (!d)
315		d = xive_get_irq_data(hw_irq);
316
317	if (d) {
318		char buffer[128];
319
320		xive_irq_data_dump(irq_data_get_irq_handler_data(d),
321				   buffer, sizeof(buffer));
322		xmon_printf("%s", buffer);
323	}
324
325	xmon_printf("\n");
326	return 0;
327}
328
329void xmon_xive_get_irq_all(void)
330{
331	unsigned int i;
332	struct irq_desc *desc;
333
334	for_each_irq_desc(i, desc) {
335		struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
336
337		if (d)
338			xmon_xive_get_irq_config(irqd_to_hwirq(d), d);
339	}
340}
341
342#endif /* CONFIG_XMON */
343
344static unsigned int xive_get_irq(void)
345{
346	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
347	u32 irq;
348
349	/*
350	 * This can be called either as a result of a HW interrupt or
351	 * as a "replay" because EOI decided there was still something
352	 * in one of the queues.
353	 *
354	 * First we perform an ACK cycle in order to update our mask
355	 * of pending priorities. This will also have the effect of
356	 * updating the CPPR to the most favored pending interrupts.
357	 *
358	 * In the future, if we have a way to differentiate a first
359	 * entry (on HW interrupt) from a replay triggered by EOI,
360	 * we could skip this on replays unless we soft-mask tells us
361	 * that a new HW interrupt occurred.
362	 */
363	xive_ops->update_pending(xc);
364
365	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
366
367	/* Scan our queue(s) for interrupts */
368	irq = xive_scan_interrupts(xc, false);
369
370	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
371	    irq, xc->pending_prio);
372
373	/* Return pending interrupt if any */
374	if (irq == XIVE_BAD_IRQ)
375		return 0;
376	return irq;
377}
378
379/*
380 * After EOI'ing an interrupt, we need to re-check the queue
381 * to see if another interrupt is pending since multiple
382 * interrupts can coalesce into a single notification to the
383 * CPU.
384 *
385 * If we find that there is indeed more in there, we call
386 * force_external_irq_replay() to make Linux synthetize an
387 * external interrupt on the next call to local_irq_restore().
388 */
389static void xive_do_queue_eoi(struct xive_cpu *xc)
390{
391	if (xive_scan_interrupts(xc, true) != 0) {
392		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
393		force_external_irq_replay();
394	}
395}
396
397/*
398 * EOI an interrupt at the source. There are several methods
399 * to do this depending on the HW version and source type
400 */
401static void xive_do_source_eoi(struct xive_irq_data *xd)
402{
403	u8 eoi_val;
404
405	xd->stale_p = false;
406
407	/* If the XIVE supports the new "store EOI facility, use it */
408	if (xive_is_store_eoi(xd)) {
409		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
410		return;
411	}
412
413	/*
414	 * For LSIs, we use the "EOI cycle" special load rather than
415	 * PQ bits, as they are automatically re-triggered in HW when
416	 * still pending.
417	 */
418	if (xd->flags & XIVE_IRQ_FLAG_LSI) {
419		xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
420		return;
421	}
422
423	/*
424	 * Otherwise, we use the special MMIO that does a clear of
425	 * both P and Q and returns the old Q. This allows us to then
426	 * do a re-trigger if Q was set rather than synthesizing an
427	 * interrupt in software
428	 */
429	eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
430	DBG_VERBOSE("eoi_val=%x\n", eoi_val);
431
432	/* Re-trigger if needed */
433	if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
434		out_be64(xd->trig_mmio, 0);
435}
436
437/* irq_chip eoi callback, called with irq descriptor lock held */
438static void xive_irq_eoi(struct irq_data *d)
439{
440	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
441	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
442
443	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
444		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
445
446	/*
447	 * EOI the source if it hasn't been disabled and hasn't
448	 * been passed-through to a KVM guest
449	 */
450	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
451	    !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
452		xive_do_source_eoi(xd);
453	else
454		xd->stale_p = true;
455
456	/*
457	 * Clear saved_p to indicate that it's no longer occupying
458	 * a queue slot on the target queue
459	 */
460	xd->saved_p = false;
461
462	/* Check for more work in the queue */
463	xive_do_queue_eoi(xc);
464}
465
466/*
467 * Helper used to mask and unmask an interrupt source.
468 */
469static void xive_do_source_set_mask(struct xive_irq_data *xd,
470				    bool mask)
471{
472	u64 val;
473
474	pr_debug("%s: HW 0x%x %smask\n", __func__, xd->hw_irq, mask ? "" : "un");
475
476	/*
477	 * If the interrupt had P set, it may be in a queue.
478	 *
479	 * We need to make sure we don't re-enable it until it
480	 * has been fetched from that queue and EOId. We keep
481	 * a copy of that P state and use it to restore the
482	 * ESB accordingly on unmask.
483	 */
484	if (mask) {
485		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
486		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
487			xd->saved_p = true;
488		xd->stale_p = false;
489	} else if (xd->saved_p) {
490		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
491		xd->saved_p = false;
492	} else {
493		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
494		xd->stale_p = false;
495	}
496}
497
498/*
499 * Try to chose "cpu" as a new interrupt target. Increments
500 * the queue accounting for that target if it's not already
501 * full.
502 */
503static bool xive_try_pick_target(int cpu)
504{
505	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
506	struct xive_q *q = &xc->queue[xive_irq_priority];
507	int max;
508
509	/*
510	 * Calculate max number of interrupts in that queue.
511	 *
512	 * We leave a gap of 1 just in case...
513	 */
514	max = (q->msk + 1) - 1;
515	return !!atomic_add_unless(&q->count, 1, max);
516}
517
518/*
519 * Un-account an interrupt for a target CPU. We don't directly
520 * decrement q->count since the interrupt might still be present
521 * in the queue.
522 *
523 * Instead increment a separate counter "pending_count" which
524 * will be substracted from "count" later when that CPU observes
525 * the queue to be empty.
526 */
527static void xive_dec_target_count(int cpu)
528{
529	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
530	struct xive_q *q = &xc->queue[xive_irq_priority];
531
532	if (WARN_ON(cpu < 0 || !xc)) {
533		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
534		return;
535	}
536
537	/*
538	 * We increment the "pending count" which will be used
539	 * to decrement the target queue count whenever it's next
540	 * processed and found empty. This ensure that we don't
541	 * decrement while we still have the interrupt there
542	 * occupying a slot.
543	 */
544	atomic_inc(&q->pending_count);
545}
546
547/* Find a tentative CPU target in a CPU mask */
548static int xive_find_target_in_mask(const struct cpumask *mask,
549				    unsigned int fuzz)
550{
551	int cpu, first, num, i;
552
553	/* Pick up a starting point CPU in the mask based on  fuzz */
554	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
555	first = fuzz % num;
556
557	/* Locate it */
558	cpu = cpumask_first(mask);
559	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
560		cpu = cpumask_next(cpu, mask);
561
562	/* Sanity check */
563	if (WARN_ON(cpu >= nr_cpu_ids))
564		cpu = cpumask_first(cpu_online_mask);
565
566	/* Remember first one to handle wrap-around */
567	first = cpu;
568
569	/*
570	 * Now go through the entire mask until we find a valid
571	 * target.
572	 */
573	do {
574		/*
575		 * We re-check online as the fallback case passes us
576		 * an untested affinity mask
577		 */
578		if (cpu_online(cpu) && xive_try_pick_target(cpu))
579			return cpu;
580		cpu = cpumask_next(cpu, mask);
581		/* Wrap around */
582		if (cpu >= nr_cpu_ids)
583			cpu = cpumask_first(mask);
584	} while (cpu != first);
585
586	return -1;
587}
588
589/*
590 * Pick a target CPU for an interrupt. This is done at
591 * startup or if the affinity is changed in a way that
592 * invalidates the current target.
593 */
594static int xive_pick_irq_target(struct irq_data *d,
595				const struct cpumask *affinity)
596{
597	static unsigned int fuzz;
598	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
599	cpumask_var_t mask;
600	int cpu = -1;
601
602	/*
603	 * If we have chip IDs, first we try to build a mask of
604	 * CPUs matching the CPU and find a target in there
605	 */
606	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
607		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
608		/* Build a mask of matching chip IDs */
609		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
610			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
611			if (xc->chip_id == xd->src_chip)
612				cpumask_set_cpu(cpu, mask);
613		}
614		/* Try to find a target */
615		if (cpumask_empty(mask))
616			cpu = -1;
617		else
618			cpu = xive_find_target_in_mask(mask, fuzz++);
619		free_cpumask_var(mask);
620		if (cpu >= 0)
621			return cpu;
622		fuzz--;
623	}
624
625	/* No chip IDs, fallback to using the affinity mask */
626	return xive_find_target_in_mask(affinity, fuzz++);
627}
628
629static unsigned int xive_irq_startup(struct irq_data *d)
630{
631	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
632	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
633	int target, rc;
634
635	xd->saved_p = false;
636	xd->stale_p = false;
637
638	pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d);
639
640	/* Pick a target */
641	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
642	if (target == XIVE_INVALID_TARGET) {
643		/* Try again breaking affinity */
644		target = xive_pick_irq_target(d, cpu_online_mask);
645		if (target == XIVE_INVALID_TARGET)
646			return -ENXIO;
647		pr_warn("irq %d started with broken affinity\n", d->irq);
648	}
649
650	/* Sanity check */
651	if (WARN_ON(target == XIVE_INVALID_TARGET ||
652		    target >= nr_cpu_ids))
653		target = smp_processor_id();
654
655	xd->target = target;
656
657	/*
658	 * Configure the logical number to be the Linux IRQ number
659	 * and set the target queue
660	 */
661	rc = xive_ops->configure_irq(hw_irq,
662				     get_hard_smp_processor_id(target),
663				     xive_irq_priority, d->irq);
664	if (rc)
665		return rc;
666
667	/* Unmask the ESB */
668	xive_do_source_set_mask(xd, false);
669
670	return 0;
671}
672
673/* called with irq descriptor lock held */
674static void xive_irq_shutdown(struct irq_data *d)
675{
676	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
677	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
678
679	pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d);
680
681	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
682		return;
683
684	/* Mask the interrupt at the source */
685	xive_do_source_set_mask(xd, true);
686
687	/*
688	 * Mask the interrupt in HW in the IVT/EAS and set the number
689	 * to be the "bad" IRQ number
690	 */
691	xive_ops->configure_irq(hw_irq,
692				get_hard_smp_processor_id(xd->target),
693				0xff, XIVE_BAD_IRQ);
694
695	xive_dec_target_count(xd->target);
696	xd->target = XIVE_INVALID_TARGET;
697}
698
699static void xive_irq_unmask(struct irq_data *d)
700{
701	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
702
703	pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd);
704
705	xive_do_source_set_mask(xd, false);
706}
707
708static void xive_irq_mask(struct irq_data *d)
709{
710	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
711
712	pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd);
713
714	xive_do_source_set_mask(xd, true);
715}
716
717static int xive_irq_set_affinity(struct irq_data *d,
718				 const struct cpumask *cpumask,
719				 bool force)
720{
721	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
722	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
723	u32 target, old_target;
724	int rc = 0;
725
726	pr_debug("%s: irq %d/0x%x\n", __func__, d->irq, hw_irq);
727
728	/* Is this valid ? */
729	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
730		return -EINVAL;
731
732	/*
733	 * If existing target is already in the new mask, and is
734	 * online then do nothing.
735	 */
736	if (xd->target != XIVE_INVALID_TARGET &&
737	    cpu_online(xd->target) &&
738	    cpumask_test_cpu(xd->target, cpumask))
739		return IRQ_SET_MASK_OK;
740
741	/* Pick a new target */
742	target = xive_pick_irq_target(d, cpumask);
743
744	/* No target found */
745	if (target == XIVE_INVALID_TARGET)
746		return -ENXIO;
747
748	/* Sanity check */
749	if (WARN_ON(target >= nr_cpu_ids))
750		target = smp_processor_id();
751
752	old_target = xd->target;
753
754	/*
755	 * Only configure the irq if it's not currently passed-through to
756	 * a KVM guest
757	 */
758	if (!irqd_is_forwarded_to_vcpu(d))
759		rc = xive_ops->configure_irq(hw_irq,
760					     get_hard_smp_processor_id(target),
761					     xive_irq_priority, d->irq);
762	if (rc < 0) {
763		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
764		return rc;
765	}
766
767	pr_debug("  target: 0x%x\n", target);
768	xd->target = target;
769
770	/* Give up previous target */
771	if (old_target != XIVE_INVALID_TARGET)
772	    xive_dec_target_count(old_target);
773
774	return IRQ_SET_MASK_OK;
775}
776
777static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
778{
779	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
780
781	/*
782	 * We only support these. This has really no effect other than setting
783	 * the corresponding descriptor bits mind you but those will in turn
784	 * affect the resend function when re-enabling an edge interrupt.
785	 *
786	 * Set the default to edge as explained in map().
787	 */
788	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
789		flow_type = IRQ_TYPE_EDGE_RISING;
790
791	if (flow_type != IRQ_TYPE_EDGE_RISING &&
792	    flow_type != IRQ_TYPE_LEVEL_LOW)
793		return -EINVAL;
794
795	irqd_set_trigger_type(d, flow_type);
796
797	/*
798	 * Double check it matches what the FW thinks
799	 *
800	 * NOTE: We don't know yet if the PAPR interface will provide
801	 * the LSI vs MSI information apart from the device-tree so
802	 * this check might have to move into an optional backend call
803	 * that is specific to the native backend
804	 */
805	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
806	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
807		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
808			d->irq, (u32)irqd_to_hwirq(d),
809			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
810			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
811	}
812
813	return IRQ_SET_MASK_OK_NOCOPY;
814}
815
816static int xive_irq_retrigger(struct irq_data *d)
817{
818	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
819
820	/* This should be only for MSIs */
821	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
822		return 0;
823
824	/*
825	 * To perform a retrigger, we first set the PQ bits to
826	 * 11, then perform an EOI.
827	 */
828	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
829	xive_do_source_eoi(xd);
830
831	return 1;
832}
833
834/*
835 * Caller holds the irq descriptor lock, so this won't be called
836 * concurrently with xive_get_irqchip_state on the same interrupt.
837 */
838static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
839{
840	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
841	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
842	int rc;
843	u8 pq;
844
845	/*
846	 * This is called by KVM with state non-NULL for enabling
847	 * pass-through or NULL for disabling it
848	 */
849	if (state) {
850		irqd_set_forwarded_to_vcpu(d);
851
852		/* Set it to PQ=10 state to prevent further sends */
853		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
854		if (!xd->stale_p) {
855			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
856			xd->stale_p = !xd->saved_p;
857		}
858
859		/* No target ? nothing to do */
860		if (xd->target == XIVE_INVALID_TARGET) {
861			/*
862			 * An untargetted interrupt should have been
863			 * also masked at the source
864			 */
865			WARN_ON(xd->saved_p);
866
867			return 0;
868		}
869
870		/*
871		 * If P was set, adjust state to PQ=11 to indicate
872		 * that a resend is needed for the interrupt to reach
873		 * the guest. Also remember the value of P.
874		 *
875		 * This also tells us that it's in flight to a host queue
876		 * or has already been fetched but hasn't been EOIed yet
877		 * by the host. This it's potentially using up a host
878		 * queue slot. This is important to know because as long
879		 * as this is the case, we must not hard-unmask it when
880		 * "returning" that interrupt to the host.
881		 *
882		 * This saved_p is cleared by the host EOI, when we know
883		 * for sure the queue slot is no longer in use.
884		 */
885		if (xd->saved_p) {
886			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
887
888			/*
889			 * Sync the XIVE source HW to ensure the interrupt
890			 * has gone through the EAS before we change its
891			 * target to the guest. That should guarantee us
892			 * that we *will* eventually get an EOI for it on
893			 * the host. Otherwise there would be a small window
894			 * for P to be seen here but the interrupt going
895			 * to the guest queue.
896			 */
897			if (xive_ops->sync_source)
898				xive_ops->sync_source(hw_irq);
899		}
900	} else {
901		irqd_clr_forwarded_to_vcpu(d);
902
903		/* No host target ? hard mask and return */
904		if (xd->target == XIVE_INVALID_TARGET) {
905			xive_do_source_set_mask(xd, true);
906			return 0;
907		}
908
909		/*
910		 * Sync the XIVE source HW to ensure the interrupt
911		 * has gone through the EAS before we change its
912		 * target to the host.
913		 */
914		if (xive_ops->sync_source)
915			xive_ops->sync_source(hw_irq);
916
917		/*
918		 * By convention we are called with the interrupt in
919		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
920		 * have latched in Q whether there's a pending HW
921		 * interrupt or not.
922		 *
923		 * First reconfigure the target.
924		 */
925		rc = xive_ops->configure_irq(hw_irq,
926					     get_hard_smp_processor_id(xd->target),
927					     xive_irq_priority, d->irq);
928		if (rc)
929			return rc;
930
931		/*
932		 * Then if saved_p is not set, effectively re-enable the
933		 * interrupt with an EOI. If it is set, we know there is
934		 * still a message in a host queue somewhere that will be
935		 * EOId eventually.
936		 *
937		 * Note: We don't check irqd_irq_disabled(). Effectively,
938		 * we *will* let the irq get through even if masked if the
939		 * HW is still firing it in order to deal with the whole
940		 * saved_p business properly. If the interrupt triggers
941		 * while masked, the generic code will re-mask it anyway.
942		 */
943		if (!xd->saved_p)
944			xive_do_source_eoi(xd);
945
946	}
947	return 0;
948}
949
950/* Called with irq descriptor lock held. */
951static int xive_get_irqchip_state(struct irq_data *data,
952				  enum irqchip_irq_state which, bool *state)
953{
954	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
955	u8 pq;
956
957	switch (which) {
958	case IRQCHIP_STATE_ACTIVE:
959		pq = xive_esb_read(xd, XIVE_ESB_GET);
960
961		/*
962		 * The esb value being all 1's means we couldn't get
963		 * the PQ state of the interrupt through mmio. It may
964		 * happen, for example when querying a PHB interrupt
965		 * while the PHB is in an error state. We consider the
966		 * interrupt to be inactive in that case.
967		 */
968		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
969			(xd->saved_p || (!!(pq & XIVE_ESB_VAL_P) &&
970			 !irqd_irq_disabled(data)));
971		return 0;
972	default:
973		return -EINVAL;
974	}
975}
976
977static struct irq_chip xive_irq_chip = {
978	.name = "XIVE-IRQ",
979	.irq_startup = xive_irq_startup,
980	.irq_shutdown = xive_irq_shutdown,
981	.irq_eoi = xive_irq_eoi,
982	.irq_mask = xive_irq_mask,
983	.irq_unmask = xive_irq_unmask,
984	.irq_set_affinity = xive_irq_set_affinity,
985	.irq_set_type = xive_irq_set_type,
986	.irq_retrigger = xive_irq_retrigger,
987	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
988	.irq_get_irqchip_state = xive_get_irqchip_state,
989};
990
991bool is_xive_irq(struct irq_chip *chip)
992{
993	return chip == &xive_irq_chip;
994}
995EXPORT_SYMBOL_GPL(is_xive_irq);
996
997void xive_cleanup_irq_data(struct xive_irq_data *xd)
998{
999	pr_debug("%s for HW 0x%x\n", __func__, xd->hw_irq);
1000
1001	if (xd->eoi_mmio) {
1002		iounmap(xd->eoi_mmio);
1003		if (xd->eoi_mmio == xd->trig_mmio)
1004			xd->trig_mmio = NULL;
1005		xd->eoi_mmio = NULL;
1006	}
1007	if (xd->trig_mmio) {
1008		iounmap(xd->trig_mmio);
1009		xd->trig_mmio = NULL;
1010	}
1011}
1012EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1013
1014static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1015{
1016	struct xive_irq_data *xd;
1017	int rc;
1018
1019	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1020	if (!xd)
1021		return -ENOMEM;
1022	rc = xive_ops->populate_irq_data(hw, xd);
1023	if (rc) {
1024		kfree(xd);
1025		return rc;
1026	}
1027	xd->target = XIVE_INVALID_TARGET;
1028	irq_set_handler_data(virq, xd);
1029
1030	/*
1031	 * Turn OFF by default the interrupt being mapped. A side
1032	 * effect of this check is the mapping the ESB page of the
1033	 * interrupt in the Linux address space. This prevents page
1034	 * fault issues in the crash handler which masks all
1035	 * interrupts.
1036	 */
1037	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1038
1039	return 0;
1040}
1041
1042void xive_irq_free_data(unsigned int virq)
1043{
1044	struct xive_irq_data *xd = irq_get_handler_data(virq);
1045
1046	if (!xd)
1047		return;
1048	irq_set_handler_data(virq, NULL);
1049	xive_cleanup_irq_data(xd);
1050	kfree(xd);
1051}
1052EXPORT_SYMBOL_GPL(xive_irq_free_data);
1053
1054#ifdef CONFIG_SMP
1055
1056static void xive_cause_ipi(int cpu)
1057{
1058	struct xive_cpu *xc;
1059	struct xive_irq_data *xd;
1060
1061	xc = per_cpu(xive_cpu, cpu);
1062
1063	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1064		    smp_processor_id(), cpu, xc->hw_ipi);
1065
1066	xd = &xc->ipi_data;
1067	if (WARN_ON(!xd->trig_mmio))
1068		return;
1069	out_be64(xd->trig_mmio, 0);
1070}
1071
1072static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1073{
1074	return smp_ipi_demux();
1075}
1076
1077static void xive_ipi_eoi(struct irq_data *d)
1078{
1079	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1080
1081	/* Handle possible race with unplug and drop stale IPIs */
1082	if (!xc)
1083		return;
1084
1085	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1086		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1087
1088	xive_do_source_eoi(&xc->ipi_data);
1089	xive_do_queue_eoi(xc);
1090}
1091
1092static void xive_ipi_do_nothing(struct irq_data *d)
1093{
1094	/*
1095	 * Nothing to do, we never mask/unmask IPIs, but the callback
1096	 * has to exist for the struct irq_chip.
1097	 */
1098}
1099
1100static struct irq_chip xive_ipi_chip = {
1101	.name = "XIVE-IPI",
1102	.irq_eoi = xive_ipi_eoi,
1103	.irq_mask = xive_ipi_do_nothing,
1104	.irq_unmask = xive_ipi_do_nothing,
1105};
1106
1107/*
1108 * IPIs are marked per-cpu. We use separate HW interrupts under the
1109 * hood but associated with the same "linux" interrupt
1110 */
1111struct xive_ipi_alloc_info {
1112	irq_hw_number_t hwirq;
1113};
1114
1115static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1116				     unsigned int nr_irqs, void *arg)
1117{
1118	struct xive_ipi_alloc_info *info = arg;
1119	int i;
1120
1121	for (i = 0; i < nr_irqs; i++) {
1122		irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip,
1123				    domain->host_data, handle_percpu_irq,
1124				    NULL, NULL);
1125	}
1126	return 0;
1127}
1128
1129static const struct irq_domain_ops xive_ipi_irq_domain_ops = {
1130	.alloc  = xive_ipi_irq_domain_alloc,
1131};
1132
1133static int __init xive_init_ipis(void)
1134{
1135	struct fwnode_handle *fwnode;
1136	struct irq_domain *ipi_domain;
1137	unsigned int node;
1138	int ret = -ENOMEM;
1139
1140	fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI");
1141	if (!fwnode)
1142		goto out;
1143
1144	ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids,
1145					      &xive_ipi_irq_domain_ops, NULL);
1146	if (!ipi_domain)
1147		goto out_free_fwnode;
1148
1149	xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL);
1150	if (!xive_ipis)
1151		goto out_free_domain;
1152
1153	for_each_node(node) {
1154		struct xive_ipi_desc *xid = &xive_ipis[node];
1155		struct xive_ipi_alloc_info info = { node };
1156
1157		/*
1158		 * Map one IPI interrupt per node for all cpus of that node.
1159		 * Since the HW interrupt number doesn't have any meaning,
1160		 * simply use the node number.
1161		 */
1162		ret = irq_domain_alloc_irqs(ipi_domain, 1, node, &info);
1163		if (ret < 0)
1164			goto out_free_xive_ipis;
1165		xid->irq = ret;
1166
1167		snprintf(xid->name, sizeof(xid->name), "IPI-%d", node);
1168	}
1169
1170	return ret;
1171
1172out_free_xive_ipis:
1173	kfree(xive_ipis);
1174out_free_domain:
1175	irq_domain_remove(ipi_domain);
1176out_free_fwnode:
1177	irq_domain_free_fwnode(fwnode);
1178out:
1179	return ret;
1180}
1181
1182static int xive_request_ipi(unsigned int cpu)
1183{
1184	struct xive_ipi_desc *xid = &xive_ipis[early_cpu_to_node(cpu)];
1185	int ret;
1186
1187	if (atomic_inc_return(&xid->started) > 1)
1188		return 0;
1189
1190	ret = request_irq(xid->irq, xive_muxed_ipi_action,
1191			  IRQF_NO_DEBUG | IRQF_PERCPU | IRQF_NO_THREAD,
1192			  xid->name, NULL);
1193
1194	WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret);
1195	return ret;
1196}
1197
1198static int xive_setup_cpu_ipi(unsigned int cpu)
1199{
1200	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1201	struct xive_cpu *xc;
1202	int rc;
1203
1204	pr_debug("Setting up IPI for CPU %d\n", cpu);
1205
1206	xc = per_cpu(xive_cpu, cpu);
1207
1208	/* Check if we are already setup */
1209	if (xc->hw_ipi != XIVE_BAD_IRQ)
1210		return 0;
1211
1212	/* Register the IPI */
1213	xive_request_ipi(cpu);
1214
1215	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1216	if (xive_ops->get_ipi(cpu, xc))
1217		return -EIO;
1218
1219	/*
1220	 * Populate the IRQ data in the xive_cpu structure and
1221	 * configure the HW / enable the IPIs.
1222	 */
1223	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1224	if (rc) {
1225		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1226		return -EIO;
1227	}
1228	rc = xive_ops->configure_irq(xc->hw_ipi,
1229				     get_hard_smp_processor_id(cpu),
1230				     xive_irq_priority, xive_ipi_irq);
1231	if (rc) {
1232		pr_err("Failed to map IPI CPU %d\n", cpu);
1233		return -EIO;
1234	}
1235	pr_debug("CPU %d HW IPI 0x%x, virq %d, trig_mmio=%p\n", cpu,
1236		 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1237
1238	/* Unmask it */
1239	xive_do_source_set_mask(&xc->ipi_data, false);
1240
1241	return 0;
1242}
1243
1244noinstr static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1245{
1246	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1247
1248	/* Disable the IPI and free the IRQ data */
1249
1250	/* Already cleaned up ? */
1251	if (xc->hw_ipi == XIVE_BAD_IRQ)
1252		return;
1253
1254	/* TODO: clear IPI mapping */
1255
1256	/* Mask the IPI */
1257	xive_do_source_set_mask(&xc->ipi_data, true);
1258
1259	/*
1260	 * Note: We don't call xive_cleanup_irq_data() to free
1261	 * the mappings as this is called from an IPI on kexec
1262	 * which is not a safe environment to call iounmap()
1263	 */
1264
1265	/* Deconfigure/mask in the backend */
1266	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1267				0xff, xive_ipi_irq);
1268
1269	/* Free the IPIs in the backend */
1270	xive_ops->put_ipi(cpu, xc);
1271}
1272
1273void __init xive_smp_probe(void)
1274{
1275	smp_ops->cause_ipi = xive_cause_ipi;
1276
1277	/* Register the IPI */
1278	xive_init_ipis();
1279
1280	/* Allocate and setup IPI for the boot CPU */
1281	xive_setup_cpu_ipi(smp_processor_id());
1282}
1283
1284#endif /* CONFIG_SMP */
1285
1286static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1287			       irq_hw_number_t hw)
1288{
1289	int rc;
1290
1291	/*
1292	 * Mark interrupts as edge sensitive by default so that resend
1293	 * actually works. Will fix that up below if needed.
1294	 */
1295	irq_clear_status_flags(virq, IRQ_LEVEL);
1296
1297	rc = xive_irq_alloc_data(virq, hw);
1298	if (rc)
1299		return rc;
1300
1301	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1302
1303	return 0;
1304}
1305
1306static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1307{
1308	xive_irq_free_data(virq);
1309}
1310
1311static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1312				 const u32 *intspec, unsigned int intsize,
1313				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1314
1315{
1316	*out_hwirq = intspec[0];
1317
1318	/*
1319	 * If intsize is at least 2, we look for the type in the second cell,
1320	 * we assume the LSB indicates a level interrupt.
1321	 */
1322	if (intsize > 1) {
1323		if (intspec[1] & 1)
1324			*out_flags = IRQ_TYPE_LEVEL_LOW;
1325		else
1326			*out_flags = IRQ_TYPE_EDGE_RISING;
1327	} else
1328		*out_flags = IRQ_TYPE_LEVEL_LOW;
1329
1330	return 0;
1331}
1332
1333static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1334				 enum irq_domain_bus_token bus_token)
1335{
1336	return xive_ops->match(node);
1337}
1338
1339#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1340static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1341
1342static const struct {
1343	u64  mask;
1344	char *name;
1345} xive_irq_flags[] = {
1346	{ XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1347	{ XIVE_IRQ_FLAG_LSI,       "LSI"       },
1348	{ XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1349	{ XIVE_IRQ_FLAG_NO_EOI,    "NO_EOI"    },
1350};
1351
1352static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1353				       struct irq_data *irqd, int ind)
1354{
1355	struct xive_irq_data *xd;
1356	u64 val;
1357	int i;
1358
1359	/* No IRQ domain level information. To be done */
1360	if (!irqd)
1361		return;
1362
1363	if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1364		return;
1365
1366	seq_printf(m, "%*sXIVE:\n", ind, "");
1367	ind++;
1368
1369	xd = irq_data_get_irq_handler_data(irqd);
1370	if (!xd) {
1371		seq_printf(m, "%*snot assigned\n", ind, "");
1372		return;
1373	}
1374
1375	val = xive_esb_read(xd, XIVE_ESB_GET);
1376	seq_printf(m, "%*sESB:      %s\n", ind, "", esb_names[val & 0x3]);
1377	seq_printf(m, "%*sPstate:   %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1378		   xd->saved_p ? "saved" : "");
1379	seq_printf(m, "%*sTarget:   %d\n", ind, "", xd->target);
1380	seq_printf(m, "%*sChip:     %d\n", ind, "", xd->src_chip);
1381	seq_printf(m, "%*sTrigger:  0x%016llx\n", ind, "", xd->trig_page);
1382	seq_printf(m, "%*sEOI:      0x%016llx\n", ind, "", xd->eoi_page);
1383	seq_printf(m, "%*sFlags:    0x%llx\n", ind, "", xd->flags);
1384	for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1385		if (xd->flags & xive_irq_flags[i].mask)
1386			seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1387	}
1388}
1389#endif
1390
1391#ifdef	CONFIG_IRQ_DOMAIN_HIERARCHY
1392static int xive_irq_domain_translate(struct irq_domain *d,
1393				     struct irq_fwspec *fwspec,
1394				     unsigned long *hwirq,
1395				     unsigned int *type)
1396{
1397	return xive_irq_domain_xlate(d, to_of_node(fwspec->fwnode),
1398				     fwspec->param, fwspec->param_count,
1399				     hwirq, type);
1400}
1401
1402static int xive_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1403				 unsigned int nr_irqs, void *arg)
1404{
1405	struct irq_fwspec *fwspec = arg;
1406	irq_hw_number_t hwirq;
1407	unsigned int type = IRQ_TYPE_NONE;
1408	int i, rc;
1409
1410	rc = xive_irq_domain_translate(domain, fwspec, &hwirq, &type);
1411	if (rc)
1412		return rc;
1413
1414	pr_debug("%s %d/0x%lx #%d\n", __func__, virq, hwirq, nr_irqs);
1415
1416	for (i = 0; i < nr_irqs; i++) {
1417		/* TODO: call xive_irq_domain_map() */
1418
1419		/*
1420		 * Mark interrupts as edge sensitive by default so that resend
1421		 * actually works. Will fix that up below if needed.
1422		 */
1423		irq_clear_status_flags(virq, IRQ_LEVEL);
1424
1425		/* allocates and sets handler data */
1426		rc = xive_irq_alloc_data(virq + i, hwirq + i);
1427		if (rc)
1428			return rc;
1429
1430		irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1431					      &xive_irq_chip, domain->host_data);
1432		irq_set_handler(virq + i, handle_fasteoi_irq);
1433	}
1434
1435	return 0;
1436}
1437
1438static void xive_irq_domain_free(struct irq_domain *domain,
1439				 unsigned int virq, unsigned int nr_irqs)
1440{
1441	int i;
1442
1443	pr_debug("%s %d #%d\n", __func__, virq, nr_irqs);
1444
1445	for (i = 0; i < nr_irqs; i++)
1446		xive_irq_free_data(virq + i);
1447}
1448#endif
1449
1450static const struct irq_domain_ops xive_irq_domain_ops = {
1451#ifdef	CONFIG_IRQ_DOMAIN_HIERARCHY
1452	.alloc	= xive_irq_domain_alloc,
1453	.free	= xive_irq_domain_free,
1454	.translate = xive_irq_domain_translate,
1455#endif
1456	.match = xive_irq_domain_match,
1457	.map = xive_irq_domain_map,
1458	.unmap = xive_irq_domain_unmap,
1459	.xlate = xive_irq_domain_xlate,
1460#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1461	.debug_show = xive_irq_domain_debug_show,
1462#endif
1463};
1464
1465static void __init xive_init_host(struct device_node *np)
1466{
1467	xive_irq_domain = irq_domain_add_tree(np, &xive_irq_domain_ops, NULL);
1468	if (WARN_ON(xive_irq_domain == NULL))
1469		return;
1470	irq_set_default_host(xive_irq_domain);
1471}
1472
1473static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1474{
1475	if (xc->queue[xive_irq_priority].qpage)
1476		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1477}
1478
1479static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1480{
1481	int rc = 0;
1482
1483	/* We setup 1 queues for now with a 64k page */
1484	if (!xc->queue[xive_irq_priority].qpage)
1485		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1486
1487	return rc;
1488}
1489
1490static int xive_prepare_cpu(unsigned int cpu)
1491{
1492	struct xive_cpu *xc;
1493
1494	xc = per_cpu(xive_cpu, cpu);
1495	if (!xc) {
1496		xc = kzalloc_node(sizeof(struct xive_cpu),
1497				  GFP_KERNEL, cpu_to_node(cpu));
1498		if (!xc)
1499			return -ENOMEM;
1500		xc->hw_ipi = XIVE_BAD_IRQ;
1501		xc->chip_id = XIVE_INVALID_CHIP_ID;
1502		if (xive_ops->prepare_cpu)
1503			xive_ops->prepare_cpu(cpu, xc);
1504
1505		per_cpu(xive_cpu, cpu) = xc;
1506	}
1507
1508	/* Setup EQs if not already */
1509	return xive_setup_cpu_queues(cpu, xc);
1510}
1511
1512static void xive_setup_cpu(void)
1513{
1514	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1515
1516	/* The backend might have additional things to do */
1517	if (xive_ops->setup_cpu)
1518		xive_ops->setup_cpu(smp_processor_id(), xc);
1519
1520	/* Set CPPR to 0xff to enable flow of interrupts */
1521	xc->cppr = 0xff;
1522	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1523}
1524
1525#ifdef CONFIG_SMP
1526void xive_smp_setup_cpu(void)
1527{
1528	pr_debug("SMP setup CPU %d\n", smp_processor_id());
1529
1530	/* This will have already been done on the boot CPU */
1531	if (smp_processor_id() != boot_cpuid)
1532		xive_setup_cpu();
1533
1534}
1535
1536int xive_smp_prepare_cpu(unsigned int cpu)
1537{
1538	int rc;
1539
1540	/* Allocate per-CPU data and queues */
1541	rc = xive_prepare_cpu(cpu);
1542	if (rc)
1543		return rc;
1544
1545	/* Allocate and setup IPI for the new CPU */
1546	return xive_setup_cpu_ipi(cpu);
1547}
1548
1549#ifdef CONFIG_HOTPLUG_CPU
1550static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1551{
1552	u32 irq;
1553
1554	/* We assume local irqs are disabled */
1555	WARN_ON(!irqs_disabled());
1556
1557	/* Check what's already in the CPU queue */
1558	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1559		/*
1560		 * We need to re-route that interrupt to its new destination.
1561		 * First get and lock the descriptor
1562		 */
1563		struct irq_desc *desc = irq_to_desc(irq);
1564		struct irq_data *d = irq_desc_get_irq_data(desc);
1565		struct xive_irq_data *xd;
1566
1567		/*
1568		 * Ignore anything that isn't a XIVE irq and ignore
1569		 * IPIs, so can just be dropped.
1570		 */
1571		if (d->domain != xive_irq_domain)
1572			continue;
1573
1574		/*
1575		 * The IRQ should have already been re-routed, it's just a
1576		 * stale in the old queue, so re-trigger it in order to make
1577		 * it reach is new destination.
1578		 */
1579#ifdef DEBUG_FLUSH
1580		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1581			cpu, irq);
1582#endif
1583		raw_spin_lock(&desc->lock);
1584		xd = irq_desc_get_handler_data(desc);
1585
1586		/*
1587		 * Clear saved_p to indicate that it's no longer pending
1588		 */
1589		xd->saved_p = false;
1590
1591		/*
1592		 * For LSIs, we EOI, this will cause a resend if it's
1593		 * still asserted. Otherwise do an MSI retrigger.
1594		 */
1595		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1596			xive_do_source_eoi(xd);
1597		else
1598			xive_irq_retrigger(d);
1599
1600		raw_spin_unlock(&desc->lock);
1601	}
1602}
1603
1604void xive_smp_disable_cpu(void)
1605{
1606	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1607	unsigned int cpu = smp_processor_id();
1608
1609	/* Migrate interrupts away from the CPU */
1610	irq_migrate_all_off_this_cpu();
1611
1612	/* Set CPPR to 0 to disable flow of interrupts */
1613	xc->cppr = 0;
1614	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1615
1616	/* Flush everything still in the queue */
1617	xive_flush_cpu_queue(cpu, xc);
1618
1619	/* Re-enable CPPR  */
1620	xc->cppr = 0xff;
1621	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1622}
1623
1624void xive_flush_interrupt(void)
1625{
1626	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1627	unsigned int cpu = smp_processor_id();
1628
1629	/* Called if an interrupt occurs while the CPU is hot unplugged */
1630	xive_flush_cpu_queue(cpu, xc);
1631}
1632
1633#endif /* CONFIG_HOTPLUG_CPU */
1634
1635#endif /* CONFIG_SMP */
1636
1637noinstr void xive_teardown_cpu(void)
1638{
1639	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1640	unsigned int cpu = smp_processor_id();
1641
1642	/* Set CPPR to 0 to disable flow of interrupts */
1643	xc->cppr = 0;
1644	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1645
1646	if (xive_ops->teardown_cpu)
1647		xive_ops->teardown_cpu(cpu, xc);
1648
1649#ifdef CONFIG_SMP
1650	/* Get rid of IPI */
1651	xive_cleanup_cpu_ipi(cpu, xc);
1652#endif
1653
1654	/* Disable and free the queues */
1655	xive_cleanup_cpu_queues(cpu, xc);
1656}
1657
1658void xive_shutdown(void)
1659{
1660	xive_ops->shutdown();
1661}
1662
1663bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1664			   void __iomem *area, u32 offset, u8 max_prio)
1665{
1666	xive_tima = area;
1667	xive_tima_offset = offset;
1668	xive_ops = ops;
1669	xive_irq_priority = max_prio;
1670
1671	ppc_md.get_irq = xive_get_irq;
1672	__xive_enabled = true;
1673
1674	pr_debug("Initializing host..\n");
1675	xive_init_host(np);
1676
1677	pr_debug("Initializing boot CPU..\n");
1678
1679	/* Allocate per-CPU data and queues */
1680	xive_prepare_cpu(smp_processor_id());
1681
1682	/* Get ready for interrupts */
1683	xive_setup_cpu();
1684
1685	pr_info("Interrupt handling initialized with %s backend\n",
1686		xive_ops->name);
1687	pr_info("Using priority %d for all interrupts\n", max_prio);
1688
1689	return true;
1690}
1691
1692__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1693{
1694	unsigned int alloc_order;
1695	struct page *pages;
1696	__be32 *qpage;
1697
1698	alloc_order = xive_alloc_order(queue_shift);
1699	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1700	if (!pages)
1701		return ERR_PTR(-ENOMEM);
1702	qpage = (__be32 *)page_address(pages);
1703	memset(qpage, 0, 1 << queue_shift);
1704
1705	return qpage;
1706}
1707
1708static int __init xive_off(char *arg)
1709{
1710	xive_cmdline_disabled = true;
1711	return 1;
1712}
1713__setup("xive=off", xive_off);
1714
1715static int __init xive_store_eoi_cmdline(char *arg)
1716{
1717	if (!arg)
1718		return 1;
1719
1720	if (strncmp(arg, "off", 3) == 0) {
1721		pr_info("StoreEOI disabled on kernel command line\n");
1722		xive_store_eoi = false;
1723	}
1724	return 1;
1725}
1726__setup("xive.store-eoi=", xive_store_eoi_cmdline);
1727
1728#ifdef CONFIG_DEBUG_FS
1729static void xive_debug_show_ipi(struct seq_file *m, int cpu)
1730{
1731	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1732
1733	seq_printf(m, "CPU %d: ", cpu);
1734	if (xc) {
1735		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1736
1737#ifdef CONFIG_SMP
1738		{
1739			char buffer[128];
1740
1741			xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer));
1742			seq_printf(m, "IPI=0x%08x %s", xc->hw_ipi, buffer);
1743		}
1744#endif
1745	}
1746	seq_puts(m, "\n");
1747}
1748
1749static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d)
1750{
1751	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1752	int rc;
1753	u32 target;
1754	u8 prio;
1755	u32 lirq;
1756	char buffer[128];
1757
1758	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1759	if (rc) {
1760		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1761		return;
1762	}
1763
1764	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1765		   hw_irq, target, prio, lirq);
1766
1767	xive_irq_data_dump(irq_data_get_irq_handler_data(d), buffer, sizeof(buffer));
1768	seq_puts(m, buffer);
1769	seq_puts(m, "\n");
1770}
1771
1772static int xive_irq_debug_show(struct seq_file *m, void *private)
1773{
1774	unsigned int i;
1775	struct irq_desc *desc;
1776
1777	for_each_irq_desc(i, desc) {
1778		struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
1779
1780		if (d)
1781			xive_debug_show_irq(m, d);
1782	}
1783	return 0;
1784}
1785DEFINE_SHOW_ATTRIBUTE(xive_irq_debug);
1786
1787static int xive_ipi_debug_show(struct seq_file *m, void *private)
1788{
1789	int cpu;
1790
1791	if (xive_ops->debug_show)
1792		xive_ops->debug_show(m, private);
1793
1794	for_each_online_cpu(cpu)
1795		xive_debug_show_ipi(m, cpu);
1796	return 0;
1797}
1798DEFINE_SHOW_ATTRIBUTE(xive_ipi_debug);
1799
1800static void xive_eq_debug_show_one(struct seq_file *m, struct xive_q *q, u8 prio)
1801{
1802	int i;
1803
1804	seq_printf(m, "EQ%d idx=%d T=%d\n", prio, q->idx, q->toggle);
1805	if (q->qpage) {
1806		for (i = 0; i < q->msk + 1; i++) {
1807			if (!(i % 8))
1808				seq_printf(m, "%05d ", i);
1809			seq_printf(m, "%08x%s", be32_to_cpup(q->qpage + i),
1810				   (i + 1) % 8 ? " " : "\n");
1811		}
1812	}
1813	seq_puts(m, "\n");
1814}
1815
1816static int xive_eq_debug_show(struct seq_file *m, void *private)
1817{
1818	int cpu = (long)m->private;
1819	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1820
1821	if (xc)
1822		xive_eq_debug_show_one(m, &xc->queue[xive_irq_priority],
1823				       xive_irq_priority);
1824	return 0;
1825}
1826DEFINE_SHOW_ATTRIBUTE(xive_eq_debug);
1827
1828static void xive_core_debugfs_create(void)
1829{
1830	struct dentry *xive_dir;
1831	struct dentry *xive_eq_dir;
1832	long cpu;
1833	char name[16];
1834
1835	xive_dir = debugfs_create_dir("xive", arch_debugfs_dir);
1836	if (IS_ERR(xive_dir))
1837		return;
1838
1839	debugfs_create_file("ipis", 0400, xive_dir,
1840			    NULL, &xive_ipi_debug_fops);
1841	debugfs_create_file("interrupts", 0400, xive_dir,
1842			    NULL, &xive_irq_debug_fops);
1843	xive_eq_dir = debugfs_create_dir("eqs", xive_dir);
1844	for_each_possible_cpu(cpu) {
1845		snprintf(name, sizeof(name), "cpu%ld", cpu);
1846		debugfs_create_file(name, 0400, xive_eq_dir, (void *)cpu,
1847				    &xive_eq_debug_fops);
1848	}
1849	debugfs_create_bool("store-eoi", 0600, xive_dir, &xive_store_eoi);
1850
1851	if (xive_ops->debug_create)
1852		xive_ops->debug_create(xive_dir);
1853}
1854#else
1855static inline void xive_core_debugfs_create(void) { }
1856#endif /* CONFIG_DEBUG_FS */
1857
1858int xive_core_debug_init(void)
1859{
1860	if (xive_enabled() && IS_ENABLED(CONFIG_DEBUG_FS))
1861		xive_core_debugfs_create();
1862
1863	return 0;
1864}
1865